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Abstract

This paper studies in the framework of the so-called geometric approach two parameter
insensitive disturbance-rejection problems with state feedback and with incomplete-state
feedback for linear systems defined in Hilbert spaces, and present necessary and / or suffi-

cient conditions for these problems to be solvable under certain assumptions.



1. Introduction

Wonham and Morse[7] studied the disturbance-rejection problem with state feedback for finite-dimen-
sional systems in the framework of the so-called geometric approach. On the other hand, for infinite-
dimensional systems, the corresponding problem has been investigated by Curtain[2].

Ghosh[3] investigated two parameter insensitive disturbance-rejection problems with state feedback
and with dynamic output feedback for finite-dimensional systems by introducing the notion of simultane-
ous feedback controlled invariant subspaces.  The present authors[6] obtained solvability conditions
for the parameter insensitive disturbance-rejection problem with static incomplete-state feedback for
finite-dimensional systems.

The objective of this paper is to formulate an infinite-dimensional version of two parameter insensi-
tive disturbance-rejection problems with state feedback and with static incomplete-state feedback, and to
study their solvability.

This paper is organized as follows. Section 2 will give various notions of invariant subspaces and
their properties.  In Section 3, a Hilbert-space version of the parameter insensitive disturbance-rejection
problem with state feedback will be formulated, and some necessary and / or sufficient conditions for its
solvability will be presented.  In Section 4, the static incomplete-state feedback version of the problem
will be formulated and its solvability conditions will be presented. In Section 5, an illustrative exam-

ple of our results will be presented.  Finally, Section 6 will give some concluding remarks.

| 2 Preliminaries

In this section, we give some definitions of simultaneous invariant subspaces and their important
properties.

First we give some notations used throughout this investigation. ~ Let B(X;Y) denote the set of all
bounded linear operators from a Hilbert space X into another Hilbert space Y; for notational simplicity,
we write B(X) for B(X;X). The domain and the image of a linear operator A will be denoted by D(A)

and TmA, respectively.  Further we use the notations ry:={1,--,r; }, ry:={1,--,r; } and ry:={1,--,
ry}.
Next, we consider the set {Z;; i€r,, jer,, kery} of ryxryXr; systems defined in a real Hilbert

space X :

x ()=A x(1)+B u (£), x(0)=x,€X,

(21) Eijk y(l)=CkX(t)

(ier,, jer,, kery )

where A, is the infinitesimal generator of a C,-semigroup { S, (2); 20} on X, while B; is a bounded lin-
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ear operator from Euclidean space R™ into X ( ie., B jeB(R"';X), jer,), C, is a bounded linear opera-
tor from X into R? (i.e., C,eB(X;R?), ker,) and x(¢) €X, u(t)e R™, y(t)eR?” are the state, the input,
the output, respectively. For a bounded linear operator LeB(X), {S4..(); 120} denotes a semigroup

generated by a linear operator A;+L.

For these systems {X: i€r, JET,, kery }, we give the following definitions.

(2.2)Definition. Let V < X be a closed subspace.
(i) Vis said to be feedback-(A,,B;)-invariant if there exists an F ;€ B (X;R™) such that
(A+BF ;) )(VAD@A ))V.
(ii) Vis said to be S(A;,B j) -invariant if there exists an F ijeB(X ;:R™) such that
Saq,r,®) Vc V forall £20.
(iii) Vis said to be (Cy,A)-invariant if there exists a G,.€B(R%;X) such that
(A +G, C)(VND@A ))V.
(iv) Vis said to be S(Cy,A )-invariant if there exists a G, €B(R%;X) such that
S4s46,c,OVEV for all #20.
(v) Vissaidtobe (C,A;,B j)—invariant if there exists an H ,.jkeB (R%;R™) such that
(A +B;H ;3 C, )(VND(A NcV.
(vi) Vissaidtobe S(Cy,A;,B)) -invariant if there exists an H UkeB (R%;R™) such that

SasBH C, (Ve V forall £20. //

The following definition is a simultaneous version of Definition (2.2).

(2.3)Definition. Let Vc X be a closed subspace.

(i) V is said to be simultaneous feedback-{(A;,B)); i€, JET, }-invariant if there exists an

FeB(X;R™) such that
(Ai+BjF)(VmD(Ai))cV for all ier,, jer,.

(i) Vis said to be simultaneous {S(A;B;);i€ry, jer, }-invariant if there exists an FeB(X;R™)
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such that
SA,.+B,F(") Vo V forall 20 and all ier, jer,.
(ili) Vs said to be simultaneous {(C;,A;); i€r, ke‘r3 }-invariant if there exists a Ge B(R?;X)
such that
(A +GCHVNDA )<V forall ier, ker;.
(iv) Vis said to be simultaneous {S(C,A)); ier,, ker; }-invariant if there exists aGe B(R?;X)

such that
Sa+cc, OV V forall r20andall iery, ker,.

(v)  Vis said to be simultaneous {(C,,A;,B)); i€r,, j€r,, kery }-invariant if there exists an
HeB(R%;R™) such that
(Ai+BjHCk)(VmD(Ai))CV forall ier,, jer,, ker,.
(vi) Vis said to be simultaneous {S(C,,A;,B;) i€r, jET,, kér3 }-invariant if there exists an

HeB(RY%;R™) such that
SA,,+B,.Hck(’)VC V forall £>0and all ier,, jer,, kery. //

(2.4)Remark.
(i) We note that, for each system X, =(A;,B;,C;), an S(C,,A ,B))-invariant subspace V has the

property that if x(0)e V then there exists an incomplete-state feedback input u(f)=H ; y(¢) such that x(r)eV

for all £20. On the other hand, for a family {Z;;=(A;,B;,Cy) i€ry, jer,, kery } of systems, a simul-
taneous {S(Cy,A;,B;);i€r;, jET,, ker; }-invariant subspace V has the property that if x(0)e V' then

there exists an incomplete-state feedback input u(t)=Hy(¢) which is independent on i, j and k such that

x(t)eV for all £20.
(i) We note that the semigroup invariance implies infinitesimal generator invariance in Definitions

(2.2)and (2.3). [/
The following lemma can be used to prove our main results.

(2.5)Lemma.
(i) IfA; (ier,) are bounded linear operators on X (i.e., A;€B(X)), then the statements 1), (ii), the 7

statements (iii), (iv) and the statements (v), (vi) in Definition (2.2) are equivalent, respectively.
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(i) IfA; (ier,) are bounded linear operators on X (i.e., A ;€B(X)), then the statements (i), (ii), the

statements (iii), (iv) and the statements (v)-(vi) in Definition (2.3) are equivalent, respectively.  //

(2.6)Definition. Let Ac X be a closed subspace.
(i) V(A;,B;A):={VcAlVis S(A;,B;)-invariant subspace. }

(i) V,A,B j;A):={VCA | Vis simultaneous {S(A,-,Bj) ;IET, JET, }-invariant subspace.}  //

For the case where X is finite dimensional, both V(A ;,B j»A) and V (A, B ;;A) have unique supremal
element V,.*j and V", respectively[3,7].  On the other hand, when X is infinite-dimensional, the fami-
lies V(A ,,B j»A4) and V (A, B j»A) are not necessarily closed under subspace addition, and thus there are

in general no guarantee that V:j and V" exist. However, we remark that Curtain[2] and Zwart[8] gave

some sufficient conditions for its existence.

(2.7)Lemma[1]. Let V < X be a closed subspace, and let Q;€B(X). If there exists aQ,eB(X)
such that S,,, (£)V<V for all £20 and (Q,— 0,)(VAI(A))cV, then Saeg, (OVCV forall £20.  //
(2.8)Lemma(4]. Let {Vy,---,V,} be a set of closed subspaces of X and W be a any closed subspace

.ofX. If V,,,cV,; (i=1,---,5-1), then, there exists a set {X,,---,X, } of closed subspaces of X such
that
Vi=X®WVnW), X,,, <X, (i=0, 1,--,5-1) and X = X, ®W. //

(2.9)Lemma(5]. Let U,,U, be real Hilbert spaces, and F,e B(X;U,) (i=1,2) be given.  If ImF,
is closed in U, , then the following statements are equivalent.

(i) KerF, o KerF,.

(i) There exists a KeB(U,;U,) such that F|=KF,. //

(2.10)Proposition. Let V be aclosed subspace of X, C e B(X;R”) be given, and suppose that

(1) Vis simultaneous {S(A,,B ;) i€y, je€r, }-invariant,

(i) Vis simultaneous {(C,A)); ier, }-invariant, and



(ii) VnKerCND(A; ) =VnKerC for somei,€r,.
Then, Vis simultaneous {S(C,A;,B)); ier,jer, }-invariant.
Proof. Suppose that V satisfies (i), (ii) and (iii).  Then, there exists an FeB(X;R™) such that
SA,.+B,.F(’) Vc V forall 20 and all ier, jerzv,
and there exists a Ge B(R?;X) such that
(A ;+GCY(VND(A )V forall ier,.
Since Vc X, it follows from Lemma (2.8) that there exists a set {X;,X; } of subspaces of X such that
V=X,®&(VnKer(), X,cX,, and X = X ,®KerC.
Further, denote by P the projection operator of X onto X, along KerC, aﬁd set Fo:=FP.  Then since

Px=0 for any xe KerC, one has
F yx=F(Px)=0 for all xeKerC,

which shows that
KerC c KerF ;. )

Hence, it follows, from Lemma (2.9) with (1) and closedness of ImC, that there exists an
HeB®R?;R™) such that F,=HC.

Now, we claim that this H satisfies

SAi+BjHC(t)VC V forall #20 and all ier,, jer,. (2)

In order to verify this claim, it suffices, by virtue of Lemma (2.7), to show
(B;F - B;F ) VCV. €)
To show (3), first let xe V=X ,®(VnKerC). Then x can be written uniquely in the form x=y+z with

yeX, and zeVnKerC By the hypothesis (iii), there exists a sequence {,zi,"} from

(VnKerCND(A iy )) such that Lim zﬁf =z. Now, by the definition of F', one obtain

n—oo

On the other hand, since (4, +B;F)z,’€V and (4, +GC)z,° €V, it follows that
BFzp = (A, +B;F)zy - (A; +GC)z,°€V forall jer,. (5)
Thus, by continuity of B;F, closedness of V and (4), (5), one obtains

(B,F - B;F )x = B;Fz = LimBFz, €V forall jer,.
n—yoco

—_
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Finally, it follows that (B & -B;F,)VCV for all jer,, showing (3).  Thus, (2) is satisfied, and V is

simultaneous {S(C,A;,B)); ier,jer, }-invariant. This completes the proof.  //

3. The Problem with State Feedback

In this section, we will first formulate our parameter insensitive disturbance-rejection problem with
state feedback for infinite-dimensional systems, and then give some solvability conditions for this prob-

lem.  The linear control system to be considered is given by

X (1) = AX(t) + Bu(t) + K&(t), x(0)=x,eX

.1
1) z(t) = Dx(t)

where x(£)€X, u(r)eR™ and z(t)eR? are the state, the input and the controlled output, respectively.

&(-) represents a disturbance which is a locally integrable function from (0,c) to a Hilbert space Q ( i.e.,
&()e L°(0,%;0) ), and KeB(GX) and DeB(X;R”).

We assume that operators A, B, K and D are unknown, but they are assumed to have the following

forms :

A=0A+(1-0)A,, B=BB+(1-B)B,

(3-2) K=vK+(1-y)K,, D=ocD+(l-0)D,

where parameters @, f8, 7, ¢ €[0,1] are unknown and operator A, is the infinitesimal generator of a
C,-semigroup {SA ®;120} on X, B, B,eB(R™;X), K,, K,€B(GX) and D, D,eB(X;R?), and all
these operators are known. We note that, even if A, and A, are infinitesimal generators,

A=0A | +(1-a)A, (o €[0,11) may not be an infinitesimal generator. ~ Therefore, whenever consid-

ering an operator A=A 1+(1—0¢)A2 of (3.2), it is always assumed that A is the infinitesimal generator

ofa C,-semigroup {S, (; 20} on X. We remark that if A| and A, are bounded linear operators,
A=0A | +(1-a)A, is always infinitesimal generator.
Now, for a subset V of X, introduce the notation

<S, )1V >:=L(L>_OJSA V),

where L(E) means the linear subspace generated by the set E and the over bar indicates the closure in
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Hilbert space X.
Next, we consider a state feedback of the form
(3.3) u(t)=Fx(t)

where FeB(X;R™).  Then we have the following closed loop system

x (1) = (A+BF)x(t) + KE(t),  x(0)=x,eX

34
(34) z(¢) = Dx(t).

Our parameter insensitive disturbance-rejection problem with state feedback is to find a state feedback of

(3.3) such that output z(¢) in system (3.4) is not affected by disturbance &(r) forall o, B, 7, © € [0,1].

To achieve this control requirement we must solve the following problem : Given

A,A,,B,B,,K,K,,D; and D, of (3.2), find (ifpossible) an FeB(X;R™) such that
t
D [ S v sr(t-DKED)AT = 0
0

for all £eLY°(0,00;0), all 20 and all @, B, ¥, o€[0,1], or equivalently <S ,, ;r(-)ImK>cKerD for all

o, B, 7, o€0,1].
This problem can be formulated as follows.

(3.5)Parameter Insensitive Disturbance-Rejection Problem with State Feedback

'(PIDRPSF). Given A, A,,B,B,,K,,K,,D,and D, of (3.2), find (if possible) an

FeB(X;R™) suchthat <S,, gr()ImK>cKerD forall o, B, ¥, o€[0,1]. //

(3.6) Assumption.

(i) Itis assumed that each V(A ;,B;;KerD ,nKerD,) has a unique supremal element V; j» je{l,2}.

(ii) Itis assumed that V(A,,B;;KerD ,nKerD,) has a unique supremal element V*.  //

The following lemmas play important roles to prove our main theorems.

(3.7)Lemma.  Suppose that system (3.1) satisfies Assumption(3.6,ii), and let V* denote the supremal

subspace in V(A ;,B;;KerD nKerD,).  Then, the following two statements hold.
(i) IfA=A;=A,,then there exists an FeB(X;R"™) such that
S 4pr(&)V V" for all £20 and all B €[0,1].
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(i) IfA, and A, are bounded linear operators on X (i.e., A;, A,€B(X) ), then there exists an
FeB(X;R™) such that
S 14pr(OV V" forall £20 and all o, Be [0,1].
Proof. First, we will prove (i). Since A=A l=AA2 and V" is a supremal element in

V(A ;,B;;KerD nKerD,), there exists an FeB(X;R™) such that

Sasa,p(OV V" forall 20 and all je{1,2}, (1)
and hence Remark (2.4,ii) gives
(A+B;F)(V' nDA)cV" forall je{1,2}. )
Now, note that
(A+BF) = (A+B | F) — (1-B)(A+B | F) + (1-B)(A+B,F). (3)

By virtue of (2) and (3), for arbitrary xe(V*ND(A)), we have
(A+BF)x = (A+B F)x — (1-B)(A+B | F)x + (1-B)(A+B,F) x V" forall B €[0,1],
which proves
(A+BF)(V' A D(A)) cV* for all B €[0,1]. 4
Further, it follows from Lemma (2.7) and (1) that, if we show
(BjF—BF)(V*mD(A))cV* for all je{1,2} and B€[0,1] )
then the desired relations
S 45V cV* for all £20 and all B €[0,1]
obtain.  To prove (5), let x e_(V* N D(A)). Then, from (2) and (4) we obtain
(B;F-BF)x = (A+B;F)x -~ (A+BF)x € V® forall je{1,2} and Be[0,1]
which proves (5). This proves assertion (i).
Next, we will prove (ii).  Since that A| and A, are bounded linear operators on X and V" is a
supremal element of V (A, B;;KerD nKerD,), there exists an FeB(X;R™) such that
Sas+ap®V'CV" forall 120 and all i, je {12}, (6)
and hence from Remark (2.4,ii) gives
(A+B;F)V'cV" foralli, je{12}. (7)
Note that
(A+BF) = 0t(A |+B | F)+(1-0))(A,+BF) — (1-B)(A ,+B |F) + (1-p)(A ,+B,F). (8)

Hence, by virtue of (7) and (8), for arbitrary x €V*, we have
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(A+BF)x = a(A +B F)x +(1-0)(A,+B F)x — (1-B)(A +B F)x + (1-B)A (+B,F)x e V"
which proves
(A+BF)V'cV" forall o, B€[0,1].
Since (A+BF) is a bounded linear operator, it follows from Lemma(2.5,ii) that
S4.r(t) V'V forall £20 and all o, Be[0,1].

Thus this proves assertion (ii).  //

The following lemma can be easily obtained and its proof is omitted.

(3.8)Lemma. Suppose that system (3.1) satisfies Assumption(3.6,ii), and let V" denote the supremal

subspace in V(A ;,B ;KerD nKerD,). Then, the following assertions hold.
(i) IfImK,+ImK, cV”, thenImK cV" forall ¥ €[0,1].

(i) V*c KerD forall o €[0,1]. /
The following two theorems give sufficient conditions for PIDRPSF (3.5) to be solvable.

(3.9) Theorem.  Suppose that system (3.1) satisfies A = A, = A, and Assumption (3.6,ii), and let
-V denote the supremal subspace in V(4 ,,B ;KerD ;nKerD,). If
ImK | + ImK,c V*
then PIDRPSF (3.5) is solvabie.

Proof. Suppose that ImK,+ImK,c V*.  Then, it follows from Lemma (3.8) that

ImK < V*c KerD 9)
forall , o€[0,1]. On the other hand, since A =A;=A,, it follows from Lemma (3.7,1) that

there exists an FeB(X;R™) such that
Spr®OVcV' (20) forall B €[0,1]. (10)
Thus, (9) and (10) give that
<Spr) MK > c <8, ,o() | V' >=V'cKetD forall B, , o€[0,1].
Hence, PIDRPSF (3.5) is solvable. //
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(3.10)Theorem. Suppose that system (3.1) satisfies A, and A, are bounded linear operators on X
(i.e., A,,A,€B(X)) and satisfies Assumption (3.6,ii), and let V* denote the supremal subspace in

V,(A,;,B;;KetD nKerD,). If .
ImK,+ImK, c V"

then PIDRPSF (3.5) is solvable.
Proof.  Suppose that ImK, +ImK, < V*.  Then, it follows from Lemma (3.8) that
ImK < V"< KerD (1)

forally, oe[0,1]. On the other hand, since A, and A, are bounded linear operators on X, it follows
from Lemma (3.7,ii) that there exists an Fe B(X;R™) such that
S 4. ar(®V V" forall 220 and all &, Be [0,1]. (12)
Thus, (11) and (12) give that
<S4 pr)IMK > C< 84, 5e() 1 V' > =V 'cKetD foralle, § v o€[0,1].
Hence, PIDRPSF (3.5) is solvable.  //

(3.11)Theorem.  Suppose that system (3.1) satisfies Assumption (3.6,i), and let 1A ; denote the
supremal subspace in V(A ;,B;;KerD nKerD,). If PIDRPSF (3.5) is solvable then

ImK,+ImK, ¢ (| Vj;.
ije{1,2}

Proof.  Suppose that PIDRPSF (3.5) is solvable. ~ Then, there exists an FeB(X;R™) such that
<8,,.5r() 1 ImK >c KetD forall o, § 7 0€[0,1].

Since «, § 7, o €0,1] are arbitrary, we have
< SA#B,-F(') | ImK, >€V(A,,B;;KerD ;NnKerD,).
Thus,
ImK | © <S4 5 () 1 ImK, > C v;, foralli je{l,.2}.
Similarly, we obtain
ImK, C < S, 5 p() 1 ImK, > < v, foralli je{1,2}.

From (13) and (14), the desired result

ImK, +ImK,c | Vi;-
ije{1,2}
follows. //
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4. The Problem with Incomplete-State Feedback
In this section, a parameter insensitive disturbance-rejection problem with incomplete-state feedback
will be studied. =~ We will first formulate the problem and then we will present some solvability condi-

tions.

Consider System (3.1) with an incomplete-state y()eR?, i.e.,

x ()=Ax(1)+Bu(t)+K&(t), x(0)=x,eX
@D y@o=Cx)
zZ(H=Dx(1).

We assume that operator Cis also unknown, but has the following form:

4.2)  (C=6C+(1-8)C,

where parameter 6 €[0,1] is unknown and operators C,,C, € B(X;R?) are known.
Now, we consider an incomplete-state feedback of the form

4.3)  u@®=Hy()

where HeB(R?;R™).  Then we have the following closed loop system

x (N=(A+BHC)x(t)+KE(1), x(0)=x,eX

¢4 2(1)=Dx().

Our problem is to find He B(R?;R™) such that the output z(¢) of System (4.4) is unaffected by the dis-
turbance &(¢) forall o, B, 7, 6 , o €[0,1], as in PIDRPSF(3.5), it is not difficult to see that this problem

can be formulated as follows.

(4.5)Parameter Insensitive Disturbance-Rejection Problem with Incomplete-State Feed-

back (PIDRPISF). GivenA,, A,, B,, B,, K, K,, C;, C,, D, and D, of (3.2) and (4.2), find

(if possible ) an HeB(R?”;R™) such that
<Supuc() I ImK>cKerD forall o, B, 7,6,0¢€[0,1]. //

First, the following theorem will be proved.

(4.6)Theorem. If PIDRPISF (4.5) is solvable, then there exists (C,,A;,B j)-invariant subspaces
{Vis 1, J, ke {1, 2}} such that
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() (mK,+ImK)c () Vi,
ijke{1,2}

@) D, V, < (KerD,NKerD,) and
ijke {1,2}

(iif) (| H@A,.B;CV,;)=2,

ijke (1,2}
where H(A ;,B;,C;V ;) :={HEBR”R™) 1S4 15 nc, () Vi <V forall t20}.
Proof. Suppose that Problem (4.5) is solvable. Then, there exists an HeB(R?;R™) such that
<8 ,4,p5c() 1 ImK>c KerD forall o, B, 7,6, 0€[0,1]. (1)

Foreach i, j, k €{1,2}, set‘
Vi =<8 41mc,() 1 ImK, > and Vi =<4 1 5, () 1 1mK; >. @

Then, from the definition of Vi, (m=1,2), each Vj; isan §, +8,Hc, (1) -invariant subspace, and hence so

is Vi 1= Vilj,c + V,?jk. Therefore, it follows from (1) and (2) that

ImK | +ImK, < V;;

S e, OV © Vy forall :20andall i, j, ke {12},

< (KerD ,nKerD,) and

showing (i), (ii) and (iii). =~ This completes the proof. /
Now, it is ready to show our main results.

(4.7)Theorem. Suppose that system (4.1) satisfies A=A =A,. If there exists a simultaneous
{S(C,A,B)); j, ke {1,2}}-invariant subspace V satisfying

ImK |+ ImK, c V < (KerD ,nKerD,), 3)
then PIDRPISF (4.5) is solvable.

Proof. Suppose that (3) holds. So, there exists an HeB(R”;R™) such that
SA+Bchk(t)Vc V for all 20 and allj, ke{1,2}. 4)

Then, (4) implies
(A+B,HC)VV for all j, ke {1,2}. 5)

Note that
(A+BHC) = B6(A+B HC)) + B(1-6)(A+BHC,)

_(1-B)8(A+B,HC,)+(1-B) (I-8) (A+B,HC,). (6)
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Now, by virtue of (5) and (6), for arbitrary xe VAD(A), we have
(A+BHC)x = BS(A+B HC, )x + B(1-8)(A+B |HC,)x - (1-B)8(A+B,HC, )x
+(1-B) (1-0) (A+B,HC,)x €V
which proves

(A+BHC)(V "D(A))c V forall 3,6 €[0,1].

Further, it follows from Lemma (2.7) and (4) that, if we show
(B;HC,-BHC)(VND(A)) c V forall j, ke {1,2} and all B, 5€[0,1]
then the inclusion

Sspuc®)V cV forall £20and all B, §€[0,1]

is obtained.  To prove (8), let xe (VAD(A)).  Then, from (5) and (7) we obtain

(B,HC, - BHC)x = (A+B;HC})x - (A+BHC)xeV forall j, ke {1,2} and all B, §€[0,1]

which proves (8).
Now, finally it follows from Lemma (3.8), (3) and (9) that
<Spppc) 1 ImK > <8, puc() 1 V>
cV

c KerD forall B, v,6, o €[0,1].
Hence, PIDRPISF (4.5) is solvable. //

(7

8)

®

(4.8)Theorem.  Suppose that A, and A, in system (4.1) are bounded linear operators on X (i.e.,A i

,A,eB(X)). If there exists a simultaneous {S(C,,A B DANE ke {1,2} }-invariant subspace V satis-

fying
ImK |+ ImK, < V< (KerD ,nKerD,),
then PIDRPISF (4.5) is solvable.
Proof. Suppose that (10) holds.  So, there exists an He B(R”;R™) such that
Saqsnc, OV CV for all 120 andall i, j, ke {1,2}.
Then, (11) implies
(A+BHC)V c Viorall i,j, ke{1,2}.
Note that
(A+BHC) = a(A |+B | HC|) + (B6-)(A,+B (HC, )+ (I-6)(A,+B |HC,)

+(1-B)8(A ,+B,HC, )+(I-B) (I-8) (A, +B,HC,).

Now, by virtue of (12) and (13), for arbitrary xe V, we have
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(10)

(11)

(12)

(13)



(A+BHC)x = (A ,+B | HC, )x + (B8 -0t)(A ,+B |HC, )x+f (I-8)(A ,+B HC, )x

+(1-B)8(A ,+B,HC, x+(1-B) (I-8) (A, +B,HC,)xeV

which proves

(A+BHCO)V c V forall a, B, 6 €[0,1]. (14)
Since (A+BHC) is a bounded linear operator on X, it follows from Lemma (2.5,ii) and (14) that
Spspuc®V cV forall 20andall o, B, 6 €[0,1]. (15)

Now, finally it follows from Lemma (3.8), (10) and (15) that

cV

cKerD forall o § y 6, o€[0,1].
Hence, PIDRPISF (4.5) is solvable. 1/

5. Example

Consider the following system S :

ox(t,1) _ 9%x(t,m)
ot on?

+b(mu(t) +k(m&@), (0<n<l),  x(2,0)=0=x(1),

1
20 = | dmce.man.,

where x(¢,1) is the temperature distribution of a bar of the unit length at position 77 and time #, u(¢)eR is
the input, £(¢)eR is the disturbance and z(#)eR is the controlled output. ~ Suppose that functions b(1)

and k(1) are unknown, but have the following form :
b(n) = Bb,(m) +(1-B)Iby(m), k(m) =7y k(M) +(1-y )k, (M), B, yel0,1]
where b,(n) and k;(n) (i=1,2) are some given known functions in L?[0,1] and B, ¥ are unknown
parameters.
Let X = L?[0,1], and define various operators as follows :

2

A = a
dn?

where DA) = { x(e X | x"eX, x(0)=x(1) =0},

B:=b,(meX, B,=b,(NeX, K=k, (meX, K,=k,(neX and D =< -1d(n)>y.

Then, the given system S can be described by the following evolution equation on X :

16



x(t) = Ax(t) + Bu(t) + K&(t), z(t) = Dx(1).
Now, suppose that deD(A), <b,,d>#0, <b,,d>#0, b,=b,+A where A€ KerD. Then using

the results of [8] it can be shown that KerD is a simultaneous {S(A,B;);ie {1,2}}-invariant subspace.

Further, if k(1) and k,(n) are assumed to be elements of KerD, it follows from Theorem (3.9) that

PIDRPSF (3.5) is solvable.

6. Conclusions

The infinite-dimensional version of two parameter insensitive disturbance-rejection problems with
state feedback and with incomplete-state feedback were studied, and necessary and / or sufficient condi-
tions for these problems to be solvable were obtained under certain assumptions. ~ These results are
extension of the finite-dimensional results of Ghosh[3] and of present authors[6] to the infinite-
dimensional case. A general method for checking the conditions given in this paper has not been
known, and this should be studied as a future problem.  Further, it would be interesting to investigate

necessary and sufficient conditions for Problems (3.5) and (4.5) to be solvable.
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concept of simultaneous feedback controlled invariance. ~ The authors would also like to thank Profes-
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