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Abstract. In this paper, we propose a primal-dual algorithm for solving a class of production-
transportation problems. Among m (> 2) sources exist two factories, each of which produces
certain goods at some concave cost and supplies n terminals with the product. We show that
one can globally minimize the total cost of production and transportation by solving a Hitch-
cock transportation problem with m sources and n terminals and a minimum (linear-)cost flow
problem with m +n nodes. The number of arithmetic operations required by the algorithm is

pseudo-polynomial in the problem input length.
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1. Introduction

Suppose a corporation has m sources of certain goods, p of which are factories and
the rest are warehouses. There are n terminal stores dealing in the goods. The decision
maker of this corporation has to satisfy the demands of these terminals, so as to minimize
the total cost of producing the goods and of shipping them to each terminal. This is the
production-transportation problem which we consider in the paper.

The production cost is in general a nondecreasing and concave function of the output,
which means that the production-transportation problem has multiple locally optimal
solutions, many of which need not be globally optimal. Hence the problem belongs to a
class of global optimization [8]. Although such a problem is well known to be difficult, a
number of promising algorithms, are proposed for some network problems (see [6, 5] for
the current state-of-the-art of nonconvex network optimization).

In their recent articles [12, 13], Tuy et al. proposed a strongly polynomial-time

algorithm for solving a special type of production-transportation problems, where the

*The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of
Education, Science and Culture, Grant No. (C)07680447.



number p of factories is fixed at two or three and warehouses are absent, i.e., m = p.
Their result sharply contrasts with general concave minimization problems, which are
NP-hard even when just one variable is nonlinear [11]. They developed this algorithm
further to solve the problem with any fixed m = p in a subsequent article [14]. Another
special type have been studied in our article [9], where warehouses are absent again but
the number p of factories are not fixed. We assumed that terminals are partitioned into
p — 1 disjoint sets and each of p — 1 factories is allowed to supply only its assigned set of
terminals. We exploited this network structure and solved the problem in time O(npb),
where b represents the total demand of terminals.

In this paper, we assume that m > p, i.e., there can be some warehouses, each
of which produces nothing but supplies a certain amount of the goods. Under this
condition, we will concentrate on the case p = 2, i.e., among m (> 2) sources there are
two factories, each of which can produce the goods and also supply any terminals with
them. In Section 2, we reduce the problem to minimization of a univariate function F,
each value of which is provided by solving an ordinary Hitchcock transportation problem
with m sources and n terminals. In Section 3, we construct an auxiliary network with
m + n nodes associated with the transportation problem providing the values of F.
We show that a global minimum of F' can be obtained in the course of computing a
minimum (linear-)cost flow in the auxiliary network. Section 4 devotes to the algorithm
for globally minimizing the total cost of the original problem. The number of arithmetic
operations required by the algorithm is pseudo-polynomial in the problem input length.
We also discuss a class of minimum concave-cost flow problems related to our production-

transportation problem in Section 5.

2. Reduction to Minimization of a Univariate Function

We have two factories, each of which can produce at most a; units of the goods, : =1, 2,
and m — 2 warehouses, each with a supply of a; units, 1 = 3, ..., m. The cost of
producing y; and y, units at factories 1 and 2 is given by 9(y1, y2). We assume that
g : R* — R is a concave function. The production function g is often assumed to be
separable, i.e., g(y1, y2) = g1(y1) + g2(y2) for some concave functions g; : R! — R?,
i =1, 2. However, since a non-separable ¢ is more realistic as discussed in [13], we will
not impose such an assumption throughout the paper. On the other hand, each of n
terminals has a demand of b; units, j = 1, ..., n. We also know the unit cost c;; of
shipping the goods from source 7, which is either a factory or a warehouse, to terminal

J- Our problem is then formulated as follows:



production cost 9(y1, y2)

supply 1 (£ aq) Y2 (< as) as g
1 2 3 4

transportation cost ¢y C12 C45

demand b 1 b2 b3 b4 bs

" Figure 2.1. Example of the problem.

minimize Z Z ¢i;%i; + (Y1, ¥2)

=1 j5=1

subject to Z:c,-j =y, 1=1,2,
Jj=1

injzai, i=3,...,m, (2]_)
i=1

m

injzbj> j=1,...,’l’b,

i=1

z;; > 0, i=1,...,m, j=1,...,n,

Osyigaia i:1>2>

where z;;’s, y; and y, are variables to be determined. We assume that all constants a;’s,
bj’s and c;;’s are nonnegative integers. Figure 2.1 shows problem (2.1) with 4 sources
and 5 terminals.

Any feasible solution of (2.1) has to satisfy
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Hence, letting

3(y) = g(v, }j: by — \Zf a; — y), (2.3)

we can rewrite (2.1) as follows:



minimize Y > c¢;;zs5 + §(y)

=1 j=1
n

n
subject to Za;lj =y, Z Ty; =d — v,
j=1 j=1

(TP) inj::ai, t=3,...,m,
=1
injzbja j:l,...,n,
i=1
.’IIijZO, i:l,...,m, j:l,...,n,

eSyS’“’, Z.:172’

where
d=3"b; - a; £=max{0, d—ay}, u= min{a,, d}. (2.4)
j=1 1=3

Note that (TP) can still have multiple locally optimal solutions, since §g:R' - R'is
concave. To exclude trivial cases, we assume in the sequel that ¢ < u. For any fixed y,

let us consider a subproblem:

m n
minimize Y > ¢z
=1 j=1
7

subject to Z:clj =y, Z Ty; =d—y,
j:l j=1

(TP(y)) inj =a; 1=3,...,m,
j=1

m
inj:bj’ ]=1,...,Tl,
=1

;5 Z 0, i

Jj=1, ..., n
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This is just an ordinary Hitchcock transportation problem. We can obtain an optimal
solution in polynomial time if £ < y < u. We denote it by a vector x*(y), whose
components are zj;(y),i=1,...,m,j=1,..., n. Let

) =303 el (v). | (2.5)

=1 j=1

Then we see that solving the original problem (2.1) amounts to finding a global minimum

of a function:

F(y) = f(y) + 3(y). (2.6)

To be precise, (TP) can be solved if we solve a minimization problem of a single variable:

(MP) : minimize{F(y) | £ < y < u},



which we call the master problem of (TP).
The above observation is summarized into the following:

Lemma 2.1. Ify" is a globally optimal solution of (MP), then (z*(y*), y*) solves (TP),
where x*(y*) is an optimal solution of (TP(y*)). O

3. Characteristics of the Univariate Function

Since the objective function F' of (MP) is univariate, we can obtain a globally optimal
solution y* by enumerating local minima of F(y) successively from y = ¢ to u. To do
this efficiently, we need to know the shape of F' exactly. As seen in the previous section,
F consists of two functions f and g. While the latter is given beforehand, the former
requires solving the transportation problem (TP(y)) for all y in the interval [¢, u]. This

fact, however, tells us the shape of F in outline.

Proposition 3.1. Function F : [¢, u] — R is continuous and piecewise concave.

Proof: Since (TP(y)) is a parametric right-hand-side linear program, its optimal value
f(y) is a piecewise affine and convex function (see e.g. [3]). The sum of affine and

concave functions is concave [10], and hence F is concave on each affine piece of f. O

We immediately see from the proposition that among extreme points of affine pieces of
[ exists a global minimizer y* of F.

Let us suppose f(y') is given for an arbitrary y' € [¢, ). Hence we have an optimal
solution @*(y') of (TP(y')). In the rest of the section, we will develop a procedure for
computing f(y" + 6) for sufficiently small § > 0. Using the procedure we will identify
the affine piece of f containing y/'.

3.1. MINIMUM COST FLOW IN AN AUXILIARY NETWORK

We first construct an auxiliary graph G(y') = (M, N, A(y')) associated with (TP(y")),
where M = {1,...,m} and N = {1, ..., n} are the sets of sources and terminals of
(TP) respectively, and A(y') is a set of directed arcs. Based on the optimal solution
z*(y") of (TP(y')), we define A(y') and capacity uij(y') of each arc (i, j) € Ay') as
follows (see also Figure 3.1): For each pair (¢, j) such that 1 € M and j € N, let

(6, 7) € AY), ui(y) = +oo, (3.1)
(G, ) € AWY), wily) =2j(y) if 235(y) > 0. (3.2)
In addition, for each (i, j) € A(y') we define a cost:

c; if ieM, je€N,

o . (3:3)
—c;; if e M, i€ N.

cii(y) = {



flow z7;(y/) capacity oo capacity z7;(y')

cost ¢;; cost ¢;; cost —c;;

@ D

Figure 3.1. Arcs in the auxiliary network A (y').

In Figure 3.1, the right arcs are constructed from the left one. Denote by c(y') and u(y')
the vectors of c;;(y')’s and u;;(y’)’s respectively. Then we have the following problem in

network ./\f(y') = (G(y'), c(y'), u(y')):

minimize Z : Cij(yl)zij
(1,7)€EA(Y")

subject to Z 215 — Z zj1 =6,
JEV(1) JEW(1)

(P(5 ¥) > wi— Y, z=-4,
JEV(2) JEW(2)
Z Zij_ Z ZJ','ZO, ZEAJUN\{].,Q},

JEV(3) JEW(3)
0 < z; < uy(y'), (4, §) € A(Y),

where 2;;’s are variables, V(i) = {j € MUN | (i, j) € A(y')} and W(i) = {j € MUN |
(4, 1) € A(y")}. Since (P(6; ¥')) is a minimum linear-cost flow problem in N(y") with
source s = 1 € M and sink ¢t = 2 € M, we can solve it efficiently using any one of
existing algorithms. Let us denote an optimal solution of (P(6; 3')) by 2*(8; '), whose
components are z3;(6; y'), (4, 7) € A(y').

Lemma 3.2. For each (i, j) such thati € M and j € N, let

2508y if 2(y) =0,
*(5;;/):{ 506 9) f 2(y') =0

xTr.
N x;j(yl) + Z?j(é; y) - z;,-(é; y') otherwise.

(3.4)

Then x*(6; y'), whose components are 25(6; ') s, 1s an optimal solution of (TP(y' +6)).



Proof: For an arbitrary feasible solution z of (P(6; y')), let

{ zj if z3(y) =0,

w’. =l " f .
z5;(y') + 25 — z;; otherwise.

)

Then we have

ilig = ia;:j(y,)'l"( Z Zi; — Z i)

JEV(3) JEW (i)
Yy + 6, =1,
= d—y =46, 1=2,
a;, i=3,...,m,
2o o= 2 e - (X zmi— Y a)=b, j=1,...,n
i=1 =1 z'EV(j) iIEW ()
and
YYo=y )+ Y vz
i=1 j=1 i=1j=1 (3, 7)eA(y")

Hence the feasible set of (P(8; y')) represents possible adjustments of x*(y") to a slight
change in y'. Among such adjustments z*(8; ') requires the minimum cost, which
apparently implies that *(; y') defined by (3.4) is optimal to (TP(y' + 6)). ]

3.2. APPLICATION OF THE PRIMAL-DUAL ALGORITHM

We next try applying the primal-dual algorithm [4] to the auxiliary problem (P(6; ¥')).
The algorithm begins with a zero flow in A (y'), and augments it by adding some flow
along a directed path from source s to sink ¢ with the least cost in A’(y'). To find such
an augmenting path, we need to solve a shortest path problem in G(y') with arc length
c(y'). It follows from (3.2) that there exists some j € N such that (j, 2) € A(y') as long
as y' < d. Hence we can obtain a shortest path m(y') C A(y') from s to ¢ (= 2 € M).
Let

§ = min{uj; | (i, j) € n(y")}. (3.5)
Lemma 3.3. If0 <6< 6, then

6 of (4, 5) €m(y),
0 otherunse,

25(6 ') = { (3.6)

s an optymal solution of (P(6; y')).

Proof:  Follows from a well-known result on the primal-dual algorithm for minimum cost

flow problems (see e.g. [2]). O



It follows from (3.4) and (3.6) that

o> cimi(6; y)

i=1 j=1
= > D i)+ > euy)(5y)
i=1j=1 (4, ))EAY")

= f)+6 > cly). (3.7)

(& 5)ex(y’)

fy' +6)

This implies that f is an affine function over the interval [, v + 6.

We are now ready to show the exact shape of F. Let y, = ¢ and let (P(6; yo)) be the
auxiliary problem of (TP(y)). Then, by Lemmas 3.2 and 3.3, we can obtain an interval
[Yo, Yo + 6], where f is affine, in the first step of solving (P(6; yo)) by the primal-dual
algorithm. If we let 3, = yo + § and construct (P(§; 1)), then an alternative interval
[y1, y2] will be obtained in the same way as before. Repeating this process, we can
generate a sequence of intervals [y, (= €), 1], [y1, y2), - - -, [Yg-1, ¥, (= w)] such that f is
affine on each [yx_1, 3],k =1, ..., q. Since F is concave on each [Yk—1, Y], its minimum
over the interval is achieved at either y;_; or y;. Hence a globally optimal solution of

the master problem (MP) is given by

y* € argmin{F(y) | y = yo, 11, ..., Yqg}- (3.8)

4. Solution Method for the Problem

In the previous section, to generate each interval [Yk—1, Yx], we solved a minimum cost
flow problem (P(6; yi-1)) from scratch. In practice, however, we need not do so. The
whole sequence of [yx-1, yx]’s will be generated if we solve a single problem (P(u—¢; 0)).
Recall that the primal-dual algorithm [4] builds up a flow step by step, by adding flows
along augmenting paths with the least cost in some auxiliary network A. At each
iteration we find a least-cost augmenting path 7' in M. If 7' exists, we augment the
flow along 7' until the flow reaches the capacity of 7', and then update the auxiliary
network A’. When we apply this algorithm entirely to (P(u = & ¢)), the auxiliary
network A" and the augmenting path 7’ at the kth iteration just correspond to A’ (Yr—-1)
and m(yx_1) respectively, and the capacity of 7’ is given by min{u;; | 7(yx-1)}.

4.1. ALGORITHM FOR THE ORIGINAL PROBLEM

According to the above observation, let us describe the algorithm for solving the original

problem (TP).



Algorithm PDM.

Step 1. Solve a transportation problem (TP(€)) and let 2*(¢) be an optimal solution.
Let f(¢) = £, i, cijzf(0). Initialize the incumbent:

= a'(0), v =6 F* = f(0)+5(0).

Step 2. Construct the auxiliary network N'(€) = (G(€) = (M, N, A(¢)), ¢(?), u(f)) of
(TP(¢)) according to (3.1) - (3.3). Let s =1 € M and t =2 € M.

Step 3. Let yo = £, k = 0 and do the following:

1° Compute a shortest path m(y;) from s to ¢ in G(y) with arc length c(yr)-
Let 6 = min{u;; | (i, 7) € 7(y)}. M ye + 8 > u, then let § = u — Yk

2° Let yp, 1 =y + 6. For each (1, j) such that i € M and j € N, let

o(w) +6 i (4, 5) € m(w),
ziWen) = | @h(u) =& i (4, §) € n(w),
x5 (k) otherwise.
Also let f(yrs1) = flyr) + SZ(i,j)evr(yk) cii (Yr)-
3° If f(yrs1) + (yrs1) < F*, then revise the incumbent:

x* = m*(yk+1), y* = Ypy1, F= f(yk+1) + @(yk+1)-

4° If yk41 = u, then terminate. Otherwise, update the auxiliary network A (yr)
according to (3.1) — (3.3) and let A(ys4;) be the resultant network. Let
k =k +1 and return to 1°. a

Note that Step 3 of this algorithm is nothing but the primal-dual algorithm for solving
the minimum cost flow problem (P(u — ¢; ¢)) if it lacks substep 3°, which computes a
global minimizer of F.

Let us denote by S(m, n) the running time to solve a shortest path problem with
mn arcs and m + n nodes, and by T'(m, n) that to solve a Hitchcock transportation
problem with m sources and n terminals. As well known (see e.g. [1]), both S(m, n)

and T'(m ,n) are lower-order polynomial functions of m and n.

Theorem 4.1.  Algorithm PDM yields a globally optimal solution (x*, y*) of (TP) in
O(cS(m, n)+T(m, n)) arithmetic operations and O(c) evaluations of g, where ¢ = u—{.

Proof: The main parts of PDM are Steps 1 and 3. Step 1 requires T(m, n) arithmetic
operations to solve a transportation problem (TP(¢)). In Step 3, we compute a shortest
path 7(yx) and the value §(yr;1) at each iteration. The total number of iterations in
Step 3 is bounded by ¢ = u — ¢, since § > 1 on the assumption that all constants are
integral in (TP). Thus the assertion follows. a

9



The worst-case time complexity of Algorithm PDM is not polynomial in the problem
input length even though the value of g is provided by an oracle. However, all the
problems solved in PDM are essentially two network optimization problems, i.e., one is
a Hitchcock transportation problem and the other a minimum cost flow problem. By
many experiments performed so far, it is known that even non-polynomial algorithms
can solve both the problems quite efficiently. Therefore, we may affirm that PDM is also

practically efficient unless evaluations of g are extremely expensive.

Remarks. 1) In Step 3. 1° of PDM, we cannot use Dijkstra’s algorithm immediately
to compute the shortest path 7(y,) because some components of arc length c(yx) are
negative. However, on the assumption that all ¢;;’s are nonnegative in (TP), it is pos-
sible to transform ¢(y;) into a nonnegative vector in every N(y) if we introduce node
potentials. Then we can compute 7(y) in time S(m, n) = O(mn+ (m+ n) log(m + n)).
The readers are referred to any textbook on network flows, e.g. [1] for further details.
2) We have assumed that the production cost g is a concave and hence continuous
function. However, one might reasonably expect g to be piecewise concave but discon-
tinuous (e.g. a fixed-charge cost function). So long as g is lower semi-continuous, we
can handle a discontinuous § using PDM with a minor modification. Let us divide each
[yk-1, y&] at discontinuous points of g. Then [¢, u] is partitioned into r (> ¢) subintervals
[Mh—1, M), K =1, ..., r, where 7 is either a y; or a discontinuous point of g. Since
F'= f+ 7 is concave on the interior of each [_;, ni/], it achieves the minimum on (¢, u]
at some 7 by the lower semi-continuity. Hence, to locate y* in [¢, u], we need only to

compute the values of F' at discontinuous points of g as well as y;’s. a

4.2. NUMERICAL EXAMPLE

Before concluding this section, let us illustrate Algorithm PDM using a simple instance
of (TP) given by the table below:

source \ terminal | t; | t; | t3 | t4 | supply | capacity
51 12 1] 3 |4 y 200
S2 41 9 6 | 2 300—y 200
S3 2| 6 2 |10 150 —
demand 80 | 180 | 120 | 70 450 —

where each entry (s;, t;) represents the transportation cost ¢;j. The production cost of

factories s; and s, is assumed to be

3(y) =1000 - V5.

The lower and the upper bounds of y are respectively

10



£ =100, u=200.

In Step 1 of PDM, we solve a transportation problem (TP(100)). Then an optimal

solution x*(100) is as follows:

t1 | ta | t3 |ty | supply
s;| 01100 0 | O 100
s 180 50 | 0 |70] 200
s3| 030 120] 0 150

We also initialize the incumbent:

" = x*(100), y* =100,
F* = f(100) + g(100) = 1430 4 1000.00 = 2430.00.

In Step 2, for each arc (i, j) with z%(100) > 0 we put a reverse arc (7, i) with capacity

z;;(100) and cost —c;;, i.e.,

arc (tg, s;) with capacity 100 and cost -1,

arc (t1, s;) with capacity 80 and cost —4,

arc (tq, sy

)
)

arc (ta, s;) with capacity 50 and cost -9,
) with capacity 70 and cost —2,
)

arc (ty, s3) with capacity 30 and cost —6,

arc (ts, s3) with capacity 120 and cost —2,

and denote by A(100) the resultant network. Letting y, = 100, we proceed to Step 3.
In Step 3, we first compute a shortest path 7(100) from s = s; to t = s, in N(100)

and obtain:
m(100) = (s1, ta, s2), 6 = min{co, 50} = 50.

Then we let y; = 150 and compute £*(150), which is given by

ti | to | ts | tg | supply
s 0150 0 | O 150
s; | 80| O 0 {70 | 150
s3| 0130 | 120 0 150

Since
f(150) + g(150) = 1030 + 1224.75 = 2254.75 < F*

we revise the incumbent as follows:

11



z* =a*(150), y* =150, F*= £(150) + §(150) = 2254.75.

According to the same rule as before, we update A'(100) based on 2*(150), and denote
by N(150) the resultant network.
At the next iteration in Step 2, we compute a shortest path in N(150):

7['(150) = (Sl> t?, S3, t17 Sg), S: {OO, 307 .OO, 80} = 30.

We let y; = 180 and compute x*(180):

t1 | to ts | ta | supply
si| 0180 1] 0 | O 180
s2 {50 O 0 |70 | 120
s3 (30 0 |120] 0 150

Since
£(180) + §(180) = 820 + 1341.64 = 2161.64,

we revise the incumbent again:
z* = x*(180), y* =180, F* = f(180) + §(180) = 2161.64.

We also update A(150) based on #*(180) and obtain A/(180).
At the third iteration, we compute a shortest path in A/(180):

7T(180) = (S], t3, S3, tl, Sz), S'—‘ Il’lill{OO, 120, o0, 50} = 50.

Since y, +6 = 230 > u = 200, we modify § = 20. We let y3 = 200 and compute x*(200):

t1 | to ts | ts | supply
s;{ 01180 1] 20 |0 200
sy 30| O 0 [70] 100
s3 |90 0 {100 O 150

Since
f(200) + §(200) = 800 + 1414.21 = 2214.21 > F*

and y3 = u, we find that the current (z*, y*) is a globally optimal solution of our

instance.



5. A Minimum Concave-Cost Flow Problem

In both combinatorial and global optimization, one of the most attractive but most
difficult problems is the minimum concave-cost flow problem. To solve this NP-hard
problem, many algorithms have been developed so far, and some of them turned out to
be promising for some special cases (see [5, 6] and references therein). Especially when
both the numbers of sources and nonlinear-cost arcs are fixed, uncapacitated problems
can be solved in polynomial time [7, 12, 15]. In this section, we will show that capacitated
problems with a single nonlinear-cost arc can be transformed into the class (TP) of
production-transportation problems and hence solved by Algorithm PDM in pseudo-
polynomial time.

Let G = (N, A) be a directed graph consisting of a set N of nodes and a set 4 of
directed arcs. We associate with each arc (i, J) € A concave cost g;; : R' — R! and
capacity u;; > 0, and with each node i € N a number b;, which indicates its supply or
demand depending on whether b; > 0 or b; < 0. Then the minimum concave-cost flow

problem is formulated as follows:

minimize Z gij (:L‘,‘j)
(1, J)EA
(FP) subject to Z T — Z T; =b;, €N,
JEV(D) JEW(D)
OS%SUU, (i, J)€A7

where z;;’s are variables, V(i) = {j e N | (i, j) € A} and W(i) = {j e N | (j, i) € A}
We assume that all constants are integral, and for simplicity that (FP) has a feasible
flow. In this problem, we are concerned with the case where all gi;’s except one, say,

Juvw, are linear functions, i.e., for some nonnegative integers c;;’s,

9:i(z55) = ¢z, (4, 7) € A\ {(v, w)}. (5.1)

Given such an instance of (FP), we will construct an instance of (TP).
If low z,,, of the nonlinear-cost arc (v, w) is fixed at any value y, we have a minimum

linear-cost flow problem:

minimize Z CijTij
(i, j)€A!

subject to Z Tyj — Z Ty = —Y,
JEV!(v) JEW(v)

(FP(y)) Z Twj — Z Tiw =Y,
JEV!(w) FEW! (w)
Z Tij — Z zji=b; i€ N\{v, w},

JEV'(3) JEW(i)
0 ..<_ xij S uij> (Z) .7) € A,a

13



—y Uy — Y y Uyi +bi Uy + Uy + u;j + b,

v
\
\
\
\\
b; 1y
1 = w
C,‘j
'ltij
J
b

Figure 5.1. Transformation from (FP(y)) to (FP'(y)).

where A" = A\{(v,w)}, V'(i)) = {j e N | (i, /) € A} and W'()) = {j € N | (j, i) € A’}
As well known, we can transform (FP(y)) into a Hitchcock transportation problem in
the following manner (see e.g. [1] for details): Let us regard N as the set of sources and
A' as the set of terminals. For each (4, j) € A’ we first define two directed arcs (¢, (3, 7))
and (j, (4, j)), and assign cost ¢;; to the former and cost zero to the latter. We next
let 32wy uji + bi be the supply of source i € N and u;; be the demand of terminal
(i, 7) € A'. Figure 5.1 shows the transformation, where the right network is transformed
from the left.
Now we have the following problem equivalent to (FP(y)):

minimize > ik
(i, j)eA’

subject to > Lyt Y. Euie) = 0w — ¥,
(v, f)EA" Uy v)EA"

(FP(y) W ST 2 f = et
2. Gupt D &GGp=w+b, i€ N\{v, v},

(i, f)eAr (. )ear
Sitig) T &ii) = ij) (1, J) € 4,
Ciwy 2 0, ie€N (5, k) e A,

where §i,x)’s are variables and

a; = Z Uji’ ZEN

FEWI(3)

~~
(3]
[\]
N’
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It is easy to see that our instance of (FP) can be solved if we minimize the sum of the
optimal value of (FP'(y)) and g,.(y) subject to 0 < y < u,,. In other words, a globally
optimal solution of (FP) with a single nonlinear-cost arc can be obtained if we solve a

production-transportation problem:

minimize Z C,-jf,'(iyj) + Gow (y)
(t,5)eA’
subject to Z o) + Z Euliw) = Qv — ¥,
(v,j)EA' (]l U)EA/
Z éw(w»j) + Z Ew(j,w) =yt Y,
(w,j)eA! (J,w)e A’ (5_3)
> G+ Y GGp=aitb, i€ N\{v, w},
(3,5)eA’ (U, Hea
§iig) + &iGig) = uig, (4, ) € A,
§igky 2 0, i€N, (j,k)e A,
0 <y < Uy,

which apparently belongs to (TP).

References

[1] Ahuja, R.K., T.L. Magnanti and J.B. Orlin, Network flows: Theory, Algorithms
and Applications, Prentice Hall (N.J., 1993).

[2] Berge, C., Graphes et Hypergraphes, Dunod (Paris, 1970).

[3] Chvatal, V., Linear Programming, Freeman and Company (N.Y., 1971).

[4] Ford, L.R. and D.R. Fulkerson, Flows in Networks, Princeton University Press
(N.J., 1962).

[5] Guisewite, G.M., “Network problems,” in R. Horst and P.M. Pardalos (eds.), Hand-
book of Global Optimization, Kluwer Academic Publishers (Dortrecht, 1995).

[6] Guisewite, G.M. and P.M. Pardalos, “Minimum concave-cost network flow prob-
lems: applications, complexity and algorithms,” Annals of Operations Research 25
(1990), 75 - 100.

[7] Guisewite, G.M. and P.M. Pardalos, “A polynomial time solvable concave network
flow problem,” Networks 23 (1993), 143 - 149.

(8] Horst, R. and H. Tuy, Global Optimization: Deterministic Approaches, Springer-
Verlag (Berlin, 1990).

[9] Kuno, T. and T. Utsunomiya, “A decomposition algorithm for solving certain
classes of production-transportation problems with concave production cost,” Tech-
nical Report ISE-TR-94-113, Institute of Information Sciences and Electronics, Uni-
versity of Tsukuba (Tsukuba, 1994) to appear in Journal of Global optimization.

[10] Mangasarian, O.L., Nonlinear Programming, McGraw-Hill (N.Y., 1969).

15



[11]

[12]

[13]

[14]

[15]

Pardalos, P.M. and S.A. Vavasis, “Quadratic programming with one negative eigen-
value is NP-hard,” Journal of Global Optimization 1 (1991), 15 — 22.

Tuy, H., N.D. Dan and S. Ghannadan, “Strongly polynomial time algorithms for
certain concave minimization problems on networks,” Operations Research Letters
14 (1993), 99 — 109.

Tuy, H., S. Ghannadan, A. Migdalas and P. Viarbrand, “Strongly polynomial al-
gorithm for a production-transportation problem with concave production cost,”
Optimization 27 (1993), 205 — 227.

Tuy, H., S. Ghannadan, A. Migdalas and P. Varbrand, “Strongly polynomial al-
gorithm for a production-transportation problem with a fixed number of nonlinear
variables,” Preprint, Department of Mathematics, Linkoping University (Linkoping,
1993).

Tuy, H., S. Ghannadan, A. Migdalas and P. Varbrand, “The minimum concave
cost network flow problem with a fixed number of sources and nonlinear arc costs,”

Preprint, Department of Mathematics, Linkdping University (Linkdping, 1993).

16



