A Variant of the Outer Approximation Method
for Globally Minimizing
a Class of Composite Functions

Takahito Kuno*
May 26, 1995
ISE-TR-95-120

Institute of Information Sciences and Electronics
University of Tsukuba
Tsukuba, Ibaraki 305, Japan

Phone: +81-298-53-5540, Fax: +81-298-53-5206, E-mail: takahito@is.tsukuba.ac.jp

* The author was partly supported by Grant-in-Aid for Scientific Research of the Min-
istry of Education, Science and Culture, Grant No. (C)07680447.

A variant of the outer approximation method for
globally minimizing a class of composite functions

Takahito Kuno*
Institute of Information Sciences and Electronics

University of Tsukuba

May 1995

Abstract. In this paper, we consider a constrained optimization problem whose objec-
tive function is a composition of two functions g:R"—> RPand f: R” - R!. We show
that a variant of the outer approximation method generates a globally e-minimum point of
fog = f(g(-)) on a convex set after finitely many iterations, if g is convex and f is con-
tinuous and coordinatewise increasing. Prelirhinary_ experiments indicate that the proposed

algorithm is reasonably practical for two types of multiplicative programs if p is less than four.

Key words: Global optimization, composite function, outer approximation method, multi-

plicative program, multiple objective decision making.

1. Introduction

In a series of articles [5 - 11], Konno et al. studied multiplicative programming problems,
whose objective functions can be expressed by the product of some convex functions.
Although the class is a typical nonconvex program and hence has multiple local min-
ima [6], one can generate a global minimum rather efficiently if the number of convex
functions involved in the product term is much less than that of variables. Tuy [18] and
Sniedovich et al. [14] showed that this nice characteristic is mainly due to a low-rank
property possessed by multiplicative functions. In other words, minimizing a composi-
tion fog = f(g(-)) of two functions g : R® — R” and f : R” — R! over a convex set
X C R" is possibly as efficient as minimizing the product of p convex functions, if all
components of g are convex on R" and f is coordinatewsise increasing and quasiconcave '
on {g(=) | @ € X}.

As stated in [7], the most important application of multiplicative programs is mul-
tiple objective decision making. When several objectives without a common scale need
optimizing simultaneously, a handy approach is to optimize the product of these objec-
tives (see e.g. [4]). This approach, however, assumes implicitly that the utility of the

*The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of
Education, Science and Culture, Grant No. (C)07680447.

decision maker is quasiconcave on his criterion space, though the shape of the utility
function is in general difficult to specify except that it is coordinatewise increasing [15].

In this paper, we will develop a method for minimizing f o g over a convex set X\’
without assuming that f is quasiconcave. More precisely, f is continuous and coordi-
natewise increasing but needs to be neither quasiconcave nor quasiconver on some open
set including {g(z) | € X}. This class of functions f o g is a generalization of multi-
plicative functions and also contains rank-p quasiconcave functions studied by Tuy [18].
We will show that a variant of the outer approximation method can generate a global
e-minimum of this nonconvex function after finitely mauy iterations. Preliminary exper-
iments indicate that the proposed algorithm is reasonably practical when p is less than
four, even though n exceeds one hundred. This fact has an important implication in
multiple objective decision making, since the number of objectives is usually less than
five, and less than three in most practical applications (see e.g. [3]).

The organization of the paper is as follows: In Section 2, we will transform the prob-
lem into a p-dimensional minimization problem whose ob jective function is f. In Section
3, to solve the resultant problem, we will propose a variant of the outer approximation
method. Unlike the usual one, our algorithm approximates the feasible region by us-
ing the union of finitely many rectangles in IR”. We will discuss possible improvements
on the algorithm in Section 4, and report the results of computational experiments in
Section 5.

2. Master Problem in the p-Dimensional Space

Suppose a continuous function f : R”? — R! satisfies
f@) <f(y+d) if de R and d#0 (2.1)

for any y € S, where S is an open subset of R? and *+ stands for the nonnegative
orthant. The problem we consider in this paper is to minimize a composition of f and
a convex function g : R” — R” over a convex set X C R", i.e.,

(p) | minimize fog(a)= f(g(a))
subject to = € X.

We assume for simplicity that X is compact. Therefore the Jth component g; of g
achieves a minimum and a maximum over X at some &’ and &’ respectively for j =
1, ..., p. Also the objective function of (P) has a globally optimal solution in X, since
the composition of two continuous functions is continuous. We further assume that

{y e R | g;(&7) < y; < g;(87), j=1,...,p} C S. (2.2)

Hence it holds for any two feasible solutions z', &" of (P) that

fog(a') < fog(a") if gi(a') < g;(="), j=1,....p,

under condition (2.1).
We first define a univariate function:

£i(9) = fg1(®), ..., g5a (@), y, g (@), ..., g,(27)) (2.3)
for j=1,..., p. Let

v=min{fog(z) |z =4&',..., z°}. (2.4)
Lemma 2.1. Letx' € X. If fog(a') < v, then

9i(#) < (@) <max{y| f;(v) < v}, j=1,..., 0.

—
(S
oY

—

Proof: Since g;(#’) < g;(x') for every j, we have

fJ(gj(ml)) ..<.. f og(w') ..<.. v, .7 = 13 e Py |

by definition. Each f; is continuous and from (2.1) strictly nondecreasing. Hence the
second inequality of (2.5) holds. The first one is obvious. o

Let us introduce a vector y € R” of additional p variables y;’s, and consider the following

problem:
minimize f(y)
subject to z € X, : (2.6)
where £ = (€1, ..., 6,)T, u = (u,, ... %)t and
éj = gj(:i:j), uJ = max{y I fj(y) S ’U}, j = 1, ceey P (27)

Lemma 2.2. Let (z*, y*) be an optimal solution of (2.6). Then x* solves (P).

Proof: Let 2’ € X and assume that f o g(z') < f o g(x*). Let &7 = argmin{f o g(x) |
¢ = &', ..., #"}. Then, by the previous lemma, (27, g(£9)) is feasible to (2.6) and
satisfies

fog(a') < f(y*) < flg(8%)) =w.

We again apply Lemma 2.1 and have £ < g(z') < u. This is a contradiction, because
(', g(x')) is feasible to (2.6) and f(g(z')) < f(y*) holds. O

Note that an ordinary line search algorithm can generate both the bounds ¢; and u; of g;.
Since f; is continuous and strictly nondecreasing, computing #; = max{y | f;(y) < v}
amounts to minimizing a certain unimodal function of a single variable.

Let us denote by Z the feasible region of (2.6), i.e.,

3

Z={(y)eR"xR’ |z € X, g(z) -y <0, £< y < u}, (2.8)
and let

Y={yeR'|IzeR" (z,y)c Z}. (2.9)
Then we have a problem in the p-dimensional space:

(MP) minimize f(y)
subject to y €Y,

which is equivalent to (P) in the following sense:

Theorem 2.3. Lety* be an optimal solution of (MP). Then any x* such that (z*, y*) €
Z solves (P).

Proof: 1t is obvious that any (x*,y*) € Z is an,optimal solution of problem (2.6) if y*
is optimal to (MP). Hence a* solves (P). [

By convexity of g, we see that Z is a convex set in R” x R”. The feasible region ¥ of
(MP) is the orthogonal projection of Z onto the y-space and hence a convex set in R?
[13]. We can also see that ¥ is compact as well as Z.

The above transformation from (P) into (MP) is based on a decomposition principle
in global optimization [2, 12]. We refer to (MP) as the master problem of (P). If f
is either convex or (quasi)concave, there are several solution methods for (MP) (e.g.,
[1, 16, 17]). These decomposition algorithms are known to be more promising than
solving the original problem directly when p is much smaller than n. However, in
applications such as multiple objective decision making, the shape of f is often difficult
to specify except that it satisfies condition (2.1). In the rest of the paper, we will
develop an algorithm for solving (MP), in which [is assumed to be neither convex nor
(quasi)concave.

3. Outer Approximation Algorithm for the Master Problem

It is straightforward to see from (2.1) that there is a globally optimal solution y* of
the master problem (MP) among boundary points of the compact convex set ¥. Hence
outer approximation can still work for (MP) even though f is not (quasi)concave.

Let us denote

"={yeR’|£<y<u} ‘ (3.1)

Starting from Y, as the initial relaxation of Y, the class of outer approximation algo-
rithms generates a sequence of relaxed problems (Py), k=0, 1, ..., of the form:

minimize f(y)
(Pt) : .
subject to y € Y},

where
YCYimCYiCcRY, k= 0,1,.... (3.2)

Let y* be an optimal solution of (Pk). It follows from (2.1) and (3.2) that y* € int) for
every k, where int- represents the set of interior points. If y* happens to be a point of
Y, then it is a globally optimal solution of (MP) and any z such that (x, y*) € Z solves
the original problem (P) (Theorem 2.3). Otherwise, we need to exclude some portion
containing y* from ¥} to obtain the next relaxation Y41 of ¥. The usual procedures
construct Y., by adding some cutting-plane constraints to the system defining ¥} and
generate a sequence of polytopes Yi’s. When f is (quasi)concave, we need only to
search vertices of the polytope Y} for an optimal solution y* of (P;). In our problem,
however, such vertices might not provide an optimal solution. We will therefore present
an alternative procedure for excluding y* from Y} in this section. The resultant ¥} turns
out to be the union of finitely many rectangles in R?.

3.1. APPROXIMATION OF THE FEASIBLE REGION

Suppose an optimal solution y* of the kth relaxed problem (Py) is given. Regarding y*
as an ideal value of g, let us consider the following minimax problem:

(Q(y*)) minimize G(z; y*) = max{c;(g;(x) — y}) [i=1,...,p}
subject to x € X, g(z) < u,

T

where ¢ = (ci, ..., ¢,)T is a positive vector of weights and « € R” is defined by (2.7).

The objective function G(-; y*) is convex and its minimum point *(y*) can be obtained
if we apply any one of standard algorithms to an equivalent problem:

minimize =z »

subject to = € X, g(z) < u, (3.3)
gj(:z:)~—z/cj_<_yf, j=1?"'3pa

where z is a scalar variable. It is easy to check that a* (y*) is feasible to (P) and that

£ < 9(z*(¥*)) < u holds. Hence, by letting y*(y*) = 9(z*(y*)), we have a feasible
solution y*(y*) of (MP), which satisfies

Fy*) < F(y*) < F(y* (y*)). (3.4)
Let z(y) = G(z*(y); y) and let
}—’k={y€Rplcj(yj—yJ'?) <z(y*), i=1,...,p} . (3.5)

Lemma 3.1. Function = : R” — R! is convez and satisfies
2(y) <0, VyeY; =(¥*)>0 i y*¢v (3.6)

Proof: Let y' be an arbitrary point of ¥". Then by deﬁnition g(z') — ¢y’ < 0 holds for
some &' € X, and hence we have h(y') < maxj{c (9j(x')—y;)} < Oby notmg c>0. If
y* ¢ Y, then no y € ¥ satisfies y < y* under condition (2 1) because y* is an optimal
solution of a relaxed problem of (P). This implies that there is some index ¢ such that
gq(x) > y;“' for any feasible solution z of (Q(y*)). Hence the optimal value z(y*) of
(Q(y*)) is positive if y* ¢ ¥

Convexity of z is shown as follows: Let y’ and y" be any points in R”. Then for any
A € [0, 1] we have

(1= A)z(y') + A(y")
=(1- maxj{c, gi(z*(y')) — y])}+ /\ma'XJ{CJ(gJ(m*(y" ")}
2 max;{(1 = Ae;(g; (x*(¥)) =) + Ac;(g;(=* (y") - yj)}
> max;{c;(g;((1 — N)z*(y') + Az*(y")) — (1 - Ayi)}
2 maz;{c;(g;(z*((1 - Ny’ + Ay")) — (1 - /\)J,- - /\y}')}
=z((1 - Ny + \y"),

since c;’s are positive and g;’s are convex. a
Lemma 3.2. Ify* ¢V, then
y'eYs, Vi Y =0 (3.7)

Proof: The first part of (3.7) follows from (3.6). To show the second, choose an arbitrary
(2, y') € Z. Then we have 2(y*) < max;{c;(g;(e') — y§)} < max;{c;(y} ~ y¥)}, which
implies y ¢ Y, foranyy €Y. 0O

Thus by defining the & + 1st relaxation of ¥ below:
Viwr = ¥ \ ¥, (3.8)

we can gouge out some portion containing y* from ¥}, without losing any points of Y.
If we use the above procedure to generate every relaxed problem, the feasible region
% of (Py) will not be any convex set but the union of a number of rectangles in R?:

% =U R, (3.9)

i€l

where I is some index set and
Ri={yeR°|€<y<u}, iel (3.10)

6

However, only among the vertices £°’s exists-an optimal solution y* because the objective
function f has the nondecreasing property (2.1). Hence we can solve (P) by performing
at most |I| comparisons:

y* € argmin{f(y) |y = £, i € I}. (3.11)

Let I} be a subset of indices i € I such that £ €Y. If y* is not a point of ¥, for each
i € I we have to discard the portion of R; included in Y. This can easily be done in
the following way:

Let Ji be an index set such that

Hy*), je
(¥*), je{l,....p}\ /i

cj('uj)

>
c;i(u; — y] <

I

} (3.12)

For each j € J; let

= (6, s Gy, yh 4 2y ey €y, eyt (3.13)
and define
Rij={yeR"|[£7 <y <u}. (3.14)

If we replace R; with Ujes, Bij for every i € I, all the portion of ¥}, included in Y, is
deleted, and then the next relaxation Yi41 of the same form as (3.9) is generated, i.e.,

Yern=(R)UU U Ry). (3.15)

eI\, i€l eI,
Note that we may remove any R;; with vertex £Y from this definition (3.15) unless £%
is a vertex of Y.
3.2. DESCRIPTION OF THE ALGORITHM
We are now ready to present an outer approximation algorithm for solving the master
problem (MP). Here € > 0 stands for a given tolerance.

Algorithm 1.

Step 0. Compute both the bounds £ and u of g according to (2.3), (2.4) and (2.7), and
define the feasible region }y = {y e R? | £ < y < u} of the initial relaxed problem
(Po). Let k =0 and go to Step 1.

Step 1. Compute an optimal solution y* of (Pt). Solve a minimax problem (Q(y*))
and let *(y*) and z(y*) be an optimal solution and the optimal value respectively.

Step 2. Let y*(y*) = g(z*(y*)). If

Fy @) —-fe*)<e, | (3.16)
then stop.

Step 3. Let Y, = {y € R | c;(y; — yJ"f) < z2(¥%), j = 1,..., p} and update the
relaxation of ¥ as Y4, = ¥} \ Y. Return to Step 1 with &k = & + 1. O

If this algorithm terminates, the stopping criterion (3.16) guarantees the e-optimality
of y*(y*) to (MP). By the definition of y*(y*) we have (*(y*), y*(y*)) € Z. Hence
x*(y*) is a globally e-optimal solution of (P) in this case. Moreover, we should note that
every x*(y*) generated in the course of computation has a certain desirable property
in vector optimization. Since z*(y*) minimizes max;{c;(g;(x) — y§)} on X for ¢ > 0,
there are no « € X such that g(z) < g(z*(y*)). This implies that @*(y*) is a weakly
efficient solution of a vector minimization problem (see e.g. [15]):

minimize g(x)
subject to x € X.

Theorem 3.3. Algorithm 1 terminates after finstely many iterations ife > 0. Ife =0,
Algorithm 1 generates a sequence of points y*’s, every accumulation point of which is a
globally optimal solution of (MP).

~Proof: Suppose the algorithm does not terminate. Then an infinite sequence {y*} is
generated in the compact set ¥;. We can take a subsequence {y* | ¢ =0, 1, ...} which
converges to some point ¥ € ¥p. Let us assume the contrary to the assertion, i.e., there
exists some constant o > ¢ such that

Fy*(¥*) - f(y*) > 0, Vq. (3.17)
Let h(y; y*) = max;{c;(y; — yF) — z(y*)}. We see from (3.5) that y € ¥, if and only if
h(y; y*) < 0. Then by Lemma 3.2 we have h(y*s+1; y*) > 0 for every ¢ and hence
lim h(y"r; y') = lim h(y*; y*) = —2(g) > 0

g—00
by continuity of z (Lemma 3.1). On the other hand, it follows from (3.6) that z(y*) > 0
for every ¢, which also implies z(g) > 0. Consequently, we have

2(5) = max{y;(3) - g;} =0, (3.18)

which contradicts assumption (3.17) under condition (2.1). If ¢ > 0, then (3.16) holds
after finitely many iterations and Algorithm 1 terminates. If ¢ = 0, by continuity of f
we have

f(8)= lim f(y*) < f(y), VyeY.

It follows from (3.6) and (3.18) that § € ¥, and hence ¥ is a globally optimal solution
of the master problem (MP). O

4. Some Improvements on the Algorithm

In this section we will develop two procedures for i improving the efficiency of the algo-
rithm presented in Section 3.

4.1. DETERMINATION OF THE WEIGHTING VECTOR

We have not yet discussed how to determine the weighting vector ¢ of the objective
function of (Q(y*)). As shown in Theorem 3. 3, Algorithm 1 converges with any fixed
¢ > 0 and yields an e-optimal solution of (MP) when ¢ > 0. However, the choice of ¢
will affect the speed of convergence considerably.

Our purpose in solving the minimax problem (Q(y*)) is essentially to find a feasi-
ble solution y of (MP) such that f(y) is the closest to an ideal value fy"). If fis
differentiable at y*, we have a first-order approximation of f around y*:

F(y) = F(¥") + VI (y - v*). - (4.19)

Also we have
k f(y Ry s 49
Vi) (y - y*) < pmax{-2 (yJ yi)li=1,...,p} (4.20)

Hence, to find a closest point y € ¥ to y*, we may minimize the right-hand-side of
(4.20), i.e.,

k
{ f(y)(gg(w) W li=1,...,p}

subject to z € X, g(m < u.

minimize max (4.21)

If f is continuously differentiable on S and V f(y) > 0 for all y € S, we can exploit
V f(y*) as the weighting vector ¢ of (Q(y*)) in every iteration of the algorithm. Both ¢
and z are continuous functions on S if we let ¢(y) = ¥ f(y). We can therefore prove in
just the same way as in the proof of Theorem 3.3 that a subsequence of y*’s generated
by the algorithm converges to a globally optimal solution of (MP).

If f has no positive gradients at some points of S , we may instead employ

sed) — f(y _
Cj(y)=f(er 66) f(y), i=1,...,p, (4.22)

where § is a sufficiently small positive constant and e/ € RP is the Jth unit vector. Note
that c defined by (4.22) is also continuous and positive valued at any y*, since f is a
continuous function satisfying (2.1).

4.2. MODIFIED ALGORITHM USING BRANCH-AND-BOUND PROCEDURE

The efficiency of the algorithm will also depend on the number || of vertices £’s of
Y}, but in particular on the number |I;| of those contained in Y. If ¥ contains only
one vertex, say £, at most p vertices £%’s of Y41 are newly generated. Then we can
obtain an optimal solution y*+! of (Pi+1) only by performing at most P comparisons if

f(£)’s are sorted beforehand. However, such a favorable situation will not be expected
in general so long as we discard ¥, from the whole of Y;.

Let Y} = User Ri and suppose a vertex £* of R, = {y e R? | £ < y < u} (i, € I)

provides an optimal solution of (P;). We define the following set:

Yo =R, N 7. (4.23)
Lemma 4.4. Ify* ¢V, then
v e, Y =0. . (4.24)

Proof: Since we are assuming that y* = £*, the first relation of (4.24) is obvious. The
second follows from Lemma 3.2 and the relation f’k cY,.]

If we discard the portion of ¥} only included in f”k, then we have an alternative & + 1st
relaxation of ¥':

Yier =Y \ Y= (¥ \ R,) U(Ri, \ T), (4.25)

or an equivalent expression:
e =(U R) U Ru),
i JE€Jk

where Ji and R;, ;'s are defined by (3.12) — (3.14). This relaxation of ¥ is not so tight
as the one based on (3.8). However, there is still a merit in using it. If we update the
relaxation of ¥ according to (4.25), then only one of the vertices is removed and at most
p vertices are newly generated. This leads us to a p-tree underlying a branch-and-bound
method. ,

We incorporate the above two procedures into the algorithm. Here € > 0 is a given
tolerance, y° and v° are the incumbent and its ob jective function value of (MP) respec-
tively.

Algorithm 2.

Step 0. Compute the bounds £ and u of g according to (2.3), (2.4) and (2.7), and define
the feasible region ¥; = {y € R” | £ < y < u} of the initial relaxed problem (Py).
Let Y = {£} and initialize the incumbent: y° = u, v° = f(y°). Let k =0 and go
to Step 1.

10

Step 1. Select y* € Y with the least f(y*).and let Y = Y\ {¥*}. I fis continuously
differentiable on S and Vf(y) > 0 for all y € S, let c(y*) = VF(y*). Otherwise,
define ¢(y*) according to (4.22). Solve (Q(y*¥)) with the weighting vector c(y*)
and let £*(y*) and z(y*) be an optimal solution and the optimal value respectively.

Step 2. Let y*(y*) = g(x*(y*)). If f(y*(y*)) < v°, then update the incumbent: Y° =
y*(y*), v = Fly*(y*). If vo ~ f(y*) < e, then stop.

Step 3. For each j =1, ..., p, do the following: If ¢;(u; — y¥) > z(y*), then let
¥ = g o 2@ e b, - T, (4.26)
andlet Y=Y | {ykj}. Return to Step 1 with k = k + 1.]

The following is analogous to Theorem 3.3:

Theorem 4.5. Algorithm 2 terminates after ﬁﬁitély many sterations ife > 0. Ife =0,
Algorithm 2 generates a sequence {y*}, every accumulation pownt of which is a globally
optimal solution of (MP). O

To save the memory required by Algorithm 2, we can employ the depth first rule in
selecting * from) instead of the best bound rule. Since f(y") gives a lower hound of
f on the rectangle R;, = {y € R” | y* < y < u}, the sign of v° — f(y*) indicates if
the subproblem with R;, is fathomed or should be branched. Although the convergence
is somewhat slower, this alteration causes no trouble if € > 0. However, if € = 0, the
sequence {y*} might converge to some locally but not globally optimal solution of (MP).

4.3. NUMERICAL EXAMPLE

Before concluding this section, let us illustrate Algorithm 2 using a three-dimensional
problem (see also Figure 4.1):

minimize (5 — 1.25z;) - (5 — 0.75z,)

subject to —3z; + 3z, + 6z; < 8,
172, — 322 + 1425 < 48, (4.1)
27z + 1525 — 2423 < 96,
z2,20,2,20, z3 >0.

Let us define

f@) =11 g(x) = (g1(), g2(x)) = (5 — 1.252, 5 — 0.752,).

If welet S = {y € R* | y > 0}, then f satisfies condition (2.1) on S. Moreover,
assumption (2.2) is fulfilled, since '

11

)

5—0.75z, =0

~

5—1.252;, =0

(1.33, 4.00, 0.00)

(2.60, 3.29, 0.98)

(0.00, 2.67, 0.00)

(.00, 1.00, 0.00)

Vo,

(0.00, 0.00, 0.00) | (1.22, 0.00, 1.94) (2.82, 0.00, 0.00)

(0.00, 0.00, 1.33)

Figure 4.1. Three-dimensional example (4.1) of (P).

6 =gi(&') =1.250 > 0, £ = go(%?) = 2.000 > 0,

where &' = (3.000, 1.000, 0.000) and &2 = (1.333, 4.000, 0.000) are minimizers of g,
and g, respectively. Upper bounds of g; and g2 are given as follows:

u; = max{y | 2y < v} = 2.656, u, = max{y | 1.25y < v} = 4.250,
where v = min{f o g(z) | ¢ = &', %} = f 0 g(&") = 5.313. Thus we have

z € X,
Z=q(z,y) e R*x R?| 5.000 — z; — y; <0, 5.000 -z, —y, <0, §,
1.250 < y; < 2.656, 2.000 < y, < 4.250

where X is the feasible region of (4.1). Figure 4.2 depicts the feasible region ¥ = {y €
R’ |3z € R?, (z, y) € Z} of the master problem (MP).
To solve the master problem, we generate a sequence of its relaxed problems. The

feasible region of the initial relaxed problem (Py) is ¥, = {y € R? | 1.250 < y <
2.656, 2.000 < y, < 4.250}, and hence

y® = (1.250, 2.000)
is optimal to (Py). Regarding y° as an ideal value of g, we solve a minimax problem:
minimize z = max{c;(3.750 — 1.250z;), c2(3.000 — 0.750z,
@) ta V), el)

subject to = € X, =z; > 1.875, z, > 1.000.

12

Y2
[T T T T s e e ———— e |
1 1
/I !
/ :
4.25 foeeoreneeeee- ¢ !
1
v !
v'(y') {
I
J
v'(¥°) .
2.72 foo-meeenns ! » o
- 2
¥’ (¥°) e
,/
T~ ’//
______________ R ~
2.00 o P \
v y
(] i H
i ; {
| : !
i
Lo
t ’ 1
¥ +]
0 1.25 1.70 2.65 n

Figure 4.2. The master problem of (4.1).

If we choose ¢; = §f(y°) / Qy; = 2.000 and ¢, = f(y®) / Bya = 1.250, then
z*(y’) = (2.641, 3.043, 0.874), z(y°) = 0.898

is optimal to (Q(y®)). We also obtain a feasible solution of (MP):
¥"(¥°) = g(z*(3")) = (1.698, 2.718),

which gives an incumbent value:
v* = f(y"(y")) = 4.616.

According t;) (4.26) we generate

¥ = (4] + 2(y°) / 1, ¥2) = (1.698, 2.000),
¥ = (30, 98 + 2(¥°) / c2) = (1.250, 2.718),

and let Y = {y*!, y*?} (see Figure 4.2).
Since f(y™) = f(y") = 3.397, both y°! and y*2 are optimal to the second relaxed
problem (P;). We select an arbitrary y' from Y, say y! = 4°2, and solve

Q")) minimize z = max{c;(3.750 — 1.250z,), c,(2.282 — 0.750z5) }
Y subject to x € X, z; > 1.875, 2 2> 1.000,

where ¢; = 8f(y') / 9y = 2.718 and ¢; = Of(y") / Ay, = 1.250. Then we have

13

x*(y') = (2.781, 2.249, 0.534), z(y') = 0.745,
y*(y') = (1.524, 3.313), f(y*(y")) = 5.050,
y' = (1.524, 2.718), y'? = (1.250, 3.313),

and let ¥ = {y%, y'!, y'?}.

Since f(y°!) = 3.397 is smaller than f(y') = F(y') = 4.142, we select y°! as y?
and solve

Qw?) minimize z = max{c;(3.302 — 1.250z;), ¢,(3.000 ~ 0.75z,)}
subject to x € X, 2z, > 1.875, zz 2> 1.000,
where ¢; = 9f(y?) / Oy, = 2.000 and ¢, = 0f(y?) / Oy, = 1.698. Then we have

x*(y?) = (2.353, 3.434, 0.793), z(y?) = 0.722,
¥*(y?) = (2.059, 2.425), f(y*(y?)) = 4.993,
y* = (2.059, 2.000), y? = (1.698, 2.425),

and let Y= {yll’ y12, yZI, y22}.
In the next iteration, we select either y?! or y*? as y3, say y® = y?2, since f(y?) =
f(y™) = 4118 < f(y™) = f(y?) = 4.142. Solving (Q(y*)), we have

x*(y?) = (2.587, 3.304, 0.975), z(y®) = 0.165,
y*(y®) = (1.767, 2.522), f(y*(y?)) = 4.456,
y* = (1.767, 2.425), y? = (1.698, 2.522).

and let Y = {y!!, y'2, ¥, y3 432} Since f(y*(3?)) < o = 4.616, we have to revise
the incumbent:

v’ = f(y*(y°)) = 4.456.

In the same way, we can generate a sequence of y*, k = 4, 5, ..., which converges
to a point y* = (1.750, 2.530). Hence a globally optimal solution of (4.1) is given by
x*(y*) = (2.600, 3.293, 0.983), where the objective function value is f(y*) = 4.428.

5. Computational Experiments

We will report the results of computational experiments on Algorithm 2 presented in
the previous section. We solved two simple subclasses of (P):

P

minimize M- dfz
(TP1) J.I:_Il(%)

subject to Az <b, x>0,

P

minimize (M — df@)(M; — dl2) + 3 (M; - d;_,z)(M; - dT)
(TP2) —d :

subject to Az <b, x>0,

14

Table 5.1. Comparison between Programs A and B for (TP1) when € = 10~

m 10 30 30 70 70 150 150
n 20 20 50 50 100 100 200
p 2 2 2 2 2 2 2

of branching operations (standard deviation)

Program A: 244 225 349 254 437 369 56.3
(15.8) (12.9) (235) (19.1) (174) (334) (29.3)

Program B: 16.6 14.4 22.6 16.6 31.4 26.0 38.2
(11.0) (7.1) (16.0) (10.5) (15.0) (19.4) (19.0)

CPU time in seconds (standard deviation)

Program A: 0.05 020 0.66 168 554 1497 3848
(0.02) (0.11) (0.62) (0.82) (477) (16.13) (30.16)

Program B: 005 022 058 168 504 1156 29.76
(0.02) (0.10) (0.42) (0.86) (3.94) (7.38) (14.81)

where 4 € R™™ beR", d;eR", j=1,..., p- We drew every component of A
and d;’s randomly from the uniform distribution over [—1.000. 1.000] and that of b from
[0.000, 1.000], and let

M =11 max{dj&’ |j=1,...,p}, M; =11 max{d !, d; &%},
M; = 1.1 max{d]_,3'™", dj&’}, j=2,...,p,

where &7/ = argmax{dfm | Az < b, > 0}. While the objective function of (TP1) is
quasiconcave, that of (TP2) is in general neither quasiconcave nor quasiconvex [6, 7].

The branching rule we employed was a compromise between the best bound and
depth first rules, i.e., among the last twenty y*’s of Y we selected one with the least
f(y*) when |¥] > 20, where f(y*) = 173} for (TP1) and f(y*) = gy + S0, gt 4t
for (TP2). Then we tried different weighting vectors for (Q(y*)), i.e., e = (1,...,1)T
in Program A and ¢ = (1 yj‘ R y}’)T in Program B. The minimax problem
(Q(y")) of both (TP1) and (TP2) can be reduced to a linear programming problem. We
solved it by using a dual simplex algorithm, where we took the solution of (Q(y*1))
as an initial dual feasible point. We coded both Programs A and B in C language and
tested them on a microSPARC II computer (70 MHz).

Table 5.1 shows the comparison between Programs A and B for (TP1) when ¢ = 10~*
and p = 2. (Note that (TP1) is equivalent to (TP2) in this case.) The size of (m, n)
ranges from (10, 20) to (150, 200). Tables 5.2 and 5.3 show the results on Program B
for (TP1) and (TP2) respectively, when ¢ = 107%, p = 3, 4 and (m, n) is between
(10, 20) and (70, 100). Each column of the tables gives the average number of branching
operations and CPU time in seconds (and their standard deviations in the brackets)

15

Table 5.2. Computational results on Program B for (TP1) when e = 10™*

|

m 10 30 30 70 7 10 30
n 20 20 50 50 100 20 20
p 3 3 3 3 3 4 4

of branching operations (standard deviation)

0259.8 163.6 491.5 657.9 1293.1 1079.7 2107.2
(457.5) (107.8) (480.6) (1399.3) (1245.1) (1593.4) (2609.0)

CPU time in seconds (standard deviation)

095 213 7.88 3244 73.18 532 2559
(158) (144) (6.13) (54.34) (52.48) (7.27) (30.81)

Table 5.3. Computational results on Program B for (TP2) when € = 104

m 10 30 30. 70 70 10 30
n 20 20 50 50 100 20 20
P 3 3 3 3 3 4 4

of branching operations (standard deviation)

577.5 6982 981.0 13755 2506.6 2498.6 3195.8
(887.9) (1282.0) (1597.3) (1480.3) (2636.1) (2775.8) (3093.8)

CPU time in seconds (standard deviation)

$2.22 741 1475 7193 155.50 1375 47.70
(3.82) (12.74) (19.61) (72.25) (140.41) (17.33) (47.67)

needed for solving ten examples. The number of br anching operations corresponds to
that of (Q(y*))’s solved in the course of computation. _

We see from Table 5.1 that the performance of the algorithm considerably depends
on the choice of the weighting vector. Program A requires more branching operations
than Program B. This would affect the total computational time seriously when p > 2.
We also see from Tables 5.1, 5.2 and 5.3 that Algorithm 2 is very sensitive to the size of
p. The number of branching operatioﬁs sharply increases as a function of p. However,
we should emphasize that the number is rather insensitive to the size of (m, n) for each
p- This implies that the total computational time is dominated by that for solving a
linear programming problem, i.e., (Q(y*)), if p is a fixed number.

We conclude from these results that our algorithm is reasonably practical for the
1a.ndomly generated classes (TP1) and (TP2) when p is less than 4. In this case, Al-
gorithm 2 can generate globally 10~*-optimal solutions of fairly large scale problems.
We can expect the algorithm to solve more general classes if pis fixed at 2 or 3 and a
practically efficient algorithm for (Q(y*)) is available.

16

References

[1] Benders, J.F., “Partitioning procedures for solvi ing mixed variables programming
problems,” Numemshe Mathematik 4 (1962), 238 - 252.

[2] Horst, R. and H.Tuy, Global Optimization: Deterministic Approaches, Springer-
Verlag (Berlin, 1990).

[3] Keeney, R.L. and H.Raiffa, Decisions with Multiple Objectives: Preferences and
Value Tradeoffs, John Wiley and Sons (New York, 1976).

(4] Konno, H. and M.Inori, “Bond portfolio optimization by bilinear fractional pro-
gramming,” Journal of the Operations Research Society of Japan 32 (1988), 143 -
158.

(5] Konno, H. and T. Kuno, “Generalized linear multiplicative and fractional program-
ming,” Annals of the Operations Research 25 (1990), 147 — 162.

[6] Konno, H. and T. Kuno, “Linear multlphcatxve programming,” Mathematical Pro-
gramming 56 (1992), 51 - 64.

[7] Konno, H. and T. Kuno, “Multiplicative programming problems,” in R. Horst and
P.M. Pardalos (eds.), Handbook of Global Optimization, Kluwer Academic Publish-
ers (Dortrecht, 1995).

(8] Konno, H., T. Kuno and Y. Yajima, “Global minimization of a generalized convex
multiplicative function,” Journal of Globai Optimization 4 (1994), 47 - 62.

[9] Konno, H., Y. Yajima and T. Matsui, “Parametric simplex algorithms for solving a
special class of nonconvex minimization problems,” Journal of Global Optimization
1 (1991), 65 - 82.

[10] Kuno, T. and H. Konno, “A parametrié successive underestimation method for
convex multiplicative programming problems,” Journal of Global Optimization 1
(1991), 267 — 285.

[11] Kuno, T., Y. Yajima and H. Konno, “An outer approximation method for mini-
mizing the product of several convex functions on a convex set,” Journal of Global
Optimization 3 (1993), 325 — 335.

[12] Lasdon, L.S., Optimization Theory for Large Systems, Macmillan Company (Lon-
don, 1970).

[13] Rockafellar, R.T., Convez Analysis, Princeton University Press (Princeton, NJ,
1970).

[14] Sniedovich, M., Macalalag, E. and S. Findlay, “The simplex method as a global
optimizer: a c-programming perspective,” Journal of Global Optimization 4 (1994),
89 - 109.

[15] Steuer, R.E., Multiple Criteria Optimization: Theory, Computation, and Applica-
tion, John Wiley & Sons (NY, 1986).

[16] Thoai, N.V., “A global optimization approach for solving the convex multiplicative
programming problem,” Journal of Global Optimization 1 (1991), 145 - 154.

[17] Tuy, H., “Concave minimization under linear constraints with special structure,”
Optimization 16 (1985), 335 — 352.

[18] Tuy, H., “The complementary convex structure in global optimization,” Journal of
Global Optimization 2 (1992), 21 - 40.

18

