Genetic Algorithms for
Constraint Satisfaction Problems

Hitoshi Kanoh,
Miyuki Matsumoto, Seiichi Nishihara

November 30, 1995

ISE-TR-95-126

This report is a revision of the following paper:
IEEE International Conference on Systems, Man, and Cybernetics
Volume 1 of 5, pp.626-631, October 1995, Vancouver.

Institute of Information Sciences and Electronics
University of Tsukuba

Tsukuba, Ibaraki 305, Japan

Phone: 0298-53-5344, E-mail: kanoh@is.tsukuba.ac.jp

Genetic Algorithms for Constraint Satisfaction Problems

Hitoshi Kanoh, Miyuki Matsumoto and Seiichi Nishihara
University of Tsukuba
Tsukuba, Ibaraki 305, Japan

ABSTRACT

Several approximate algorithms using hill-climbing techniques and neural networks have
recently been proposed to solve large constraint satisfaction problems (CSPs) in a practical
time. In these proposals, many methods of escaping from local optima are discussed,
however, there are very few methods that actively perform global search. In this paper we
propose a hybrid search method that combines the genetic algorithm with the min-conflicts
hill-climbing (MCHC). In our method, the individual that has the fewest conflicts in the
population is used as the initial value of MCHC to search locally. A detailed experimental
simulation is also performed to prove that the proposed method generally gives better

efficiency than randomly restarting MCHC when CSPs are sparsely—connected.

Key words: Genetic algorithm, hill climbing, global search, local minima, Hamming

distance, constraint satisfaction, conflict.
1. INTRODUCTION

A constraint satisfaction problem (CSP) is a combinatorial search problem to find solutions
that satisfy given constraints [1]. A decision problem, whether a CSP has solutions or not,
is NP-complete, and no general effective algorithm to solve it exists. Several approximate
algorithms that use iterative improvement have been studied to solve large scale CSPs with
a high probability of finding a solution as much as possible in a practical time. While exact
algorithms using backtrack techniques satisfy completeness of the algorithm, approximate
algorithms do not satisfy it, but may perform high-speed and highly parallel processing.

Good results have particularly been obtained by hill-climbing in the direction of
minimizing the number of conflicts (MCHC) [2] and a modified discrete Hopfield network
(GDS) [3]. Because of the possibility of becoming stuck at locally optimal points, however,
CSPs — where the number of constraints is closer to the number of variables — are hard to

solve using these methods [4]. Techniques to escape from local optima have also been

proposed (GSAT [5] [6], the breakout method [7], GENET [8], EFLOP [9] and so on), but

there are very few methods that actively perform global searches.

On the other hand, Genetic Algorithms (GAs) that have a global search strategy are a class
of randomised search algorithms based on a model of organic evolution, and have been
used successfully to solve optimization problems in many fields [10]. However, there are
very few reports using GAs to solve CSPs. This seems to be due to a lack of local search
techniques in GAs. While quasi-optimal solutions to optimization problems may be
obtained, at least one complete solution that satisfies all constraints is needed in CSPs.

In this paper we propose a hybrid search method that combines GA with MCHC. Global
search using GAs is performed, and the elite, or the individual with the fewest conflicts in
the population, is used as the initial value of MCHC to search locally. For the purpose of
giving the first priority in the GA process to maintaining diversity of the population,
fitnesses of individuals are decreased when the Hamming distances between the elite and
these individuals is small. The elite falling into local optima is removed from the
population, and the MCHC restarts from another initial value that is created by GA.

In the following sections, we first classify CSPs into four types according to the
relationship between the number of variables and constraints. Second, we describe a
method to code CSPs for genetic search as well as the proposed hybrid method. Finally, we
compare it with the repeated restarting MCHC from random initial values using CSPs
defined by Haralick [1].

2. CLASSIFICATION OF CSPs
2.1 CSPs and Their Classification

Boolean satisfiability problems and graph coloring problems have been used as examples to
study CSPs. In this paper we take Haralick's general definition [1] of CSPs to consider
applicability of our method. A CSP is defined by a quadruple (U,L, T,R). Here, U = {1,
n} is a set of variables where # is the number of variables, and each member corresponds
to a component of a given problem. The term L is a finite set of values, and each member
corresponds to a candidate of a value that should be assigned to each variable. T = {T1, ¢,

Tm} is a set of constraints relations of variables where m is the number of constraints, and

the meaning of 7j = (p,q) is that there is a constraint between the p-th variable and the
g-th variable. R = {R1,**¢Rm} is a set of Rj, and each member Rj is a set of partial
solutions that can be assigned to variables in Tj. The following shows an example of a
CSP.
U={1,2,3,4}
L={ab,c,d,e}
T = {T1, 12, 13, T4}
TI=(1,2) T2=(13) TI3=(34 T4=(014)
R ={R1, R2, R3, R4}
RI = {@b)(ed} R2={aA@a} R3={co@0} R4 ={@d,@e)bo)}
Solution : (1,2,3,4) = (a,b,c,¢) |
In this paper only binary constraints are treated. A fast algorithm using heuristics has been
proposed [1] for these CSPs described by partial solutions. In this paper, however, we will
discuss them using only the number of conflicts without problem specific heuristics, as we

study algorithms for general CSPs.

Because a CSP is NP-complete, no general effective algorithm for it exists. So, classifying
CSPs into the following four types according to the relationship between m and n, and
considering effective algorithms for each type is our standpoint.

Type 1 :m =n-1

Type 2 : n—-1 <m << n(n-1)12

Type 3 :n-1 <<m < n(n-1)/2

Type 4 : m = n(n-1)/2
Figure 2 shows examples of the four types of CSPs that are expressed by the constraint
graphs, where the vertices and the edges comrespond to the variables and the constraints,
respectively. The constraint graph of type 1 is a tree structured graph and constraint

density, d = m/n, is minimum, while that of type 4 is a complete graph having a maximum

value of d.
Type 1 . Type 2 Type 3 Type 4

Figure 1 Classification of CSPs

-3 -

Generally, it is difficult to solve a CSP that has small d, as it has many local optima. This
is the case for type 1. The n-queens problem, a standard benchmark for testing search
algorithms, corresponds to type 4. Sparsely connected graphs for the graph coloring
problem in reference [4], which is often referred to as a representative approximate
algorithm to solve CSPs, comrespond closely to type 1. The densely connected graphs
correspond to type 3. It seems that the appropriate application of each algorithm is made

clear by the above classification.
2.2 Approximate Algorithms to Solve CSPs

Several approximate algorithms using MCHC have recently been proposed to solve
large-scale CSPs in a practical time ([2], [S], [7], [9]). MCHC uses the following heuristic

as a value ordering rule [2].

Min-conflicts heuristic: Select a variable that is in conflict, and assign it a value that

minimizes the number of conflicts.

Good performance can be obtained by MCHC and GDS. A drawback of these methods is
a local optima problem, and a number of remedies have been proposed (GSAT, GENT
and so on). In this paper we compare genetic algorithms with almost the same method as
GSAT and discuss the results. That is, when the number of conflicts does not decrease
even if the hill-climbing step is repeated a given number of times, it is regarded as local
optima, and the procedure restarts with another randomly generated initial value. We will
henceforth call this method iterated hill-climbing (IHC). IHC is based on the following

hypothesis about a form of cost function on state space.

Restarting hypothesis: Solutions are far from the local optima on the CSP of which the

constraint density is low.
2.3 Genetic Algorithms
GAs use analogs of genetic operators [10], that is to say selection, crossover and mutation,
on a population of states in a search space to find states without conflict. GAs are based on

the following hypothesis to search globally, and it is considered that different characteristics

from the hill-climbing methods and neural networks can be obtained.

4

Building blocks hypothesis: Individuals that have few conflicts include many partial
solutions. The probability that partial solutions are combined to form better individuals by
genetic operations is higher than the probability that they are broken.

3. PROPOSED METHOD

3.1 Strategies

In this paper we propose a hybrid search method that combines GA with MCHC. We will
henceforth call this method GAHC. Our strategies are as follows.

(1) First, a global search using the GA is performed. Then the elite, or the individual with
the fewest conflicts in the population (break ties randomly), is used as the initial value of
MCHC to search locally.

(2) The highest priority in the GA process is given to maintaining diversity of the
population so as to enhance the ability of the global search. For that purpose, let the
fitness value of the individual decreased, as the Hamming distances from the elite become
small.

(3) The elite falling into local optima is removed from the population. Then the GA process
is resumed, and MCHC restarts from a new elite. This procedure is based on the restarting

hypothesis.

3.2 Coding and Fitness

In our model CSPs are encoded on the GA as shown in Table 1. Let the chromosome of
the k-th individual in the population be denoted by Gk, and the gene at the i-th locus in

the chromosome be denoted by Gk(i). The third row in Table 1 shows an example of the
CSP in.

Table 1 Correspondence between CSP and GA

CSP GA Example
Variable Locus i 1,234
Value Gene Gx(i) a,b,c
Candidate of solution | Chromosome G« | (a,b,a,c)

Let the fitness value Fr be calculated as follows.

m |
Ft =1 - Y CONFi(j) /" m 1)
j=1

where Tj = (p,q),
m is the number of constraints,

1 (Gk(p),Gk(q)) not within Rj
CONF(j) = {
0 otherwise

3.3 Probability of Selection

As we mentioned above, let the probability of selection be decreased for those individuals
that are close to the elite. Let Ge be the chromosome of the elite, and let the Hamming
distance between Ge and G be defined by the following equation (2) here.

He=n - .Z S8 (G(i), Ge(i)) ©)

i=1
where n is the number of loci,

S (xy) = {1 =

0 otherwise
Using this Hamming distance, let the probability of selection be calculated as follows.
PSk = Fk X Hc /' n (3)

3.4 Algorithm

Figure 3 shows the algorithm of the proposed GAHC, where the population size and the
upper bound of generations are denoted by Np and Ng, respectively. In Figure 3, first, Np
individuals are randomly generated, then the following two procedures are repeated until a

solution is found or Ng times.

Local search: Fitness values for all individuals are calculated using equation (1). The
individual with a maximum fitness value is the elite. If the fitness value of the elite Fe is
greater than the threshold value Ft, then a local search is performed by MCHC as the elite

is an initial value.

Genetic operations: First, Nd individuals are selected according to PSk in eq.(3) using a
roulette selection with conserving the elite, that is including the elite to the next generation.
Next, Np individuals are generated from them using a uniform crossover. The last operation

is a mutation, that is, a random gene is assigned at a random locus in a random individual

in terms of the given probability.

Initialize
a population

while Calculate fitness’
ng é Ng

Select the elite

n g : Generation

number yes
Ng : Upper bound MCHC
of ng F, 2 R
F, : Fitness of
the elite Selection
F; : Constant
Crossover
Mutation
Selection = while || Calculate
gection ks Ng the Hamming distance

k : Individual TR
Select an individual

number o
N4 : Constant according to PS
ps;: Selection Y¢S [Remove
probability e the elite the elite
fall into
local optima?

Figure 2 GAHC Algorithm

4. EXPERIMENT
4.1 Experimental Method

To evaluate the performance of GAHC, we randomly generated type 1 to 4 CSPs, and tried
to solve them using IHC, GA and GAHC. This section shows the results, where the
number of variables and values are fixed at 50 and four, respectively; therefore the size of
the state space we treat is about 10 to the 30-th power. Table 2 shows the number of
constraints and their density for each type. The following two values were examined on a
HP 715/33 workstation, and all algorithms were implemented in C language.

(@) Percentage of success (%): The number of solved CSPs divided by the number of
searched CSPs X 100. '

(b) Mean solution time (min): The mean time required to find a solution with respect to

successful cases.

Table 2 Number of constraints and their density for Type 1 to 4 CSPs

Type of CSP 1 2 3 4
Number of constraints : m n-1 9(n-1) | 17(n-1) | n(n-1)/2
Constraint density : d=m/n| 0.98 8.82 16. 7 24.5

n:Number of variables

4.2 Setting of Parameters

It is necessary to take notice of the comparison of GA with IHC, as they are based on quite
different search strategies. The statistic values of the percentage of success and mean
solution time may be changed according to Ni and Ng, where Ni is the upper bound of the
number of iterations in IHC. In this paper we have set Ni and Ng so that the theoretical
maximum values of the calculation costs can be equal between IHC and GA. These costs

can be calculated as follows.

COST(IHC) = CHc X Nh X Ni 4)

COST(GA) = Cca X Np X Ng &)

COST(GAHC) = C64 X Np X Ng + CHC X Nh X Ng 6)
where

CHC=CI Xm XnCéa=C2XxXm+C3Xn
C1, C2, C3 : constants

CHc is the cost to calculate one hill-climbing step, and is in proportion to the cost to
calculate the number of conflicts for every variable. Cc4 is the cost to calculate one
generation per individual in the GA, and is the sum of the following two terms. The first
term is the cost to calculate the number of conflicts for an individual, and is in proportion
to m (cf. eq.(1)). The Second term is the sum of the calculation cost of PSk and genetic
operations, and is in proportion to n (cf. egs.(2) and (3)). Table 3 shows experimental
values of CHC/CGa. Here, Nh is the mean number of actually doing a hill-climbing step.

Table 3 Experimental values of CHC/CG4

Type 1 2 3 4
Cuc/Coa [2.98(9.37]14.5(15.8

We are very interested in comparing GAHC with GA and IHC on type 1 CSPs. In the

following experiments, therefore, we estimated equations (4), (5) and (6) using the value of

type 1 in Table 3, and set each parameter so that the following condition can be satisfied.
COST(GAHC) = COST(HC), COST(GA) @)

In addition, the survival rate Nd/Np is equal to 0.5, and the mutation rate per

locus is equal to 1% throughout the experiments.
4.3 Experimental Results for GA

The roulette selection, where PSt = Fx >, without conserving the elite and the uniform
crossover are used in this experiment. Throughout the experiment, Ng is equal to 200. To
compare GA on these conditions, the GA with conserving the elite has also been tested.
Table 4 shows the results averaged over 1,600 CSPs in each case. Each case includes the
same number of type 1 to 4 CSPs. It is seen in Table 4 that the best performance has been
obtained for GA without the elite, where Np = 2000.

Table 4 Experimental results for GA

GA without elite | GA with elite

Population size : Np 1000 | 2000 | 3000 | 1000 | 2000 | 3000
Percentage of success (%) 12 17 81 4 74 13
Mean solution time (min) 9.0 8.9 12 7.1 11 20

4.4 Experimental Results for GAHC

The results are shown in Figure 4, where Np = 1000 and Ng = 100 are the set values in
this experiment. The horizontal axis shows the density of constraint defined by d = n / m,
and corresponds to different types of CSPs as shown in Table 2. Each point shown, is the
average of 40 CSPs. Ft in Fig. 4 is a threshold value of the elite's fitness that implies the
transfer point from the global search to the local search. This is the most important
parameter in GAHC. The performance of GAHC should agree with IHC at Ft = 0 and
with GA at Fr = 1. Fig. 4(a) shows that the percentage of success drops at d = 16.7, when
Ft = 0.6, and Fig. 4(b) shows that the mean solution time increases rapidly at d = 24.5,
when Ft = 0.4. Therefore, the best results are obtained when Ft = 0.5.

35 Y
e
2 E ¥
['
8- Q 5
3 5
s g ¥
& L
s 15
% 40]
o e 10
o by
B 20 S 5
] of. X
. " - 20 2% 0 5 10 15 20 2
Constraint density Constraint density
(a) The number of solved CSPs divided by (b) The mean time required to find a solution

the number of searched CSPs x 100

Figure 3 Experimental results for GAHC

4.5 Comparison of GAHC and other Methods

Figure 5 shows the results for GAHC, GA and IHC on type 1 to 4 CSPs. Each point
shown, is the average of 400 CSPs. In this experiment, Ni = 500 is used for IHC, Nk = 100
for GAHC and Nk = 200 for IHC. Their measurement are taken from actual type 1 CSPs.
Using these parameters, the expression (7) can be satisfied.

The following are seen in Fig. 5. First, comparing IHC with GAHC, the percentage of
success is about the same when d = 8 to 25. In addition, GAHC is excellent when d =

0.98, where a global search strategy becomes especially important in solving CSPs. The

..10_

mean solution time is about the same when d < 9. In contrast, GAHC is four times faster
than IHC in the range of d = 16 to 25. Moreover, while IHC increases rapidly in the range
of d = 9 to 25, GAHC increases slowly. Next, comparing GA with GAHC, the latter is

excellent over the entire region in Fig. 5(a) and (b).

100 R ——— e 25
“ 0}

g 80 E®
g g

s 60 s B
. g

2 4 ERRT)
g &
=

& 2 g s
=

o 0

5 10 15 20 25
Constraint density Constraint density
(a) The number of solved CSPs divided by (b) The mean time required to find a solution

the number of searched CSPs x 100

Figure 4 Experimental results for IHC, GA and GAHC

5. CONCLUSIONS

In this paper we proposed a hybrid search method that combines the genetic algorithm with
the min-conflicts hill-climbing. We performed experiments using randomly generated
CSPs defined by Haralick, and showed that the probability of finding a solution and the
mean solution time for the proposed method are better than iterated hill-climbing and the

usual genetic algorithm.
Acknowledgment

The authors wish to thank Dr. Li Jiang Hong and Dr. Kanji Uchino of University of

Tsukuba for their beneficial discussions in carrying out this research.

11

REFERENCES

[1] RM. Haralick, L.G. Shapiro,"The Consistent Labeling Ploblem, Part I", JEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. PAMI-1, No. 2, 1979, pp. 173-184.

[2] S. Minton, M.D. Johnston, A.B. Philips,P. Laird, "Solving Large-Scale Constraint
Satisfaction and Sceduling Problems Using a Heuristic Repair Method", 4441'90, 1990, pp.
17-24.

[3] H.M. Adorf, M.D. Johnston, "A Discrete Stochastic Neural Network Algorithm For
Constraint Satisfaction Problems", IJCNN'90, 1990, IlI pp. 917-924.

[4] S. Minton, et al, "Minimizing conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems", Artificial Intelligence, 58, 1992, pp. 161-205.

[5] B. Selman, H. Levesque, D. Mitchell, "A New Method for Solving Hard Satisfiability
Ploblems", A4AI'92, 1992, pp. 440-446.

[6] B. Selman, H. Kautz, "Domain-Independent Extension to GSAT : Solving Large
Structured Satisfiability Proglems", A4A4I'93, 1993, pp. 290-295.

[7] P. Morris, "The Breakout Method For Escaping From Local Minima", A4AI'93, 1993,
pp. 40-45.

[8] A. Davenport, E. Tsang, C.J. Wang, K. Zhu, "GENET: A Connectionist Architecture
for Solving Constraint Satisfaction Problems by Iterative Improvement”, A441'94, 1994, pp.
325-330.

[9] N. Yugami, Y. Ohta, H. Hara, "Improving Repair-based Constraint Satisfaction
Methods", A4AI'94, 1994, pp. 344-349.

[10] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison Wesley, 1989.

_12..

