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Abstract. In this paper, we consider maximum integral flow problems with an additional
reverse convex constraint involving one or two nonlinear variables. Based on a parametric
approach, we propose a polynomial-time algorithm for computing an integral flow globally
optimal to the problem with a single nonlinear variable. We extend this idea and solve the
problem with two nonlinear variables. The algorithm solves a sequence of ordinary minimum
cost flow problems by using a conventional method and yields a globally optimal solution in

pseudo-polynomial time.
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1. Introduction

In this paper, we consider a certain class of maximum flow problems with an additional
reverse convex constraint.

Let G be a directed graph consisting of a set V of n nodes and a set E of m arcs.
-We suppose that each node in a subset F of V is a factory producing a common com-
modity and supplies it through G to a particular node, say n € V' \ F. Our purpose is
to transport the commodity to the demand node n as many units as possible subject to
a restriction that the total cost never exceeds an allotted budget. The total cost con-
sists of two parts: production costs and transportation costs. While transportation costs
can often be assumed to be linear, production costs generally exhibit economy of scale
and are described by concave and nondecreasing functions of the production quantities.
Therefore the problem has a reverse convex constraint expressing the budgetary limita-
tion in its formula as well as the usual arc capacity and flow conservation constraints.
Such a reverse convex program is a typical global optimization problem and has multiple
locally optimal solutions, many of which fail to be globally optimal [9].

*The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of
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The problem is closely related to the production-transportation problem studied by
some authors in [12, 13, 15, 16, 18]. The latter can be regarded as a dual problem of the
former in the sense that the total cost is minimized sub ject to a fixed flow value, instead
of restricted by a budget. Another related problem is the maximum flow problem with
an additional linear constraint (see e.g. [1]), which ignores the production cost and hence
is formulated as a linear program.

In this class of problems, we are concerned with the cases where |F| < 2, i.e., the
number of factories is one or two. We will develop an efficient algorithm based on a
parametric approach in order to compute an integral flow globally optimal to either
case. In Section 2, we will consider the case |F| = 1 and present a polynomial-time
algorithm taking the flow value as a parameter. We will extend this algorithm and
solve the problem with |F| = 2 in Section 3. The proposed algorithm solves a sequence
of minimum cost flow problems by using the augmenting-path algorithm of Ford and
Fulkerson [3] and yields a globally optimal solution in pseudo-polynomial time.

2. The Problem with Single Factory

We first consider the case where F' is a singleton, i.e. factory 1 € V' produces y units
of the commodity at a cost of f(y) and supplies the demand node n € V through
G = (V, E). The production function f : Ry — R. is concave and nondecreasing, where
R represents the set of nonnegative real numbers. The cost ¢ij 2 0 and capacity u;; > 0
associated with each arc (%, j) € E are real and integral valued, respectively. When the
budgetary limit is given by some real b > 0, the problem is formulated as follows:

maximize y

y fori=1,
subject to )z — Y zp= 0 forallie V\{1,n},
(P,) ili)eE iGAEE _y fori=n,

0<z;<uy for(i,j)e E, yeZy,
f@)+ > cyzi; < b,

(i.J)EE

where Z, is the set of nonnegative integers. Due to the last constraint, (P;) is neither
linear nor convex programming but belongs to global optimization even though the
constraint y € Z, is relaxed into y € R. Let

Y, i = 1’
A X me ¥ mi=] 0 iev\{L ),
Dy)=JzeR™| & ™ G g, i=n, o (21)
0<z; <uwj, (i,j)€E
D={(z,y) e R"xR|z € D(y), y>0} (2.2)



C= {(m’ y) €ER" xR l f(y) + Z CijTi; > b}’ (2°3)
(iJ)EE
where m = |E| and vector & consists of z;;, (i, j) € E. Then the relaxed feasible region
is expressed by the difference D\ C of two convex sets D and C This implies that (P,)
is a kind of reverse convex program (see [9]).

Let c and u denote the vectors consisting c;; and u;;, (i, j) € E, respectively. To solve
(P1), we consider a minimum cost flow problem defined below in network (G, 1, n, ¢, u):
minimize Y ¢z

(j)eE
subject to x € D(y),

(P1(y))

where y is a constant. Problem (P;) can be solved if for every integer ¥ € [0, Ymax] We
check whether the optimal value of (P,(y)) is greater than b or not, where Y,y is the
optimal value of a maximum flow problem associated with (Py):

maximize vy
24
subject to (z, y) € D. 24
Let 2*(y) be an optimal solution of (P;(y)) and let
g@W) = > cjzi(y). (2.5)
(i.5)eE
Also let
h(y) = f(y) + 9(y)- (2:6)

Then h(y) represents the minimum of g(y) + 2_G.j)eE CijTi; when the value of y is fixed.
Lemma 2.1. Let
y' =max{y | h(y) < b, y € [0, Yl N Z}. 2.7)

Then any optimal solution (x*(y*), y*) of (Py(y*) ) 15 a globally optimal solution of (P, ).
Proof: Obvious by definition. ]

In this way, (P;) is reduced to the problem (2.7) with only one variable y. Although
the constraint function h is neither convex nor concave over the interval [0, yma,;], it

possesses some favorable properties.

Lemma 2.2. Function h : [0, Ymax] — R is continuous, nondecreasing and piecewise

concave.



Proof: It is well known (see e.g. [2, 4]) that the optimal value g(y) of (P1(y)), a
parametric right-hand-side linear program, depends convexly and piecewise affinely on
Y € [0, Ymax]. Also g is nondecreasing on the assumption that ¢;; > 0 for each (i, j) € E.
Hence k is continuous, nondecreasing on [0, Ym,,| and also concave on each affine piece
of g, since k is the sum of g and the concave nondecreasing function f. ]

Lemma 2.2 guarantees that h(y) > b for all y € [y/, Ymax] if h(y') > b. Exploiting
this monotonic property, we can find an integer y* satisfying (2.7) by applying a binary
search procedure to the interval [0, Ymax]-

Algorithm A.
Step 0. Compute Ymax by solving problem (2.4). Let £ = 0 and r = Ymax-

Step 1. Let y = [(¢+7)/2]. Compute an optimal solution 2*(y') and the optimal value
9(y') of (P1(y)) and let h(y') = f(y') + g(¥').

Step 2. If y' = ¢, then terminate. (If h(y') > 0, then (P,) is infeasible. Otherwise,
(z*(y'), ¥') is optimal to (P,).)

Step 3. If h(y') > 0, then r = y'. Otherwise, let £ = ¢’ + 1. Return to Step 1. a

Theorem 2.3. Algorithm A solves (Py) in O(M(m, n)log mU) arithmetic operations
and O(log mU) evaluations of f, where M(m, n) is the running time of a minimum cost
fiow algorithm and U = max{u;; | (i, j) € E}.

Proof: Step 0 solves a maximum flow problem (2.4) and hence requires less than
M(m, n) arithmetic operations. The binary search for y* is carried out in Steps 1 -
3. After log ymax iterations, it yields the most right integer 3’ € [0, Ymax] among those
satisfying h(y) < b if such a 3’ exists. In each iteration, Step 1 evaluates faty
and Step 2 solves 2 minimum cost flow problem (P, (y')). Therefore, the total number of
arithmetic operations is O(M(m, n)10g ymax) and that of evaluations of f is O(10g Yrmax)-
O

Note that M(m, n) is strongly polynomial, e.g. O(nm?log®n) [5]. In Algorithm A,
we have only to use the monotonicity but not the concavity of f. As a result, the running
time can be bounded by a polynomial function of the problem input length, which will be
almost the same complexity needed to solve a maximum flow problem with an additional
linear constraint if the value of f is provided by an oracle. In other words, (P,) is not
essentially a class of global optimization problems, though it is in appearance. In the
next section, however, we will show that the concavity of the production function is
substantial in the problem with two factories.
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3. The Problem with Two Factories

The second case supposes F = {1, 2}. Factories 1 and 2 supply y; and y, units, respec-
tively, to terminal n € V through G = (V, E). The cost of producing y = (y, Y2) is
given as f(y) by a function f : R?,_ — R, which is concave and coordinatewise nonde-
creasing, i.e.

)< fly") if 0<y <y | (3.1)

It is often assumed that f is separable, i.e. F(y) = fi(y1) + f2(y2) for some concave
nondecreasing functions f; : R, — R, i = 1, 2. However, we need not impose such
an assumption upon our algorithm. As before, the cost ¢;; and capacity u;; of each arc
(i, j) € E are nonnegative real and integral valued, respectively. Then the problem with
a budgetary limit b, which is a nonnegative real, is as follows:

maximize y; + ¥y

yp fori=1,
subject to Z 55 — Z z; = ys fori ='2,
(P2) JGA)EE ilGH)eE 0 forallieV\{1,2, n},

—y1 —y fori=n,
0<z; Suy; for(i,j)€e E, ye 22,
F@)+ 3 cyzy <.

(i.j)EE
Let
( 3/1, 3= ]-a )
Z Ti; — Z T = Y2y l=2,
D(y)={xz e R™ WiTee * iipeE 0, ieV\{L,2,n},;, (32
—3/1 - y‘ls ’13 =n,

0<z;;<u;, (4,j)€E )
D={(z,y) e R" xR’ |z € D(y), y > 0}, (3.3)
C={(z, ) eR"xR*| f(y)+ > cyzi; > b}. (3.4)

(iJ)eE
If the constraint y € Z% is relaxed to y > 0, the feasible region is again expressed by
the difference D \ C of two convex sets D and C.
Let us consider a minimum cost flow problem in network (G, F, n, ¢, u):

minimize Z Cij Tij
(Pa(y)) G)eE

subject to x € D(y),
where y is a constant vector. We denote by @*(y) an optimal solution of (P2(y)) and
by g(y) the optimal value if D(y) # 0. If we try to extend Algorithm A to (P3), we
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have to check the value ¢(y) for each integral point y in the projection of D onto the
y-space, denoted by

Q={ycR’|D(y) #0, y >0} (3.5)

To make it systematically, let us observe the minimum value of fly) + 2. H)EE CijTij
when y is fixed, i.e. the value given by

h(y) = f(y) + 9(y). (3.6)
Lemma 3.1. Le¢

Yy € argmax{y: +y; | A(y) < b, y € QNZ?}. (3.7)
Then any optimal solution (2*(y*), y*) of (Pa(y*)) is a globally optimal solution of (P,).
Proof: Obvious. O

Lemma 3.2. Ifh(y') > b for some y' € §, then
h(y) >b, Yye{yeQly>y'}. (3.8)

Proof:  Since ¢;; > 0 for each (i, j) € E, the optimal value g(y) of (P2(y)) does not fall
below g(y') when y > y'. Hence (3.8) follows from (3.1) and (3.6). W

Corollary 3.3. If min{h(y) |y, +y.=v, y € Q} > b for a number v, then

h(y) >b, Vye{y € Qly +y >0} (3.9)
Proof: For an arbitrary y' € {y € Q | y1 + y, = v},

h(y') 2 min{h(y) [y1+y: =v, y€Q} > b,

Hence the assertion follows Lemma 3.2. O

3.1. PARAMETRIZATION OF PROBLEM (P,)

Lemma 3.1 and Corollary 3.3 leads us to an outline of solution to (P2):

Let us install an artificial node s in G and denote by G = (V, E) the directed graph
with V.=V U{s} and £ = EU{(s, 1), (5, 2)}. Also let u,; = 400 for i = 1, 2. Then
the maximum value vpay of g1 + y2 such that y € Q is given by the optimal value of a
maximum fow problem in network (G, s, n, u):

maximize v
subject to (z, y) € D, (3.10)
Nit+y2=v, y2>0.



For some v € [0, v,4], if we can see that

(T(v) :min{h(y) |y +9.=v, y€Q} >b
holds, we need not search QN {y € R? | y; + y, >

v} for y* satisfying (3.7) any
longer. Hence a binary search procedure will locate v* such that yf + y; = v* in the
interval [0, vmax] if only we can check (T(v)) for each integer v € [0, vmax]. Note that
any y € argmin{h(y) | y; +y, = v*, y€ QN 2%} provides a globally optimal solution
(2*(y), ) of (Py).

Suppose an arbitrary integer v € [0, Umax] is given. Let c; = 0 for i = 1,2. To
check if (T(v)) is true or false, we first solve a minimum cost flow problem in network
(G, s, n, ¢, u):
minimize Y ¢z
ij)eE
(Q() subject to ((zzjzfey) €D,
hit+typ=v, y20.
Let ((v), §(v)) be an optimal solution of (Q(v)). Then Z(v) is obviously an optimal
solution of (P,(H(v))).
We next consider the following problem taking y; as a parameter:
minimize Z Cij
(Q(y1; v)) (i3)eE
subject to x € D(y;, v — ).

We solve this problem, (i) increasing the value of %1 from (v}, and then (ii) decreasing
the value of y; from §;(v). Apparently, the minimum of the optimal values of (Q(y;; v))
provides the left-hand-side value of (T(v)). Let &(y;; v) denote an optimal solution and
let '

flys; v) = Fy, v = y1), (3.11)

9(ys; v) = Z ciZi; (y1; v) = 9(y1, v — Y1), (3-12)
(i.J)eE

h(y1§ v) = f(yl, vy + g(yl, V- yl) = h(yla v =) (3-13)

Note that Z(y;; v) is optimal to (Py(y;, v — y1)) and that g(-; v) is convex and piecewise
affine at any y, such that (y;, v ~ y;) € Q (see e.g. [2, 4]).

Lemma 3.4. Function h(-; v) is continuous at any y, such that (y,, v —y;) € Q, and
concave on each affine piece of g(-; v).

Proof: Although the monotonicity may fail, f(+; v) is still a concave function. Hence
the sum A(-; v) of f(-; v) and g(-; v) has the above properties. O

We see from Lemma 3.4 that there is a global minimum of h(-; v) among break points of
g(+; v). We will generate all the break points by using the augmenting-path algorithm
of Ford and Fulkerson (3] (see also [1]).



3.2. ENUMERATION OF BREAK POINTS OF g(+; v)

Suppose an optimal solution &(y/; v) of (Q(¥'; v)) is given for some y' > #(v). Based on
&(y'; v), we define an auxiliary network A/ = (G'=(V, EyUE,), 1,2, ¢, w) according
to the rules below: For each (i, j) € E,

rule 1: if Z;;(y'; v) < uj, then (4, j) € E, and let{

Ui = ui; — Z5(y'; v), ci; = Cij (3.14)
rule 2: if Z45(y'; v) > 0, then (4, j) € E, and let

uj; = :fij(y'; V), i =—cyj. (3.15)

If there is no path from node 1 to 2 in G', it can be shown that y1 L ¢ for all y; such
that (y1, v — 1) € Q. Otherwise, we can find a flow augmenting path 7 C £, U E, from
node 1 to 2 with the least cost, by solving a shortest path problem in G’ with arc length
c. Let

§=min{ul, | (i, j) € 7}. | (3.16)
Lemma 3.5. Let § € (0, §]. Also, for each (i, j) € E, let

Zi(y5v) +6 if (i,j) € nNE,,
zi(8) = § Z(ysv) =6 if (j,i) €nNE, (3.17)
Z;(y'; v) otherwise.

Then x'(6) is optimal to (Q(y + 6, v)).

Proof: Follows from a well-known result on the augmenting-path algorithm for mini-
mum cost flow problems (see e.g. [10]). O

According to (3.17), we can compute the optimal value 9y + 6; v) of (Q(y' + 6; v) as
follows: :
9y +8v) = 3 ciyai(6)
(L)eE

g5 ) +86( Y - i) (3.18)

(L4)emnEy (G)eErNE,

I

This expression implies that g(-;v) is an affine function over the interval W, ¥ + 8],
and hence no y, € (y', ¥ + 8) can provide a global minimum of h(-; v). We then let
Z(y' +6';v) = 2'(§') and jump to the next point y' + &', where §' = min{§, v — y/}.

To solve (Q(y;; v)) as increasing the value of y; from #1(v), we begin with y' = 7;(v)
and Z(y';v) = &(v), and apply the above procedure iteratively. In case we cannot
augment the flow from node 1 to 2 in the auxiliary network A, we solve (Q(y; v)) as
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decreasing y; from % (v) instead. This can be done in a similar way, where we need to
find an augmenting path in A not from node 1 to 2 but from node 2 to 1.

Let us summarize the above procedure, which receives an integer v € [0, Umax| and yields
y'(v) € argmin{h(y) | s + 32 = v, y € O}, @*(v) = 2*(y*(v)) and h*(v) = h(y*(v)).

Procedure B(v).

0° Compute an optimal solution (#(v), §(v)) of (Q(v)). Let g =01,2), ¢ =
§1(v) and Z(y'; v) = &(v). Also let y*(v) = (v, v — ¢/), &*(v) = 2(3/; v) and
h*(v) = h(y'; v).

1° Construct the auxiliary network A = (G' = (V, E; UE,), p, g, ¢, u') with respect
to &(y'; v) according to rules 1 and 2.

2° If there is no directed path from node p to ¢ in G, then go to 5°. Otherwise,
compute a shortest path 7 in G with arc length ¢’ and let § = min{u}; | (i, j) € 7}.

3° Let §' = min{8, v — y'}. For each (i,7) € E, let
Z(ysv)+ 6 i (G, j)ernE,
25y +650) =1 Z5(y50) -6 if (j,i) € TN Ey,
z;(y'; v) otherwise.
Also let y' = ¢/ + §'.

4° If A(y'; v) < h*(v), then update the incumbent:

. Lu—y) if (p,q)=(1,2),
9(“)={Ey 'J,) (p, 9) = (1, 2)
v-—19y',y) otherwise,
z*(v) = &(y'; v), h*(v) = h(y; ).
If y' < v, return to 1°.

5° If (p, q) = (2, 1), then yield (z*(v), y*(v), h*(v)). Otherwise, let (p, q) = (1, 2),
"= 2(v), 2(y"; v) = &(v) and return to 1°. o

Lemma 3.6. Procedure B(v) requires O(S(m, n)mU) arithmetic operations and O(mU)
evaluations of f, where S(m, n) is the running time of a shortest path algorithm and
U =max{u; | (i, j) € E}.

Proof: Step 0° solves a maximum flow problem (Q(v)) in less than S(m, n)mU arith-
metic operations. Steps 1° - 4° are essentially the same as those of the augmenting-path
algorithm for solving a minimum cost flow problem with m arcs and n nodes (see e.g.
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(1, 3]). By integrity of u;;’s, these steps are repeated at most O(mU) times. At each
iteration, the procedure solves a shortest path problem and evaluates f to compute
h(y'; v). o

Note that (x*(v), y*(v)) generated by the procedure is an integral flow in network
(G, s, n, ¢, u) so long as v is an integer.

3.3. ALGORITHM FOR SOLVING (P,)

We are now ready to present the algorithm for solving (Ps).

Algorithm C.
Step 0. Compute vp,, by solving problem (3.10). Let £ =0 and r = v,,,.

otep 1. Let v = |(£+1)/2]. Check (T(v)) in the following manner:

(+) Call Procedure B(v) and obtain (x*(v), y*(v), h*(v)).
(1) If h*(v) > b, then (T(v)) is true.

Step 2. if v = ¢, then terminate. (If (T(v)) is true, then (P3) is infeasible. Otherwise,
(z*(v), y*(v)) is optimal to (P,).)

Step 3. If (T(v)) is true, then r = v. Otherwise, let ¢ = v + 1. Return to Stepl. O

Theorem 3.7. Algorithm C solves (P,) in O(S(m, n)mU log mU) arithmetic opera-
tions and O(mU log mU) evaluations of f.

Proof: Step 0 requires less than S(m, n)mU arithmetic operations. The binary search
procedure corresponding to Steps 1 — 3 is applied to the interval [0, ¥max], and hence
requires log vn,, iterations. This together with Lemma 3.6 proves the running time of
the algorithm. The correctness follows Corollary 3.3, Lemmas 3.4 and 3.5. m|

In contrast to (P,), the concavity of f properly works in (P;), and so we have to
examine every local minimum of A(-;v) by using Procedure B(v), Consequently, the
worst-case number of arithmetic operations required by Algorithm C is not polynomial
but pseudo-polynomial in the problem input length. However, Procedure B(v) is nothing
but the augmenting-path algorithm of Ford and Fulkerson [3], which is known to be
practically efficient for networks of middle sizes. We can therefore expect that Algorithm
C is also reasonably efficient for such a network unless evaluations of f are extremely

expensive.
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(5, 7) (eijy uif)

nli »-
3,5
(15, 3) 3 5) - =
, ; (7, 8)
Y2

Figure 3.1. Example of (P,).

3.4. NUMERICAL EXAMPLE

Before concluding this section, let us illustrate Algorithm C by using a simple instance
of (P;), given by the network in Figure 3.1. The production cost of factories 1 and 2 is
assumed to be

F(y) =80 ("% + 2.0/,

and the budget capacity b = 120.0.

In Step O of the algorithm, we install an artificial node s and arcs (s, 1), (s,2) in G
and denote the resulting graph by G. The maximum flow value from s to 5 in G is 17.
Hence the interval to be searched is [¢, 7] = [0, 17].

Iteration 1: We let v = |17/2] = 8 and call Procedure B(v) to check if (T(8)) is true
or false.

In Procedure B(8), we first solve a minimum cost flow problem (Q(8)) in network
(G, s, 5, ¢, u) and obtain an optimal solution (2(8), 9(8)) as shown in Figure 3.2. Since
#(8) is also optimal to (Q(3; 8)), we let 2(3; 8) = #(8) and

£(3:8) = £(3, 5) = 49.63,
9(3; 8) = g(3,5) = Y _ ¢;;3:;(3; 8) = 102,
h(3; 8) = h(3, 5) = £(3, 5) + ¢(3, 5) = 151.63.

Based on &(3; 8), we construct the auxiliary network A as shown in Figure 3.3.
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Hh(8) =3

72(8) =5
1

(5, 3)
Y
2

Figure 3.2. Optimal solution of (Q(8)).

(5, 4)

(""5, 3)

(_3) ‘5)

(7, 8)

(9, 7)

3,7 (=98 5

(8, 5)

¥
(4

Figure 3.3. Auxiliary network A" with respect #(3; 8).
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We next solve (Q(y'; 8)) as increasing the value of y' from 7(8) = 3. By adding
flows along augmenting paths from node 1 to 2 step by step in A/, we generate

F(7;8) =37.17, ¢(7;8) =110, h(T; 8) = 147.17;
F(8;8) =22.63, g(8;8) =125, h(8; 8) = 147.63.

Then we solve (Q(y/'; 8)) as decreasing y from 71(8) = 3 and have
F(0; 8) = 45.26, g(0; 8) =105, h(0; 8) = 150.26.

Function f(-; 8) is affine on the intervals [3, 7], [7, 8] and [0, 3], on each of which A(-; 8)
is concave. Since h(7; 8) = min{A(3; 8), h(7; 8), h(8; 8), k(0; 8)}, the procedure yields
x*(8) = &(7; 8) and

y*(8) = (7,8 = 7) = (7,1), Rh*(8) = h(T;8) = 147.17.
Thus we see that h*(8) > b =120.0 and (T(8)) is true. We then reduce the interval
[¢, 7] to [0, 8].
Iteration 2: Letting v = |8/2] = 4, we call Procedure B(v) to check (T(4)).

The procedure examines 3’ = 0, 4, and compares

£(0; 4) = 32.00, g(0; 4) =48, h(0; 4) = 80.00;
f(4; 4) =16.00, g(4; 4) =56, h(4; 4) = 72.00.

Then it yields 2*(4) = #(4; 4) and
y'(4) =(4,4-4)=(4,0), h*(4) = h(4; 4) = 72.00.
Since h*(4) < b and (T(4)) is false, welet £ =4 +1 = 5.
lteration 3: Letting v = |(5 + 8)/2] = 6, we call Procedure B(v). Then it yields
x*(6) = (6; 6) and
y*(6) = (6, 0), h*(6) = 103.60.
Since h*(6) < b and (T(6)) is false, we let £ =6 +1 = 7.
Iteration 4: We let v = |(7+ 8)/2| = 7. Since the value of v reaches ¢ = 7, we call

Procedure B(7) and then terminate Algorithm C. The procedure yields &*(7) = &(7; 7)
and

Yy (7)=(7,0), r*(7) =119.17.

Since h*(7) < b, a globally optimal solution of our instance is given by (x*(7), y*(7)),

shown in Figure 3.4.
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nn="T]|1
0
0
Y 0
=0 |2

Figure 3.4. Optimal solution of the instance.

4. Conclusion

We showed in this paper that a parametric approach provides efficient algorithms for
solving a class of network flow problems with an additional reverse convex constraint.
Algorithm A we proposed to solve problem (P,) can yield a globally optimal solution in
polynomial time. While (P,) with a single nonlinear variable is not essentially a global
optimization problem, in problem (P;) with two nonlinear variables the concavity of the
constraint function works properly. Hence (P,) can have multiple local minima, many of
which fail to be globally optimal. To solve this multiextremal problem, we incorporated
a global optimization technique into the algorithm. In consequence, a globally optimal
solution of (P;) turned out to be obtained in pseudo-polynomial time if we use Algorithm
C. Computational experiments are now under way, the results of which will be reported
elsewhere.

Besides problems (P,) and (P;), parametric approaches are very effective for solution
to certain nonconvex network flow problems and studied in several articles (8,11, 12,13,
14, 18]. Especially in a series [15, 16, 17], Tuy et al. show that a parametric algorithm
solves minimum concave-cost flow prbblems with a fixed number of sources and nonlinear
arcs in strongly polynomial time. The readers are also referred to [6, 7] for the current
state-of-the-art of general nonconvex network optimization.
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