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Abs.tract. In this paper, we consider a special class of nonconvex network flow problems,
whose objective function is a product of two affine functions. This problem arises when one
tries to send as much flow as possible at minimum possible cost in an ordinary two-terminal
network. We will show that a primal-dual algorithm can generate a globally optimal solution

in pseudo-polynomia.l time and a globally e-optimal solution in polynomial time.
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1. Introduction

Suppose G = (V, E) is a directed graph consisting of a set V of n nodes and a set
E of m arcs. Each arc (i, j) € E has an associated unit cost c;; and nonnegative
capacity u;;. Given two distinct nodes s and ¢ in V, we wish to find a flow z in
network N = (G, s, t, ¢, u) which maximizes the total amount v of flow from s to ¢ and
simultaneously minimizes the total cost ex subject to

v fori=s,
Zy— Y Tip=4 0 forallieV\{s,t}, 1.1
{i:(i.i)eE} {7:6,0)eE} —v fori=t, 40

0 < zy; < uy; for each (i, j) € E.

When such two objectives without a common scale need optimizing simultaneously, a
handy approach is to optimize their product [12]. In our problem, minimizing f (2, v) =
(ex + ¢o) - (V — v) will provide a satisfactory solution for us, where c; and V are
nonnegative constants expressing a setup cost and an ideal value of v respectively. This
approach, however, seems to have some difficulty, because the product of two affine
functions can be a nonconvex function [11]. Hence our objective function f may have
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multiple local minima in the feasible set defined by (i.1), many of which fail to be
globally optimal.

An alternative approach proposed in [10] is to minimize max{a; (e +cy), as(V —v)}
for some positive weights o; and a,. Also the max flow problem with a side constraint
cx < D can be considered to have the same purpose as our problem (see e.g. [1]). These
are linear programming problems and can be solved in polynomial time.

In this paper, we will show that a global minimum of f(x, v) = (c& + ;) - (V ~v)
under the constraints (1.1) can be found in time O((m + nlog N)Vmax); Where v,y is
the maximal value of v satisfying (1.1). Moreover, if we give up accuracy, a globally
e-optimal solution can be obtained in time O(m?*(m + nlogn)/e), i.e., the proposed
algorithm is a fully polynomial-time approximation scheme [5]-

2. Reduction to Minimization of a Univariate Function

The problem stated above can be formulated as follows:

minimize f(®, v) =( Y ¢z +co) - (V —v)
(iJ)eE
v, 1=Ss,
(P) subject to Yo ozi— Y = 0, ieV\{st},
G:GNEE}  {iGIEE) —v, i=t,
0 S T S Uij, (2, .7) € E7

where ¢;;’s and u;;’s are nonnegative integers. It is reasonable to assume that co 2 0and
V' 2 Unmax, Where v,y is the maximal value of v satisfying all constraints of (P). Then
both the values of ; jcp ci;i; + co and V — v are always nonnegative. However, in
case either cg = 0 or V = vy, the minimal value of f is equal to zero and the problem
becomes an ordinary network flow problem. To avoid such a trivial case, we assume that

co>0, V> vnay. (2.1)

The objective function f is then the product of two positive affine functions and hence
quasiconcave on the feasible set of (P) [11].
If we fixed the value of v in (P), then we have a minimum cost flow problem:

minimize Y c;;z;;
(ig)eE
v, =38,
(P(v)) subject to > m— Yoo zi= 0, 1eV\{st},
A eE) G:GEE) v, i=t,
0<z; <uy, (4,4) €E.

As well known, we can solve (P(v)) in strongly polynomial time and obtain an optimal
flow x*(v) if 0 < v < vyay. Let '



F(v) = f(2*(v), v). | (2.2)

Then we can see that solving the original problem (P) amounts to locating a global
minimizer of F in the interval [0, Urnax)-

Lemma 2.1. Ifv* € [0, vmax] is a global minimizer of F, then (x*(v*), v*) solves (P),
where x*(v*) 4s an optimal flow of (P(v*)). O

Since capacity u;; of each arc (i, j) € E is integral, (P(v)) has an integer optimal flow if
v is an integer in [0, vmay] (see e.g., [1]). Moreover, since f is quasiconcave on the feasible
set of (P), there is a global minimum point of f among integral (x*(v), v)’s. These facts
imply that one can obtain a globally optimal solution of (P) by solving (P(v)) for all
integers in [0, ¥max]. Although such a primitive algorithm can run in pseudo-polynomial
time, i.e., in time O(mM(m, n)U) where M(m, n) is the running time of a minimum
cost flow algorithm and U = max{u;; : (i,5) € E}, it would be far from efficient in
practice.

3. Pseudo-Polynomial Algorithm for Finding a Globally Optimal Solution

To improve the efficiency of the algorithm for solving (P), let us observe some charac-
teristics of function F.

For v € [0, vmax], let us denote by g(v) the optimal value of (P(v)). Then we have
Fv) = (9(v) = co) - (V = 0). (3.1)

The following proposition is well known in the literature about parametric linear pro-
gramming (see e.g., [2]):

Proposition 3.1. Function g : [0, Umax] — R is conver and precewise affine. a

Furthermore, since c;;’s are assumed to be nonnegative, g must be nondecreasing. Let
p be the number of affine pieces of g and let

gv) =y — B, v € [upor, ), k=1,...,p, (3.2)
where vy =0, Up = Umax, and ay’s and G;’s are nonnegative constants. Then
Fo)=(av =B +co) - (V—=21), v€[u,w), k=1,...,p. (3.3)

We see that F' is a concave quadratic function on each [vg_;, vg] and hence achieves
the minimum over the subinterval at either vy_; or v. Among such end points vy,
k =0,1,..., p, exists a global minimizer v* of F over the whole interval [0, Umax)-
Hence, to solve (P), we need only to specify all affine pieces of g. In the rest of this
section, we will show that one can successively generate all affine pieces of g in the course
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of solving a minimum cost flow problem (P(v,,)) using the primal-dual algorithm of
Ford and Fulkerson [3].

Recall that the primal-dual algorithm in [3] builds up an optimal flow of (P(¥max))
step by step, by adding flows along augmenting paths with the least cost in an auxiliary
network N'. At each stage, N’ is constructed from N = (G =(V,E),s,t c u) and
the present flow &' according to the rules below: For each (4, J)EE,

Rule 1: if zi; < uy, then let (i, j) € Ey, ul; = uy; — z;; and ¢; = ¢y,
Rule 2: if zi; > 0, then let (j, i) € E,, uj; = zi; and ¢f; = —c;;.

The 'resulting graph G' = (V, E; U E,) together with capacity vector u' and cost vector
¢ consists the auxiliary network N’ = (G, s, t, ¢, u') with respect to flow @'. Unless
the present flow value v’ reaches vpm,y, we cau find an augmenting path = C E, U E,

with the least cost in N', by solving a shortest path problem from s to ¢ in G’ with arc
length ¢. Let ‘

b= min{u; : (i, j) € 7}. (3.4)
Then we have a well-known result.
Lemma 3.2. Let 0 < 6 < 8. Also for each (i, §) € E, let

zi; +6 if (i,j) € mNE,
7)) = 2l =6 i (j,§) € nNEy, (3.5)

!

T} otherwise.

Then 2'(6) is an optimal solution of (P(v' + 6)).
Proof: Seeeg. [1,3]. O

According to (3.5) we update flow 2, and then proceed to the next stage. Here we
should note that

g +6) = > cyaiy(6)

(i,J)EE
= > Ty +6( Y, oy — 3 ) (3.6)
(iJ)EE (i,5)ernE; (J,i)ERNE,

This implies that g is an affine function on [v', v’ + 8]. Hence all points in (v, v +8)
can be discarded when we locate a global minimizer v* of F in [0, vmax].
From the above observation, we can summarize an algorithm for solving (P).



Algorithm PD.
Step 0. Let (', v') = (0, 0), (x*, v*) = (0, 0) and F* = ¢,V.
Step 1. Construct the auxiliary network N' = (G', s, t, ¢, ') with respect to '

Step 2. If there is no path from s to ¢ in G’ , then terminate. Otherwise, compute a
shoi*test path 7 and let § = min{ugj : (4, j) € 7}. According to (3.5), compute
x'(6) and let (', v') = (2'(8), o' + &).

Step 3. If (X jyep Cij®i; + co) - (V — v') < F*, then revise the incumbent:

(" 6) = (2, 0), F'=( % eyaly+a)-(V—0).
(i.j)EE

Step 4. Return to Step 1. o

Theorem 3.3. Algorithm PD yields a globally optimal solution (z*, v*) of (P) in
O(m(m + nlog n)U) arithmetic operations, where U = max{u;; : (¢, j) € E}.

Proof: The main parts of this algorithm are the construction of N’ in Step 1 and the
computation of 7 and @'(8) in Step 2. It is obvious that both the construction of N’
and the computation of @'(§) can be done in time O(m). On computing 7, we can
transform ¢’ into a nonnegative vector by introducing node potentials, because all ci;’s
are nonnegative. (see e.g. [1] for details). We can therefore obtain 7 using Dijkstra’s
algorithm in time O(m + nlogn) [4]. Since § > 1 on the assumption that all u;;’s are
integral, Steps 1 and 2 are repeated at most vy, times. Hence the total number of
arithmetic operations is bounded by O((m + nlog n)vmex) < O(m(m +nlog n)U). 0O

Note that if Algorithm PD lacks Step 3, it is nothing but the primal-dual algorithm
of Ford and Fulkerson. Although the worst-case time complexity of the algorithm is not
polynomial in the input length, its practical efficiency is guaranteed by many experiments
performed so far.

4. Polynomial Algorithm for Finding a Globally e-Optimal Solution

Since the worst-case number of affine pieces of g is exponential in the input length [16],
it would be hard to design polynomial-time algorithms for finding a globally optimal
-solution of (P). However, if we give up accuracy, it is possible to find a globally e-
optimal solution in polynomial time. In the sequel, we impose the following assumption
on the ideal value V of v:

V — Unax 2U= ma‘x{uij : (Z, J) € E} (41)
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leen a tolerance e € (0, 1], we say that a fea31ble solution (x¢, v¢) of (P) is globally
€- optzmal if it satisfies

£ ) - 1@, )
O T ey s

’ . V.where (m v ) is a globally optimal solution of (P). To obtaln SUCh an approxlmate
: SOhlthll, we consxder a problem with truncated arc capacities: :

(#2)

minimize  f(z, v) = ( D cyzij + o) - (V —v)
(i.j)eE
_ ; v, i=3s,
(P) subject to Y zy;— S w;= 0, ieV\{s, t},
{5:G.H)EE) {i:(3,9)e B} —v, i=t,
Osxijgﬁija (ia ])EE, .
where
@ = M|u5/M|, (i,j) € E, (4.3)

for some positive constant M, and the other notations are the same as (P). We can of
course apply Algorithm PD to (P). Then an optimal solution (&, ) will be obtained in
time O(m(m + nlogn)U/M) because the flow augmentation & in Step 2 cannot be less
than M. We also note that (&, 7) is feasible to the original problem (P) and satisfies

f(w*, v*) < f(&, 9). (4.4)

On the other hand, we can obtain an feasible solution of (P) by rounding (z*, v*).

Let E be the set of arcs (i, j)’s such that z}; > 0. Then we can decompose flow
z* into a number of flows along directed paths from s to ¢ in G = (V, E), using the
following procedure: '

0° Let E' = E, ;; = zy; for each (i, j) € E' and k = 1.

1° If there is no path from s to ¢ in (V, E'), then terminate. Otherwise, compute a
path m, C E' with the least number of arcs, and let &, = min{z}; : (i, j) € m}.

2° For each (4, j) € m, let }; = z}; — 6. Also let E' = E'\ {(i, j) € m : z;; = 0}.
3° Let k=k+1landgoto1°. O

Since at least one arc is deleted from E' every iteration, this procedure terminates and
yields at most |E| directed paths m;’s such that

. q
gi= Y. & foreach (i, j) € E; v*=Y 6, (4.5)
{k:mpell; 3} k=1



where

Uj={m:(i,j)em, k=1,..., q} (4.6)
for each (i, j) € E, and ¢ < |E| is the total number of m;’s. For each k, let
& = max{0, 6 — M}. ’ (4.7)

Proposition 4.1. For each (i, j) € E, let

&y = {k:mi €10 } (4.8)
0 otherunse.

Also let
q -~
7=3 b ' (4.9)
k=1
Then (&, ©) is a feasible solution of (P).

Proof: We obviously have > is,i)eE) Tsj = U and 2 iGyer) Tit = —U. At other nodes
i € V' \ {s, t}, flow & is conserved because it consists of flows along paths m’s from s
to t. If (4, j) € E belongs to some path 7, with & > 0, then 0 < Ty <z - M < wy.
Otherwise, the value of Z;; vanishes. Hence, & satisfies all capacity constraints as well.
a

Thus (2*, v*) provides an feasible solution (&, #) of (P) satisfying

f(&,9) < f(&, v). (4.10)
We also have

> iy < Y cyal, (4.11)

(ij)eE (ig)eE
since all ¢;;’s are nonnegative. This together with & > v* — gM implies

f(&,9) < ( Z cijTi; + o) - (V — v* + gM)

(i.J)eE '

= flx*, o)+ (Y ci;Ti; + co)mM. (4.12)
(ij)eE
Hence, from (4.10) and (4.12) we have
f(&, v) — f(a*, v*) mM _ mM
< < .
f@v) Ve ST (4.13)
by noting V — v* > U on assumption (4.1). Therefore an optimal solution (&, ) of (P)
can satisfy the e-optimality condition (4.2) if we let
M = eU/m. (4.14)

In this case, the time complexity of Algorithm PD is bounded by O(m2(m + nlogn)/e).




5. Conclusion

We showed in this paper that a parametric approach provides an efficient algorithm for
solving a class of nonconvex cost network flow problems. The algorithm we proposed
to solve (P) can generate a globally optimal solution in pseudo-polynomial time and a
globally e-optimal solution in polynomial time.

Minimization of a product of two affine functions like (P) is in general called linear
multiplicative programming and has real world applications in abundance [12]. Also,
among many global optimization problems [9], the linear multiplicative programming
problem is one of a few problems which can be solved in a practical sense. In fact, the
computational results reported in [11, 13] show that parametric simplex algorithms solve
a general linear multiplicative programming problem in just a little more computational
time than needed for solving a linear programming problem of the same size. However, it
is still an open question whether a linear multiplicative programming problem is polyno-
mially solvable or not. Besides linear multiplicative programming problems, parametric
approaches are very effective for solution of certain concave cost network flow problems
8, 14, 15, 17, 18]. The readers are also referred to [6, 7] for the current state-of-the-art
of nonconvex network optimization.
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