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Abstract.

We consider the multiclass M/G/1 queues with random feedback. Each customer belongs to
one of the several priority classes, and the customers of each class arrive at a station in a Poisson..
process from outside the system. The service time distribution for each class is arbitrary. After
receiving a service, a customer at station 7 either departs from the system with probability p;o,
or feeds back to the system and proceeds to station k with probability p;x (4,k = 1,...,J). We
consider preemptive scheduling algorithms where every service discipline at every station is either
FCFS and preemptive LCFS. We first formulate system performance measures as the cost functions
of the system state. They include the mean sojourn times of customers arriving at every station.
We consider the system at arbitrary states to obtain explicit formulae of these cost functions and
then derive their steady state values.

Key words. Multiclass M/G/1 queues, feedbacks of customers, mean sojourn times, scheduling
algorithms and Little’s formula.

1. Introduction.

Single server queueing systems with feedback are useful to modeling multiprograming systems
and manufacturing systems. In computer systems customers (tasks) that are scheduled for resources
may be have to come back several times for additional service [1].

Disney [3] and Disney et al. [4] have been concerned with sojourn times in M/G/1 queues with
instantaneous, Bernoulli feedback. Van den Berg et al. [1] considered the system in which each
customer requires N services. Fed back customers return instantaneously, joining the end of the
queue. They derived the set of linear equations in order that the mean sojourn times per visit can
be explicitly solved. Simon [18] considered the system with ¢ types of customers and m levels of
priority. Class j customers may require service N(j) times. The k** time a class j customer enters
the queue it is assigned priority level f(j,k). He obtained the set of linear equations for the mean
waiting times. Doshi and Kaufman [5] studied the sojourn time of a tagged customer who has
just completed his m* pass in an M/G/1 queue with Bernoulli feedback. They also considered the
model with multiple customer classes. Recently, Epema [6] has investigated the general single server
(M/G/1) time-sharing model with multiple queues and customer classes, priorities and feedback.
Customers are served in passes, receiving a complete quantum of service on every pass, or their
remaining service demand, whichever is the lesser. If a customer completes his service demand
during the pass, it leaves the system. He derived a set of linear equations in the mean waiting
times of the customer passes for all classes and queues. The priority queues are well investigated
in [8, 10, 19, 23]. For further related topics in the field, see [11, 15].

We formulate system performance measures as the cost functions of system states. we first
consider the system in arbitrary states in order to derive explicit formulae of the cost functions.



Then we consider the system under steady states. In Section 2. we describe our model in detail,
and introduce notation and system states for given system parameters. Then we define a set
of cost functions that represent the system performances such as the mean sojourn times and
the expected values of cumulative works. Sets of equations satisfied by these cost functions are
derived. These quantities are closely related to busy periods of the system. Hence we analyze busy
periods in Section 3.. Section 4. is devoted to derive explicit formulae of two cost functions. We
derive quantities with regard to transitions of states in Sections 5.. In Section 6. the sets of the
equations are solved to derive explicit formulae of the two objective cost functions at arbitrary
states. Uniqueness of the cost functions is established in Section 7.. Finally, in Section 8. we
evaluate steady state values of the cost functions by the generalized Little’s formula (H = AG) and
PASTA (Poisson arrivals see time averages) property.

2. Model and Notation.

We consider a multiclass priority queueing system with random feedbak. Let there be J classes
of customers indexed as 1,2,...,J. Customers arrive at station ¢ from outside the system according
to a Poisson process {A;(t) : t > 0} with rate A; (i = 1,...,J). Let )\j’ =yl  Aand A=A A
customer at station 1 is called a class i customer. Service times S; of class ¢ customers are arbitrarily
distributed. Customers in the system are served by a single server according to a predetermined
scheduling algorithm. After a class 7 customer completes a service, he either departs from the
system with probability p;o, or feeds back to the system and proceeds to station j with probability
pij (1,7 = 1,...,J). For convenience, let po; = 0 (j = 1,...,J). Let P; = (pij : 4,7 = 1,...,1)
be the feedback probability matrix (I = 1,...,J). The arrival processes, the service times and the
feedback processes are assumed to be independent of each other.

Let v denote a current work, that is, a customer will receive v seconds of service potentially at
the currently entered station on the visit (or, his current remaining service time at the station).
The customer departs from the system or feeds back to the system after receiving v seconds of his
service. Let T};(v) be the total amount of service times of a customer who is currently at station
i with his current work v receives until he departs from the system or leaves for one of stations
j+1,...,J for the first time (4,7 = 1,...,J). Note that, even if ¢ > j, it is assumed that he
receives at least service v. The expected values of T;;(v) is given by

E[Tm(v)] = v-l—i:pizE[le(Sz)], ,7=1,...,J. ‘ (2.1)
=1

Specifically, if we let T;; = T;;(S;), then
J
E[Tij] = E[S:] + ZpuE[le], i,7=1,...,J. (2.2)
=1

So we can obtain their solutions in a vector form if (I-P;)! exists. We define intensities p;-*' in
the following manner:

gy =0,
j

pb = Y NE[T;),  j=1,...,J
1=1

Then we make the following assumption:

Assumption 2..

1. P5—0 asn— oo



2. p¥<1. O

The first assumption is a sufficient condition for existence of (I —P;)~* for j = 1,...,J. Since p¥
is the traffic intensity of the system, the second assumption is the usual condition. '

Let R,R,Z+ be respectively a set of real numbers, a set of nonnegative real numbers, and a
set of nonnegative integers. Number of class ¢ customers in the system is denoted by n; and their
J-tuple is denoted by n = (ny,...,n5) € Ii. Customers in each station are queued in the order of
their last arrivals to the station. Let vz be a current work of a class ¢ customer in k** position of
its queue (¢ = 1,...,J and k = 1,...n;). Number of class 7 customers in the system at time ¢ is
denoted by n}(t) and their J-tuple is denoted by n”(t) = (n{(¢),...,n](t)). Let v;x(t) be a current
work of a class i customer in k** position of its queue at time t (i = 1,...,J and k = 1,...,n1(1)).
All processes {v;x(t) :t > 0} (i =1,...,J and k = 1,...,n!(t)) and all processes {n!(t) : t > 0}
(i=1,...,J) are right continuous with left-hand limits.

We assume that the classes of customers are priority classes such that class ¢ has priority over
class 7 if 1 < j. Customers are served preferentially served in order of priority. If a customer of
high priority arrives when a customer of lower priority is being served, the server interrupts the
current service and immediately starts to serve the customer of high priority. The preempted service
for the customer of lower priority is commenced again from the point where it was interrupted.
The service discipline at each station is either FCFS or preemptive LCFS(PR-LCFS). Station 1
with FCFS discipline serves customers according to first come first served basis if no customers
are in stations 1,...,i — 1. Station ¢ with PR-LCFS discipline serves customers according to
preemptive resume last come first served basis if no customers are in stations 1,...,72 — 1. We
consider scheduling algorithms that are work-conserving: sums of remaining service times of all
customers at any time ¢t > 0 (Y7, Z:’;(lt) T;7(vik(t)) : work-in-system; Wolff [21]) are the same for
all scheduling algorithms considered, and the server is not idle whenever there is a customer in the
system (non-idling). (We distinguish a termi current work from a term work, where we use work
to denote total amount of remaining service times of customers in the system that will be received
until they depart from the system.)

Let us assume that customers are numbered in the order of their arrivals from outside the
system and that the system is operated under a fixed scheduling algorithm. Let us consider an e?"
customer arrives from outside the system at one of the stations at some epoch o§ (e = 1,2,...).
Let M¢© be the number of his visits to the stations from his arrival at time o until his departure
from the system. Then let of be a time epoch just when he would arrive at one of the stations
after completing his k** service (k = 1,2,...,M?®). For convenience, of = 0$;. for k > MeC.
We must specify informations of the system in order to operate it according to a predetermined
scheduling algorithm. Let 1;,(t) = (vim(t),og,...,cr}i,;(t),oo,...) € Ry X (R4 U{o0})™ be an
information vector of a class i customer in m** position of its queue where N&(t) is the number
of his feedbacks up to time ¢ (0§ = oo for k > Ng(t) in the information vector). If there is not
a class ¢ customer in m?® position of its queue at time t, let L, (t) = (0,00,...). The customer
list is a set of these information vectors such that L(t) = (Lin(t) 14 =1,...,J and m = 1,2,...).
Let us consider transition epochs of these processes consist of customer arrival epochs and service
completion epochs. Then let X (t) denote a station where a customer arrives at the last transition
epoch before t (¢ > 0). X(t) is right continuous with left-hand limits and X(¢) = 0 if a customer
departs from the system at the last transition epoch before ¢t. Let n;(t) = nl(t) for all ¢t > 0
(i =1,...,J) except for transition epochs 7 of customers at which n;(7) = n}(7) (¢ # X(7)) and
ny ) (T) = n;((T)(T) — 1. Hence {n;(t) : t > 0} denotes the number of customers in station 7 just
prior to arrivals of customers. Let n(t) = (ni(t),...,ns(t)). Further let v(t) = (v1(t),...,vs(t))
denotes the vector of total amount of current works v;(t) = Z;’S{ vim(t) at time t (= 1,...,J).
Then we define the stochastic process @ = {Y(t) = (X(¢),v(t),n(t), L(t)) : t > 0} that represents
an evolution of the system. For any scheduling algorithm defined above, Q embeds a Markov



process with a stationary transition probability whose transition epochs consist of customer arrival
epochs and service completion epochs. Possible values of Y (t) (¢ > 0) are called states. The state
space of Q is denoted by £.

We would like to derive two types of cost functions defined below. First type of the cost functions
represents the mean sojourn times of customers. We define

Cepi(t) = 1, if an e** customer stays at station j at time ¢, (2.3
Wi\") =) 0, if an e'* customer does not stay at station j at time ¢, 3)
fort>0,5=1,...,J and e=1,2,.... Then we define
o0
Wi(Y,e,l) = E / Cors (Y (of) = Y|, G=1,...,J, (2.4)
of

where Y = (4,v,n,L) € £,1=0,1,...and e = 1,2,.... W;(Y,e,l) denotes the mean sojourn time
of an et* customer spent at station j after time of given that the system is in state Y at that time.
Trivially, W;(Y,e,l) = 0 for Y = (0,v,n,L) € £. Let us consider an eth customer is in station
i at time of. His initial stay denotes a period from time o} until he completes his first service at
station i. The length of his initial stay is called the initial sojourn time. Then we define

Wi(Y,e,l)

oy )
E[/ﬂe'“ Ciyi (At Y (of) = Y] . i=1,...,J, (2.5)
1

where Y = (¢,v,n,L) € £,1 =0,1,... and e = 1,2,.... Wf(Y,e,l) denotes the mean initial
sojourn time of an e** customer spent at station j during his initial stay after time of given that
the system is in state Y at that time. Trivially, W]-I(Y,e,l) =0for Y = (i,v,n,L) € £ and
i # j. Then the mean sojourn time W;(-) of an eth customer spent at station j (5 = 1,...,J)
is decomposed into two parts: the mean initial sojourn time and the mean sojourn time after his
initial stay at station i. We mathematically express the fact as follows:

Wi(Y,e,l) = WI(Y,e,l)+ E[W;(Y(0fy,) el + )Y (of) = Y], (2.6)

for Y = (i,v,n,L) € £,1=0,1,...and e = 1,2,... (j = 1,...,J). Of course, every scheduling
algorithm has its own cost functions.

Second type of the cost functions represents the expected cumulative current works of customers.
Let ng(t) be a current work at time ¢ of an e*” customer at station j. For example, if he enters
station j at epoch of, then Cg;(o7) = Sj. The value of Cg;(t) gradually decreases as the server
serves him. If he completes his current work at epoch of,,, then C&;(of,,~) = 0. If he again
enters station j at of > o, then C&;(of) = Sj. The value of Cg;(¢) gradually decreases until
the server completes his current work at epoch o, ;. Then, Cg;(of,,~) = 0 and so forth. Then
we define

oo
Gi(Y,el) = E{/ Ce;(t)dt|Y (of) = Y} , j=1,...,J, (2.7)
o

where Y = (i,v,n,L) € £,1=0,1,... and e = 1,2,.... G;(Y,e,l) denotes the expected value of
the cumulative current work of an et customer, who arrives at station ¢ at of just when the system

is in state Y = (¢,v,n, L) € £, accumulated during he stays at station j until he departs from the
system. Trivially, G;(Y,e,!) =0 for Y = (0,v,n,L) € £. Further, we define

Gl(Y,e,l) = E{/el“ C’&j(t)dtlY(of):Y}, j=1,...,7J, (2.8)
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where Y = (¢,v,n, L)€ £,1=0,1,...and e = 1,2,.... Gf(Y,e,l) denotes the expected value of
the initial cumulative current work of an e*® customer, who arrives at station i at time of just when
the system is in state Y = (¢,v,n, L), accumulated during his initial stay at the station. Trivially,
Gf(Y,e,l) =0 for Y = (i,v,n,L) € £ and 7 # j. Then the expected cumulative current work
G,(-) of an eth customer accumulated at station j (7 =1,...,J)is decomposed into two parts: the
expected initial cumulative currnet work and the expected cumulative current work after his initial

stay at station ¢. We mathematically express the fact as follows:
Gi(Y,e,) = GH(Y,e,0)+ E[G;(Y(0fy) 6,0+ 1) Y(of) = Y], (2.9)

for Y = (4,v,n,L) € £,1=0,1,...and e = 1,2,... ( = 1,...,J). Of course, every scheduling
algorithm has its own cost functions.
After stating some assumptions, we will explicitly solve equations (2.6) and (2.9) in Section 6..

3. Busy periods of the system.

The quantities defined in the last section are shown to be closely related to busy periods. Let-
B’ be the first time until the system is cleared of customers from classes 1 through j (j = 1,...,J).
Let

the first time until the system is cleared of customers from classes

1 through j with an ‘exceptional’ service time v; 7 =1,...,J. (3.1)

Bi(v) = {
For notational convenience, let B%(v) = v. According to usual queueing parlances, B’ is called a
busy period composed of customers from classes 1 through j, and B(v) is called an Ezceptional
First Service Busy Period (EFSBP) composed of customers from classes 1 through j. We will call
B7 and Bi(v) simply a class j busy period and a class j busy period initiated with ezceptional service
v, respectively. Their expected values are given by

2
A1 —-pf)

Pp) = — 2
E[B(v)]_l_p;_, j=1,...,J. (3.3)

E[BY] = j=1,...,J, (3.2)

Let Y = (i,v,n, L) € £ be a state of the system at some transition epoch of Q. We now consider
any set of customers currently in the system and denote it by C = C(Y). For example, if a class
j customer in k** position of its queue belongs to the set, we express it as (j,k) € C. A set of
customers who are initially in the system and are not in C when the system is in state Y is denoted
by C¢ = C(Y;C). We then define

the first time at which current works of the customers in C
BY(Y;C) = have been completed, given that the system is initially in (3.4)
state Y € £ at some transition epoch; 7 =1,...,J.

the first time at which all current works of the customers

in C have been completed and the system is cleared of

customers from classes 1 through j, except for the customers (3.5)
in C¢, given that the system is initially in state Y € £

at some transition epoch; j=1,...,J.

BY(Y;0C)

We will call B/(Y;C) a class j busy period initiated with {Y;C}. Then their expected values are
given by the usual method [21]:

E[BY(Y;0) = Y. v, ‘ (3.6)
(k,l)ec



E[B/(Y;C)] = Z(k’l)effiﬁcj(vkln, j=1..,J (3.7)

Remark. In order to obtain the above expressions for any j (j = 1,...,J), any system state
Y € £ and any set C = C(Y) of customers initially in the system, we consider a scheduling algorithm
where all customers from classes 1 through j and all customers in C are served nonpreemptively in
an LCFS order until they depart from the system or leave for one of stations j+1,...,J and where
customers from classes j 4+ 1 through J, except for the customers in C, can be served only when
there is not any customer from classes 1 through j in the system. Although this does not belong
to the class of scheduling algorithms defined in this section, busy periods B?(Y;C) of the system
with the scheduling algorithm are equivalent to those of the system with any scheduling algorithm
in the class.

Let Y = (i,v,n, L) € £ be any state of the system at some transition epoch of the process Q
and let C = C(Y) be any subset of customers initially in the system. Let V/(Y;C) and N/(Y;C)
(0 < j <1< J) be, respectively, the total amount of current works and the number of customers
at station ! at a completion epoch of B/(Y;C). Hence, by considering the scheduling algorithm
introduced in the above remark, it can be shown that these random variables are respectively sums
of random variables:

. the total amount of current works of customers at station {
Vi (vkm) = at a completion epoch of B’ initiated with an exceptional (3.8)
service Tk;(vkm ) of a class k customer; (k,m) € C,

the number of customers at station { at a completion epoch
of B? initiated with an exceptional service Ty;(vgn,) of (3.9)
a class k customer; (k,m) € C,

Ngl(”km)

il

(0 < j <1< J), which are generated during sub-busy periods that compose BI(Y;C). Then we
have

E[V/(Y;C)] = S wmt Y EVi(vkm)), (3.10)
. me{m:(l,m)¢C} (k,m)ec '
EN(GO] =Y 1+ Y EN)l (3.11)

me{m:(l,m)¢C} (km)ec

where 0 < j <1< J. An empty sum, which often occurs at j = 0, is defined to be 0 from now on.
Let V{, = V{,(5%) and Nj; = Nj)(Sx). Then by conditioning on the completion epoch of current
work v, we obtain

| j | j |
EWVi(®)] = MvE[S]+ S AvEVI+ puE[S)+ Y puEVi], k=1,....J, (3.12)

=1 =1

. i , j .
E[N},(v)] = Av+ > MvE[N]]+pu + Zpk,-E[Ni’,], k=1,...,J, (3.13)

=1 1=1

where 0 < j <1 < J. In (3.12), the first term denotes amounts of current works that are brought
by customers arrived at station ! during v, the second term denotes amounts of current works that
are brought during class j busy periods initiated by customers arrived at station ¢ during v, the
third term denotes a current work that is brought by the initial customer with current work v by
his feedback into station [, and the fourth term denotes amounts of current works that are brought



during a class j busy period initiated by the initial customer feeds back into station ¢. Each term
of (3.13) has the similar meanings. Further, E[V}}] and E[N{;] satisfy the following equations:

=1 1=1

E[Vi] = E[S] {AzE[Sz] + ZJ: AiE[W?]} + puE[S)] + EJ: pEV3], k=1,...,5, (3.14)

=1 =1

‘ J , J .
E[N]] = E[S] {)\1 + Z )x,'E[Ni],]} + P + ZpkiE[NiJI], k=1,...,7, (3.15)

where 1 < j < I < J. These equations are easily solved by the usual techniques in vector forms
under Assumption 2.. We now define the following constants:

, i ‘ .
& = ME[S)+ ) NEV3] = g E[S), (3.16)
i=1
. J . .
Xi = prE[SI)+ ) puiEVI] = xLELS], (3.17)
=1
. J .
& = M+ NE[N]], (3.18)
1=1
. J .
X = pa+ Y pkE[N]], (3.19)
i=1

where 0 < j <! < Jand k=1,...,J. For convenience, let ¢/ = 0 and Xil =0 forj>1. E[Vzﬂ
and E[Nfl] are the solutions of equations (3.14) and (3.15).

Let Vlj(v) and N/ (v) (0 < j <1< J)be, respectively, the total amount of current works and the
number of customers at station [ at a completion epoch of B?(v). It is assumed for these variables
that the initial customer with his current work v is ignored from temporary considerations after
receiving his service v as if it was rejected from the system. This is because it is convenient to
consider states of the system just prior to his feedback arrivals. Then we can show

EV(v)] = MoE[S]+ ) AoE[Vi] = v, (3.20)
BIN/(0)] = Aw+ Y AwE[Nj],= of]. (3.21)

These results are summarized in the next lemma.

Lemma 1. Consider the multiclass M/G/1 system with feedback defined in Section 2.. Let
Y = (¢,v,n, L) € £ be any state at any transition epoch of the process Q@ and let C = C(Y) be an
arbitrary set of customers initially in the system. Then we have

E[V/(Y;C)] = > vmt Y {unml 7L} (3.22)
me{m:(I,m)¢C} (k,m)ecC

S 1+ Y {omt +xd) (3.23)

me{m:({,m)¢C} (k,m)eC
EVi(v)] = &, (3.24)
E[Nj(v)] = of, | (3.25)

E[N{(Y;C)]

Il



where j = 0,1,...,J and [ = 1,...,J. The constants 5{,)(11 and E{,y{c, are given by (3.16)—(3.19).
)

These results are used to obtain expected values of system states after every initial stay of a tagged
customer.

4. Initial cost functions.

In this section we derive the initial cost functions W]-I(-) and G]I() of an e** customer (5 =

1,...,J). Since every scheduling algorithm has its own cost functions, we consider them individually
for the stations with two specific service disciplines:

FCFS disciplines.

We first derive them for an e** customer arrived at station  with an FCFS discipline (1 = 1,...,J
and e = 1,2, .). We distinguish the station with the FCFS discipline by a superscript F Let
Y(of) = Y = (4,v,n,L) € £ be any state of the system at of (I = 0,1,.. ) The set Cf of

customers is composed of customers from classes 1 through i (except for the e b customer) who
are in the system at time of. The initial sojourn time of the class ¢ customer is composed of a
class i — 1 busy period initiated with {Y; CF}, and a class 7 — 1 busy perlod initiated with the et®

customer’s service 5;, regardless of the disciplines adopted by stations 1,...,7— 1. Hence,
E[Bi-Y(Y;CF)+ Bi71(S,)], j=1 .
I — P} 1/ bl .
Wj(Y,e,l)—{ 0, it j=1,...,J. (4.1)

As we have shown in the last section, the expected value is

E[Tk i—1(vem E[S;

WiY,en) = 35 Dleini(m)l - BIS] (4.2)
k=1m=1 1‘Pi—1 1-py

Wi(Y,e) = 0, j=1,...,J and j #1i. (4.3)

On the other hand, cumulative current works of customers gradually decrease to 0. Then we
carefully calculate the expected value. Let us consider a tagged customer who arrives at station
i. For the station with a FCFS discipline, his current work is equal to S; until his service begins.
Then it decreases at the rate of second by second until he is preempted by an arriving customer
from classes 1 through i — 1. His current work keeps its last level. After completing the class ¢ — 1
busy period initiated by the arriving customer, it then decreases at the rate of second by second
until he is preempted by another arriving customer from classes 1 through 7 — 1, and so on. Let

Si(k) (k = 1,2,...) denote his attained service time on his kth preemptlon We obtam the value of

the cost functmn G(Y,e,1) by conditioning on service time 5; of the e* h customer, on the number

Z}C Ai(S;) of customers who preempt him and on time $;(k),k = 1,...,N};. Then we
obtaln :

GH(Y,e,1|8:;, Np = m,{Si(k)})

= Si {E[B"‘l(Y;Cf )]} + i(s,- — Si(k)E[By ] + % (4.4)
k=1

where B};‘l is the kt* class i — 1 busy period. By the nature of the Poisson process, {5;(k)} have
the same distribution as the order statistics corresponding to m independent random variables
uniformly distributed on the interval S; {16]. Hence we obtain

E[Si(k)|Si, Np = m] = #Sﬁ k=1,...,m. (4.5)

8



Then we have

: E[Tyi—1(Vkm i1 E[S?
Gl = psyy S Al Ly psnpmione 2B, )
k=1m=1 Pi-1
GJI-(Y,e,l) =0, j=1,...,J and j # 1. (4.7)
PR-LCFS disciplines.
th

Second, we derive the mean initial sojourn time of an e'® customer arrived at station ¢ with a
PR-LCFS discipline (¢ = 1,...,J and e = 1,2,...). We distinguish the station with the PR-LCFS
discipline by a superscript PL. Let Y(o7) =Y = (i,v,n, L) € £ be any state of the system at of
(I1=0,1,...). The set CI’" of customers is composed of customers from classes 1 through ¢ — 1 who
are initially in the system (Cf* = (). Similarly, as in the FCFS case, the cost function W{ can be
obtained by ' '

Wi(Y,e,l) = E[B(Y;Cf*)+ B'(S)) (4.8)
52§ Ellk(ven)] | ELSH] ’

= 2.2

(4.9)

P B S l“pj’
Wi (Y,el) = 0, j=1,...,J and j #1i. (4.10)
Further we have
i—-1 nyg 2
E[Tri(vim E|[S?
Gl(Y,e,l) = E[Si]ZZ———[——kﬂ—)]+ AP E[S?)E| ]+—L2—zl, (4.11)
k=1m=1 1_'01
GI(Y,e,) = 0, j=1,...,J and j #i. (4.12)

General forms of the initial cost functions.

As we may see from the above expressions, the initial sojourn times and the initial cumulative
current works are linear combinations of some components of states. We summarize it in the
following lemma.

Lemma 2. Consider the multiclass M/G/1 system with feedback defined in Section 2.. By
appropriately choosing nonnegative constants ¢j,, nj;, w' and ¢¢ (i,k =1,...,J;0 = 1,2), we can
obtain the following expressions of cost functions W/ and G{ defined by (2.5) and (2.8), respectively.

J Nk
WY, e,1) = > At D vim + dhru} + v, (4.13)
k=1 m=1 ) :
J . . .
GI(Y,e,1) = D {nik D vkm + meri} + 0 (4.14)
k=1 m=1 .

for Y = (¢,v,n, L)€ &, e=1,2,...and [ =0,1,....
Proof. In the case of FCFS disciplines, we define

b = {1/(1—,);:1), k=1,...,14

0, k=i+1,...,J,
g = S P E[TLioa)/(L=piy), k=1,...,4,
k= 0, k=i+1,...,J,

W = E[S1/(L-phy),



7 E[Si]/(l_p:-—l)7 kzlr--aia
e =3 o, k=i+1,...,J,

E[S] Nz pE[T i)/ (1= py), k=1,...,4,
0, k=i+1,...,J,

¢ = E[SHNLLEBT+1)/2 = E[S7/{201 - pE1)},

'
Rk =

where i = 1,...,J. The expected values E[T}; ;] and E[B'"!] are given by (2.2) and (3.2). Then
we can show (4.13) and (4.14) from (2.1), (4.2) and (4.6). In the same manner, we can define these
coefficients for the stations with PR-LCFS disciplines. 0O

For notational convenience, we define the following vectors:

W= (Bl Bl b dhg) €RYXY =1, (4.15)

gi (nil’-'~,77§,la77%1>"~’77%])/ERZJX17 i:l,...,J, (4‘16)

where / denotes a transposition of a matrix. Then expressions (4.13) and (4.14) are generally
arranged as follows:

(v,n)wi +wt, j=1,

I _ - _
Wi(Y,el) = {0, it j=1,...,J, (4.17)

fl

GH(Y,e,0)

{ (V,Il)g +9, 1=21, ,J, (418)

o i=1,...
0, i#i, T

where Y = (i,v,n,L) € £, e =1,2,... and I = 0,1,.... The expressions will be cited later to
derive the cost functions W;(-) and Gj(-).

The important things to consider about these expressions are: first that elements X (o7), v(of)
and n(o}) of state of the system should be sufficient for estimating the cost functions WJ-I(Y,e,l)
and Gf(Y,e,l), and, second that these cost functions should be linear functions of components
(v,n) of the state of the system. Of course, every scheduling algorithm has its own coefficients
wi gt wtand ¢* (i =1,...,J).

5. States at completion epochs of initial stays.

In this section we derive expected values of states of the system at completion epochs of cus-
tomer’s initial stays.

FCFS disciplines. :

First we consider that an et” customer arrives station ¢ with an FCFS discipline (e = 1,2,... and 7 =
1,...,J). We recall the relation (4.1) between an initial sojourn time and busy periods. Then the
expected values of elements of states of the system at completion epochs of eth customer’s initial
stays are obtained by

Ef[v;(af1)[Y (0f) = Y] i=1,...,J, (51)

{E{V;'*(Y;CF)M*(&-)L i#0, .

O) "::O,
. . E[NFYY;CF) + NEYS)L, 40, .
B ny(of )X (o) = Y] = {0“ (GED NS 20 5oy ) (52)

for Y = (4,v,n, L)€ &,1=0,1,...ande=1,2,....
PR-LCFS disciplines.

10



Next, we consider station ¢ with PR-LCFS discipline (7 = 1,...,J). We also recall the relation
(4.8). Then the expected values of elements of states of the system at completion epochs of et*
customer’s initial stays are obtained by

. . EVHY;CPDY + VE(SY)), i#0, .

EPE[u;(0f )Y (of) = Y] = {0[” JEVEL 20 G0 6
. . E[NYY;CPL) + Ni(S)), i#0, .

EPM{nj(of, )Y (o) = Y] = {0[1( S E S HONT AR CH)

for Y = (¢,v,n, L)€ &,1=0,1,...and e = 1,2,....

General forms of the quantities.

As we may see from the above expressions, expected values of states at completion epochs of
customer’s initial stays are linear combinations of some components of the state of the system. We
summarize it in the following lemma:

Lemma 3. Consider the multiclass M/G/1 system with feedback defined in Section 2.. By
appropriately choosing nonnegative constants T,'cj, E}Cj, 'y_j-, and a};j, ﬁ};j, 'yJ‘:, (i=0,1,...,J and"

k,j=1,...,J), we can obtain the following expressions:
J . )
Elv;i(of)IY(of) = Y] = D {@ve + By} + 75 F=1,.-.,7, (5.5)
k=1 .
J . . .
Elnj(of )Y (0f) = Y] = > {agon + Binet +7; 7=1,...,7, (5.6)

k=1
for Y = (i,v,n, L)€ &,1=0,1,...and e =1,2,....
Proof. In the case of a FCFS discipline, we can obtain from (3.22), (3.23), (3.24) and (3.25):
Bloj(of, )Y (of) = Y] = BVi ™ (Y;¢F) + Vi~1(5)]
0, j=1, . .,0—1,
= { Shes (B e g + LS, i=i, (5.7)
v+ 3L 1{§] vk + Xi; nk}-l—f] [Si], J=1+1,...,J,

E[nj(afH)IY(of) = Y] = E[N;H(Y;C0) + N7 (S0)]
j=1,...,1 -1,
- zk {6 o+ X e |+ €7 BLS, i=i, (5.8)
n; 4+ Y5 1{&’ lvk+xk] nk}—|—§’ 'E1S]), j=i41,...,J,
where i = 1,...,J. For 1 = 0, all coefficients are defined to be 0. Then we can show that egs. (5.5)
and (5.6) hold. Similar results hold for PR-LCFS disciplines. O
For notational conveniences, we define following matrices and vectors.
= (@, ki=1,...))eRY, B =@y:ki=1,..,J) e R,
(ak].k i=1,...,J)eR™, B (ﬂ,w J=1,...,J) € RI*J, (5.9)
'—(71> 7)), (71’ a7J)a

where 1 = 1,...,J. We further arrange these matrices and these vectors as follows:

A

. A A
U = A A. , i=1,...,J, and U°=0, (5.10)
B' B
v o= (7,7, i=1,...,J, andu’=o0. (5.11)

11



Therefore, expressions (5.5) and (5.6) can be generally arranged as follows:
E{(v(ofp1),n(of )Y (0f) = Y] = (v, n)U* + u' € R™Y, (5.12)

for Y = (¢,v,n,L) € £,1=0,1,... and e = 1,2,.... These expressions will be cited later when we
derive the cost functions.

Similarly, as in the initial cost functions, the important things to consider about these expres-
sions are: first that X (of), v(of) and n(of) should be sufficient for estimating expected values of
elements v(of, ;) and n(of,,) of states and, second that they should be a linear function of v(a,)
and n(of). Of course, every scheduling algorlthm has its own coefficients U? and u* (1 = 1,...,J).

6. Expressions of the cost functions.

In this section and the next section, we derive the explicit formulae of the cost functions Wj(-)
and G;(-) under some assumptions. Let us consider the system oper ated under some fixed schedul-
ing algorithm. As we have defined, W;(Y,e,l) is the mean sojourn time of an et customer, who
arrives at station ¢ at time of just when the system is in state Y = (7, v, n, L) € &, spent at station
4 until he departs from the system, and G;(Y,e,l) is the expected value of cumulative current
works of the customer accumulated at station j until he departs from the system (j =1,...,J).

We make the expressions, which are derived from the analysis in the previous sections, as a set
of assumptions.

Assumption 6..

I _f (vyn)w +wi, j=4, .
W](Y,e,l)—-{ 0, it ji=1,...,J, (6.1)
I — (V,n)gi + gia Jj=1 . ‘
G](Y,e,l)—{ 0, it j=1,...,J, (6.2)
E[(v(0f41),n(ofy )Y (0f) = Y] = (v,n)U* + ', (6.3)
hold for Y = (4,v,n, L)€ €E,1=0,1,...and e = 1,2,... where w*,g* > 0 and w', ¢ > 0 is given
in Section 4. and where U* > O and u® > 0 are given in Section 5.. O

Of course, the assumption is satisfied by priority queueing systems with FCFS disciplines and
PR-LCFS disciplines analyzed so far.
Let J, = 2J% and define the following matrice:

¢ = (0,...,0,w/,0,...,0) €R=
77{) = (07“'70,gj,>07'-'>0)/ ERJzXla
10 --- 0
01 .- 0
IO = €R2JX2J’
00 - 1
piilo pizlo -+ pslo
paalo p2le - paslo
Q = : : .. . ERJzXJZ’
pnlo prle -+ pislo
Ut 0 0
0 U2 ... 0
U = : : .. : GRJZXb’
0 0 U’

12



where ' denotes transposition of a vector. Then we have

Ulpyy Ulpyy -+ Ulpyy
UZpy U?pyy --- Ulpyy

UQ = : T ) € R, (6.4)
U'py Ulpspy -+ Ulpyy

We now suppose (I — UQ)~! exists, where I is an identity matrix in R72%2. Then we can define

W1_7‘
= (I-UQ)¢} e R21, (6.5)
WJj
g1j .
: = (I-UQ)'n)eR"", (6.6)
8J;
and
Further we define
ul Y piewi; ul Yl piegk;
, uf_l Z}Z:lJpj—lkaj , u.j_l Zi=5p.j-1kgkj
p1=| w+ W k=1 Pk Ve | € R, mi=| ¢+ w Yk=1 PikBE; | € RIX1.
Wty P kWi Wty Pit1k8kj
w! Yo Prkwi; w S pokgk;

From Assumption 2., (I — P;)~! exists. Then we can define

Wiy
= (I-Py) ¢l e R/, (6.9)
wy;
915 _
: = (I-Py)pl e R7X, (6.10)
973
and
we; = 0, (6.11)
go;j = 0. (6.12)

As stated in the previous sections, every scheduling algorithm has its own coefficients w*, w’, g
and ¢'. So these vectors and matrices are also different for all scheduling algorithms.
The following theorem is now derived:

13



Theorem 1. We make Assumption 2. and Assumption 6.. Further, if we assume that
(I-UQ)™! exists, then for any j =1,...,J,

"

Wi(Y,e,l) = Wij(v,n) = (v,n)wi; + wij, (6.13)

Gj(Y,e,l) Gij(v,n) = (v,n)gij + 9i5, (6.14)

for Y = (i,v,n,L) € £&,1 =0,1,... and e = 1,2,... are solutions of equations (2.6) and (2.9),
respectively.

Proof. We show that (6.13) and (6.14) satisfy equations (2.6) and (2.9), respectively. For Y =
(i,v,n,L) € £ and j # 1,

~

W;(Y(of11) 6,0+ DY]

S|

J
= ZPikE[(V(Ufﬂ)a n(o7y1))Wej + wis|Y]
1

=~
1

I
M~

ik [E[(v(0f41), n(0fp NI W + wi] (6.15)

x~
I

1

~

= Dik [{(v, n)Ui + ui} wWi; + wkj]
1

-
i

J 7 J
= (v,n)U" ) pawy; + {uz > pawij + Zpikwkj}
k=1 k=1

k=1
= W;(Y,e,l).

The last equation follows from the definition of the constants w;; and w;;, that is,

J
wii = U Y pawe, (6.16)
k=1
. J J .
wij = w' Y pikWei+ D PikWkj- (6.17)

Hence, Wj(Y,e,l) satisfies equation (2.6). In the same manner, we can show that G’j(Y,e,l)
satisfies equation (2.9) for ¢ # j.
For Y = (¢,v,n,L) € £ and j =1,

W (Y, e,0) + E[Wi(Y(0f41),e,0 + 1)]Y]
J

(v, n)Wi +w' + 2 PilcE[(V(Uf+1)7 n(0f+1))wki + wi;| Y]
k=1

J
(v,n)w' +w' + 3" pir { E[(V(041), n(0fp )N Y Iwki + wpi} (6.18)
k=1

(v,n)w' +w' + ipik [{(V, n)U* + ui} Wi + wki]

k=1
. . J . . J J
= (v,n) {W2 +U > Pikwki} + {wz +u' Dy pikWri+ ) Pikwki}
k=1 k=1 k=1

= Wi(Y,el).
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The last equation follows from the definition of the constants w;; and w;;, that is,

J
wi = W +UY piwii, (6.19)
k=1
g J
wi = WU P Wi + Y PikWhi- (6.20)
k=1 k=1

Hence, W;(Y,e, 1) satisfies equation (2.6). In the same manner, we can show that G,‘(Y, e,l) satisfies
equation (2.9). O

7. Uniqueness of the solutions.

In Theorem 1, we have obtained the solutions W; and G; that satisfy equations (2.6) and
(2.9), respectively (j = 1,...,J). Now we prove uniqueness of these solutions under appropriate

assumptions.
Since the following set of assumptions are often used, we arrange them as

Assumption 7..
¢ Assumption 2. and Assumption 6. hold, and

e (UQ)™ — O as m — oo where UQ is the state transition matrix given by (6.4). O

The purpose of this section is to prove the following theorem:

Theorem 2. Let W; and G; be the cost functions defined by (2.4) and (2.7), ‘respectively
(j=1,...,J). We make Assumptlon 7.. Then, W; and G are equivalent to W and G defined
by (6. 13) and (6.14), respectively. O

As a first step, let V be a set of functions defined on & x {1,2,...} x Z; into R. Then a set of

functions is defined as follows:

There exist ¢; > 0 in R?/*! and ¢; > 0 in R such that
|f(Y,e,1)| < (v,n)es +cf,
Vg=<(feV: foral Y =(i,v,n,L) € &,e€{1,2,...} and | € T;. Moreover, . (7.1)
f(Yo,e,0) =0,
for all Yo = (0,v,n,L) € £,e € {1,2,...} and l € Z.

By introducing addition and multiplication by scalars into Vp as usual, it becomes a vector space
[17]. Then we arrange equatlons (2.6) and (2.9) as follows: for any fI € V, we consider a set of
equations:

f(Yrea l)= fI(Y,e, l) + E[f(Y(Ule+1))6’ [+ 1)|Y(07) =7Y], (7'2)

foral Y = (i,v,n,L) € £, e € {1,2,...} and | € Z,, where f is an unknown function in V. Let

e 1, if X(o7)#0, ,
Z& = {0 (oF) # (7.3)

otherwise,

forl=0,1,...and e=1,2,....
As a second step, we need the following lemmas.
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Lemma 4. We make Assumption 7.. Then there exists a matrix Cp > O in R2*2J and a
vector co > 0 in R'*2/ such that

Me-1
E| Y (v(of),m(@p)Y(of) = Y| < (v,n)Co + co, (7.4)
k=l

for any Y = (3,v,n, L)€ &,1=0,1,...and e = 1,2,....
Proof. From Assumption 6., it can be easily shown that
E[Z& -1 (v(0F), n(eQ))Y (0]) = Y]

k—1-1

= (v,n)R(QU 'L + e S PEITURYQUYL € R, k>1=0,1,...,(7.5)
7=0

where

R' = (0,...,0,U40,...,0) e R¥*2  i=1,...,J,

u1 0 0
0 u? :
R® = Do | erIx,
: . .0
o -.- .- 0 uJ
e = (0,...,0,1,0,...,0) e R, i=1,...,J,
Io
I, = ERJ2X2J,
I'O

and the other constants are defined in Section 6.. Since M¢ > k <= X (of_;) # 0, we have

Me-1 o
E[ Y (v(oR),n(af)Y] < Bl ) Z&x_1(v(o), n(ap))[Y]
k=141 k=l+1
= > ElZ&-1(v(oF),n(0}))Y]
k=l+1
e oo k—-1-1
= (v,n)R' 3 (QUFIL e S > PETVITRYQUYTY
k=l+1 k=l41 j=0

= {(v,n)R + (I~ P,)'R°H{I+ Q(I-UQ) 'U},.

The last equality holds from Assumption 2. and the assumption that (UQ)™ — O as m — 0.
0

From Lemma 4, for any f € Vg, we have

E[|f(Y(0F),e,DY(06) = Y] < E[Z&{(v(o7),n(07))es + s }Y (05) = Y]
Meé—-1
< E[ Y (v(of),n(af)[Y(08) = Y]es + ¢
=0

<A{(v,n)Co+coes+cs<oo, YeE&,e=1,2,...and1l=0,1,....
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Lemma 5. We make Assumption 7.. Suppose that f € Vp satisfies the following inequality:

1F(Y,e,0)l < E[|f(Y(of1), e, 0+ D][Y(0f) = Y] (7.6)
foral Y = (¢,v,n, L)€ &,e=1,2,...and [ = 0,1,.... Then
f=0. (7.7)

Proof. Let Y = (i,v,n,L) € £,1=0,1,... and e = 1,2,.... By recursively applying (7.6), we
have

|F(Y,e,D)] < E[If(Y(ok), e, )Y (7)) =Y], k>L
Since f € Vg, there exist ¢; € R¥*! and ¢; € R such that
IY,e] € BlZg A(v(oR)n(ob))es + e} [¥(o) = ¥] = 0, as & — oo,

The right-hand side of the above expression goes to 0 because

Me—-1 )

iE[Zék(v(oi),n(ai))lY(Uf)=Y] = E| > (v(oR),n(o)|Y(of) = Y
k=1 k=l

IN

(V>n)CO + ¢cp < 00,

E[Z&|Y(0f) = Y] = e,P%'1,
where 1 = (1,...,1) and o =0. O
Lemma 5 shows that any solution on Vg of the system:
f(Y,e,l) = E[f(Y(ofy1),e,l + DY (07) =Y], Ye&ec{l,2,...} and ! € Iy, (7.8)

must be 0 under the assumptions of the lemma. Uniqueness of solutions of inhomogeneous systems
(7.2) can be led from the lemma. Then we have

Lemma 6. We make Assumption 7.. Let f! be any function in V. Then there exists at
most one solution on Vg that satisfies equation (7.2) for f7.

Proof. Let f!' € Vg and f? € Vg be any two solutions that satisfy equation (7.2) for f!. Then
£ (Y,e,0) = (Y .0l < B[|[FA(Y(ofa) el +1) = FAY (o), e, + D] [Y(0F) = Y],
forYeé& ee{l,2,...} and l € Z;. Since f! — f? € Vg, we have from Lemma 5,
fl=f% 0O (7.9)

The above lemma ensures uniqueness of solutions of a set of equation (7.2) on Vp. We next show
that the cost functions defined by (2.4) and (2.7) are indeed elements of Vg.

Lemma 7. Let W; and G; be the cost functions defined by (2.4) and (2.7), respectively
(j=1,...,J). We make Assumption 7.. Then, W; € Vg and G; € V.

Proof. letY € &,e€{l,2,...} and [ € Z;. Then we have

Me -
k e €
Wi(Y,e,) = E[ Y, | = Ciy;(t)at[Y(of) = Y]
k=I+1 Tk-1

(oo} Ui )
3 E[zg,k_l/e Cor, (DAY (o)) =Y |, j=1,...,J
k=141 k-1

If
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From Assumption 6..1, each term in the above sum is calculated as follows:

_ )
B|Zy s [ csv]-(wdﬂY(af):Y}

Tk

[ € a]ec [+ € ]

= E|Z¢ Bl CWj(t)dt|Y(‘7k—l)]|Y(01):Y]
L Tg—-1

= E[2&, W} (Y(0f 1) e,k — DY (0f) = Y]

< E[Zgpd(v(ofo1)im(ofo )W + w} Y (of) = Y], k>,

where w® = (maxy ¢, ..., maxy ¢¥;, maxy ¢;,. .., max; ¢§;)" and vw° = max; w*. Hence
MC
Wi(Y,e,l) < E[ Y {(v(of-1),n(of-))w’ + v }Y(of) = Y]
k=141
Me-1

IN

E[ Z (v(of),n(op)|Y(of) = YWl + E[Mw®, j=1,...,/J,
k=l

where E[M] = max; e;(I— Py)~'1. Then, from Lemma 4, we have
0< Wi(Y,e,) < {(v,n)Co+co}w’+ E[M]uw’, j=1,...,J
Further, from the definition of the cost functions, we have
W;(Yo,e,l)=0, j=1,...,J,

for all Yo = (0,v,n,L),e={1,2,...} and l € ZI.
The similar argument holds for G; (j = 1,...,J) if we replace function C§,, into function C'g;.
0

We are now in a position to prove Theorem 2.

Proof of Theorem 2. TFor any j (j = 1,...,J), we have shown that the cost function W; defined by
(2.4) satisfies the set of equations (7.2) for fl= WJ-I (or equivalently eq. (2.6)). Further under the
assumptions of this theorem, W; is an element of Vg by Lemma 7. Then W; is a unique solution
of equations (7.2) on Vg by Lemma 6.

On the other hand, forany j (j = 1,...,J), Wj defined by (6.13) is obviously an element of Vp.
From theorem 1, each function Wj also satisfies the set of equations (7.2) for fI = WjI under the
assumptions of this theorem, since (I — UQ)™?! exists. Hence the function W; must be equivalent
to L&%.

The similar argument holds for G; (7 =1,...,J). O

Remark. In the theory of integral equations various results on existence and uniqueness
of solutions for linear systems are investigated ([13]). We modify them to fit our problem. By
considering Assumption 7., we can ensure simultanuously that solutions of equations (2.6) and
(2.9) are unique on Vp and that W; and G; defined by (2.4) and (2.7) are elements of Vg (j =
1,...,J).

8. Steady state values of the cost functions.

In this section we evaluate steady state values of the cost functions W; and G;.
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Let us consider the system operated under some fixed scheduling algorithm defined in Section
2.. Let

W = / Ciys(s)ds, j=1,....7, (8.1)
0

G; = Céj(s)ds, ] S 1; v 7‘]7 (82)
1]

be respectively the sojourn times of the e** customer and the cumulative values of his current works
(e =1,2,...). We define the following customer average values: '

_ .1 . ,
w, = NIT}DOJ_V-;W?’ ji=1,...,J, (8.3)
_ 1 X

G; = ]&%F;G;, i=1,...,J, (8.4)

if these limits shall exist. We are willing to assume that
[A1] the process Q is regenerative [16].

Let Np be the number of customers served during a regenerative cycle. We assume that
[A2 | the system is initially empty, and
[A3 ] E[NB]< oo.

Then these cost functions may be represented as:

_ E[XNE we)
W, = ——==—_J1- j=1,... .
J E[NB] s J ’ >J7 (8 5)
_ E[YNE G4
G, = ——==——L  5=1,...,J, 8.6
if we may assume that every numerator in the right-hand side of the above expressions is finite.
Further the customer average values (v,n) = (9y,...,97,%1,...,77) of components of states are
defined by:
1 N
n; = ]\}%N‘;nj(ag), j= 17...,J, (8.7)
1N
v; = ]\;Eoﬁe}::lvj(ag), i=1,...,J, (8.8)

if these limits shall exist. Now we assume that
(Ad] EISNE ni(08)] < o0 and E[SNE vj(0f)] < 00, §= 1.0,

Then we have

BB nies) .
n; = E[;VBJ] 0L j=1,...,J, (8.9)
BB e
v; = BV , =1,...,/J. (8.10)
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The time average values (V,n) = (91,...,07,%1,...,77) of components of states are defined by:

1/t
fi; = tlirn n nj(s)ds, j=1,...,J, (8.11)
—00 0
1 rt
b, = tlim ?/ vi(s)ds, j=1,...,J. (8.12)
— OO 0

In the following discussions, we consider the system with the steady state.
Now we show the following lemma concerned with representations of steady state values of the
cost functions.

Lemma 8. Put Assumption 7. and the steady state assumptions from [Al] through [A4].
Then E[ZNB W?] < oo and E[ENB G§] < o0 (j = 1,...,J). Further we have the following
representations:

{(v nwi; +w;}t, i=1,...,J, (8.13)

>|> >a|>’

{7, 0)gi + gis}, F=1e, 0 (8.14)

£5

Proof. First we consider W.; (j = 1,...,J). The main difficulty of the lemma lies in the depen-
dence between the variables Ng and W;. Let

7e = 1 ifNg+1>e,
B = 0 otherwise.

Then we have

Np+1 oo [eS)

E| Y wp| = E[Z Zgw;f] =S E[zzwg].

e=1 e=1 e=1

Fach term in the above sum is calculated as follows:
E[Z§W;] = E[ZgE[W;|Z5,Y (05)]]

E[Z5E[W?[Y (05)]]
T o\
2 5 {BIZ8(v(98), n(o§))lwis + ElZ5]wij} -

=1

The second equality in the above expression comes from the definition of Z% and the Markov
property of the process embeded in Q, since Z§ is determined by {Y(c§) : s < e}. The last
equality comes from (6.13) and uniqueness of the function. Hence we have

Np+1
E| > Wf} = ZZ—{E[ZB(V(%) n(vo))lwzﬁE‘[ZB]wu}
e=1

e=1:=1

S

Np+1

Z (v(o5),n 00))} wij + E[Np + 1]%}

Further we have
EWNet = Ew}] Z )\w,],
(v(o®*),n(0d’5 ) = (o 0).
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Hence, from (8.7) and (8.8), we have

E[in] = ZJ:-AA—{E

=1

Ng
Z(V(US),H(US))] wij + E[NB]wij} < 0.

e=1

By deviding both sizes of the above expression by E[Np], the desired result for W.; is obtained
from (8.5), (8.7) and (8.8). In a similar way, we can obtain the desired result for G.; (7 = 1,...,J).
D .

We use the generalized version of Little’s formula (H = AG) stated by Glynn and Whitt [7]
and Whitt [20] that equates time average values of costs with customer average values of costs to
obtain

n; = )\W.j, 1=1,...,J, (8.15)
3 = MGy, j=1,...,J. (8.16)

For a Poisson arrival, a fraction of time that the system is in any state is equal to a fraction of"
arrivals when the system is in the state. This is the Poisson Arrivals See Time Averages (PASTA)
property investigated by Melamed and Whitt [14] and Wolff [22]. Then, from (8.13) and (8.14), we

have

J

= i .

W, = Zf{(v,n)wzj-}-wﬁ}, i=1,...,J, (8.17)
=1

_ I\

G; = Zj\-{({l,fl)gij—{—gij}, ji=1,...,J. (8.18)
i=1

From the equations between (8.15) and (8.18), we obtain

J
i o= Y MA@, B)wi+wg), j=1,...,7, (8.19)
=1
J
5 o= Y N{(¥,R)gi; +gi5}, i=1,...,J (8.20)
=1
Define
J
S = D Ail8its- 8T, Wity Wid), (8.21)
=1
J
5 = Z)‘i(gila"'7giJ)wila"'7wiJ)' (8‘22)
=1

Then we arrive at the equation that determines the steady state expected value (¥,1):

(¥,8) = (¥,8)S +s. (8.23)
Now we assume that the inverse matrix (I — S)~! exists. Then we have

(v,n) = s(I-S)"% (8.24)

Finally let V_V“ and éi]’ be the steady state value of the sojourn time of a customer spend
at station j and the steady state value of the total amount of current works of the customer

21



accumulated at station j, respectively, given that the customer arrives at station ¢ from outside the

system (2,7 = 1,...,J). Then we can get the steady state values:
Wz" = S(I - S)_lwij + wij, : (8.'25)
Gij = s(I-S)"'gi; +gij. (8.26)

These results are arranged in the following theorem:

Theorem 3. Assume that the multiclass M/G/1 system with feedback defined in Section
2. satisfy the steady state assumptions from [Al] through [A4]. Let i = (fy,...,727) and v =
(%1,...,05) be the vectors of the steady state mean number of customers and the steady state
expected total amount of current works in the system defined by (8.11) and (8.12), respectively.
Further, let Wij (i, = 1,...,J) be the steady state value of sojourn time of customers, who
initially arrive at station i from outside the system, spend at station j until their departure from
the system. We make Assumption 7.. Further we assume that the inverse matrix (I—-S)~! exists
where S is defined in (8.21). Then

(v,i1) = s(I-8)71, (8.27)
Wij = s(I - S)" wij + wij, (8.28)
where s is defined in (8.22), and where w;; and other constants are defined in Section 6.. O

Of course, the total mean sojourn time W;. of a customer who arrives at station : from outside
the system spend until his departure is given by

J J J
W;. = Z W,’j =s(I- S)_l Zwij + Z Wy . (8.29)
7=1 j=1 i=1

Remark. It is worth noting that equation (8.16) is a variation of the formula relating a steady
state (time average) work, say ¥, in a general single class queue to a steady state (customer average)

waiting time, say W, i.e.,

5 = ME[SW] + E[S?/2} (8.30)

where )\ denotes the arrival rate and S denotes the service time. Our method employed in the paper
can be considered to be a supplementary variable method [2], where the supplementary variables
are current works in the system instead of attained service times.

Numerical examples and the graphs.
" Now we give numerical examples of the model. The number of the stations J is equal to 5. We
calculate the values of the mean sojourn times of the following systems:

o System 1: All stations adopt FCFS disciplines.

¢ System 2: All stations adopt PR-LCFS disciplines.
The system parameters are listed below:

e )\; =1/20.0 : the arrival rates (j = 1,...,5).

e The service time distributions are the 5 stage Erlang distributions with the means varying
from 0.1 to 1.5.
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e The feedback probabilities are as follows:

(p11,p12, P13, P14, 715) = (0.10,0.10,0.05,0.05,0.10),
(p21,p22,p23,p24,p25) = (0.10,0.10,0.15,0.10,0.10),
(p31,p3z, P33, P34,P35) = (0.15,0.10,0.10,0.10,0.20),
(pa1,P4a2, P43, Paa, Pas) = (0.15,0.15,0.15,0.15,0.15),
(ps1,P52, P53, Psa,p55) = (0.20,0.20,0.10,0.10,0.15).

We make the graphs (Figure 1. and Figure 2.) for these systems in which the mean sojourn times
W;. of customers who initially arrive at station ¢ (¢ = 1,...,5) are individually plotted.

9. Conclusions.

We have concerned with the multiclass M/G/1 system with feedback. Preemptive priority
scheduling algorithms are considered. Every station adopts either FCFS discipline or PR-LCFS
discipline. First we define the cost functions W; and G; of customers (j = 1,...,J) which denote
their mean sojourn times and their expected cumulative current works, respectively. We then obtain
sets of equations that are satisfied by these cost functions. It is shown in Section 6. that these
equations can be solved explicitly. Further these solutions are shown to be unique under some
assumptions. Finally, we evaluate steady state expected values of these functions. The average
number of customers and the average current work in each class are simultaneously obtained by
solving a set of linear equations. Since these average values can be expressed in matrix forms, a
numerical algorithm that yields these values can be easily constructed. The methodology given in
the paper will be widely applicable to analysis of multiclass M/G/1 queueing systems.
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Figure 1. System 1.
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