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ABSTRACT

Narrowing is an important method for solving unification problems in equational theories
that are presented by confluent term rewriting systems. Because narrowing is a rather
complicated operation, several authors studied calculi in which narrowing is replaced by
more simple inference rules. This paper is concerned with one such calculus. Contrary to
what has been stated in the literature, we show that the calculus lacks strong completeness, so
selection functions to cut down the search space are not applicable. We prove completeness of
the calculus and we establish an interesting connection between its strong completeness and
the completeness of basic narrowing. We also address the eager variable elimination problem.
It is known that many redundant derivations can be avoided if the variable elimination rule,
one of the inference rules of our calculus, is given precedence over the other inference rules.
We prove the completeness of a restricted variant of eager variable elimination in the case of
orthogonal term rewriting systems.

1. Introduction

E-unification—solving equations modulo some equational theory E—is a fundamenta] tech-
nique in automated reasoning. Narrowing ([20, 4, 11]) is a general E-unification procedure for
equational theories that are presented by confluent term rewriting systems (TRSs for short).
Narrowing is the computational mechanism of many functional-logic programming languages
(see Hanus [7] for a recent survey on the integration of functional and logic programming). It
is well-known that narrowing is complete with respect to normalizable solutions. Completeness
means that for every solution to a given equation, a more general solution can be found by
narrowing. If we extend narrowing to goals consisting of several equations, we obtain strong
completeness. This means that we don’t lose completeness when we restrict applications of the
narrowing rule to a single equation in each goal.

An extended abstract of this paper will appear in the Proceedings of the 20th Colloquium on Trees in Algebra
and Programming, Aarhus, Lecture Notes in Computer Science, 1995.



Since narrowing is not easily implemented, several authors studied calculi consisting of a small
number of more elementary inference rules that simulate narrowing (e.g. [16, 8, 9, 14, 21, 6]). In
this paper we are concerned with a subset (actually the specialization to confluent TRSs) of the
calculus TRANS proposed by Holldobler [9). We call this calculus lazy narrowing calculus (LNc
for short). Because the purpose of LNC is to simulate narrowing by more elementary inference
rules, it is natural to expect that LNC inherits strong completeness from narrowing, and indeed
this is stated by Holldobler (Corollary 7.3.9 in [9]). We show however that LNC lacks strong
completeness.

An important improvement over narrowing is basic narrowing (Hullot [11]). In basic nar-
rowing narrowing steps are never applied to (sub)terms introduced by previous narrowing sub-
stitutions, resulting in a significant reduction of the search space. In this paper we establish a
surprising connection between LNC and basic narrowing: we show that LNC is strongly complete
whenever basic narrowing is complete. The latter is known for complete (i.e., confluent and ter-
minating) TRSs (Hullot [11]). Other sufficient conditions are right-linearity and orthogonality
(Middeldorp and Hamoen [17]). So LNC is strongly complete for these three classes of TRSs.
We prove completeness of LNC for the general case of confluent TRSs. In the literature com-
pleteness of LNc-like calculi is proved under the additional termination assumption. Without
this assumption the completeness proof is significantly more involved.

It is known that LNC-like calculi generate many derivations which produce the same solutions
(up to subsumption). Martelli et al. [16, 14] and Holldobler [9), among others, pointed out that
many of these redundant derivations can be avoided by giving the variable elimination rule, one
of the inference rules of LNC-like calculi, precedence over the other inference rules. The problem
whether this strategy is complete or not is called the eager variable elimination problem in
[9, 21]. Martelli et al. stated in [14] that this is easily shown in the case of terminating (and
confluent) TRSs, but Snyder questions the validity of this claim in his monograph [21] on E-
unification. We address the eager variable elimination problem for non-terminating TRSs. We
prove completeness of a slightly restricted version of eager variable elimination in the case of
orthogonal TRSs. To this end we simplify and extend the main result of You [23] concerning
the completeness of outer narrowing for orthogonal constructor-based TRSs.

The remainder of the paper is organized as follows. In a preliminary section we introduce
narrowing and basic narrowing, and we state the relevant completeness results. The narrowing
calculus that we are interested in—LNC—is defined in Section 3. In that section we also show
that LNC is not strongly complete. In Section 4 we establish the connection between the strong
completeness of LNC and the completeness of basic narrowing. We prove the completeness of
LNC for general confluent systems in Section 5. Section 6 is concerned with the eager variable
elimination problem. In the final section we give suggestions for further research. The appendix
contains proofs of a few technical results.

2. Preliminaries

In this preliminary section we review the basic notions of term rewriting and narrowing. We
refer to Dershowitz and Jouannaud [2] and Klop [12] for extensive surveys.

A signature is a set F of function symbols. Associated with every f € F is a natural number
denoting its arity. Function symbols of arity 0 are called constants. The set T(F,V) of terms
built from a signature F and a countably infinite set of variables V with F N V = @ is the
smallest set containing V such that f(t1,...,t,) € T(F,V) whenever f € F has arity # and

2



t1,-..5tn € T(F,V). We write ¢ instead of ¢() whenever c is a constant. The set of variables
occurring in a term ¢ is denoted by Var(t).

A position is a sequence of natural numbers identifying a subterm in a term. The set Pos(t)
of positions in a term ¢ is inductively defined as follows: Pos(t) = {e} if ¢ is a variable and
Pos(t) ={e}U{ip|lgig<nandpe Pos(t;)} if t = f(t1,...,t,). Here €, the root position,
denotes the empty sequence. If p € Pos(t) then t|p denotes the subterm of ¢ at position ¢ and
t[s], denotes the term that is obtained from ¢ by replacing the subterm at position p by the term
s. Formally, t|, =t and t[s], = s if p = ¢ and Uy = (ti))g and t[s]p, = f(t1,...,t[s]g,. .., 1) if
p=1tqandt= f(t1,...,1,). The set Pos(t) is partitioned into Posy(t) and Posx(t) as follows:
Posy(t) = {p € Pos(t) | t}, € V} and Posz(t) = Pos(t) — Posy(t). Elements of Posy(t) are
called variable positions. Positions are partially ordered by the prefiz order <, i.e., p < ¢ if there
exists a (necessarily unique) 7 such that p-r = ¢. In that case we define g\p as the position 7.
We write p < ¢if p < ¢ and p # g. If neither p g nor ¢ < p, we write p L g. The size [t| of a
term ¢ is the cardinality of the set Pos(t).

A substitution is a map ¢ from V to T (F, V) with the property that the set {zeV|b(z)# 2}
is finite. This set is called the domain of 8 and denoted by D(8). We frequently identify a
substitution § with the set {z — 6z | z € D(6)} of variable bindings. The empty substitution will
be denoted by €. So € = @ by abuse of notation. Substitutions are extended to homomorphisms

Afrom 7(F,V) to T(F,V), ie., 0(f(t1,---5ta)) = F(0(t1),...,0(t,)) for every n-ary function
symbol f € F and terms ty,...,t, € T(F,V). In the following we write 6 instead of 6(t). We
denote the set Usen(s) V(26) of variables introduced by 6 by T (6). The composition 6105 of two
substitutions 6; and 6, is defined by z(016;) = (26,)6, for all z € V. A substitution 01 is at
least as general as a substitution 6y, denoted by 6; < 0, if there exists a substitution 8 such
that 6,0 = 6,. The restriction @y of a substitution 6 to a set V(C V) of variables is defined
as follows: Oly(z) = 8(z)if 2 € V and |y (z) =z if = ¢ V. A variable renaming is a bijective
substitution from V to V. We write 6; = 6, [VIif 611y = b21y. We write 6; < 6, [V] if there
exists a substitution 6 such that 6,6 = 8, [V]. A substitution 8 is called idempotent if 60 = 6. A
substitution 6 is idempotent if and only if D(6) N Z(¢) = @. Terms s and ¢ are unifiable if there
exists a substitution 6, a so-called unifier of s and t, such that s6 = tf. A most general unifier
¢ has the property that § < ¢’ for every other unifier # of s and ¢. Most general unifiers are
unique up to variable renaming. Given two unifiable terms s and t, the unification algorithms
of Robinson [19] and Martelli and Montanari [15] produce an idempotent most general unifier 4
that satisfies D(8) UZ(8) C V(s) U V(¢).

A rewrite rule is a directed equation ! — 7 that satisfies / ¢ V and Var(r) C Var(l). A term
rewriting system (TRS for short) is a set of rewrite rules. The rewrite relation —p associated
with a TRS R is defined as follows: s — 5 t if there exists a rewrite rule! — r € R, a substitution
¢, and a position p € Pos(s) such that S|p = 10 and ¢ = s[rf],. The subterm 16 of s is called a
redez and we say that s rewrites to ¢ by contracting redex lo. Occasionally we write s —p,lor,0 T
or 8 —, 1, t. The transitive-reflexive closure of — is denoted by —x- If s =% t we say that
s rewrites to t. The transitive closure of —% is denoted by —>7"i. We usually omit the subscript
R. A term without redexes is called a normal form. We say that a term ¢ has a normal form if
there exists a rewrite sequence starting from t that ends in a normal form. A substitution 6 is
called normalized (normalizable) if 26 is (has) a normal form for every z € D(6). The routine
proofs of the following lemmata are omitted.



LEMMA 2.1. Let 0, 61, 6, be substitutions and V a set of variables.

(1) If68, = 66, [V] then 61 = 8, [(V — D(8)) UZ(O1y))-

(2) If6;y =6, [V] then 061 = 66, [V} for any V' such that (V' — D(8)) UZ(8]y:) = V.
D »

LeMMA 2.2. Let 8, ¢/, 61, 6, be substitutions and V, V' sets of variables.

(1) If6, < 02 [V] and (V' — D(8)) U Z(8fy:) = V then 66, < 66, V.

(2) IfO <O [V], 6,6 <6, [V'], and (V' - D(6,)) UZ(61ly/) CV then 610 < 6, [V'].
O

LEMMA 2.3. Let 61, 0, be substitutions and V a set of variables. If 6, @2y is normalized then
Oaly: is normalized for any V' such that V' C (V -~ D(8)) UZ(61y). O

A TRS is terminating if it doesn‘t admit infinite rewrite sequences. A TRS is confluent if
for all terms 13, tg, t3 with ¢; —* ¢, and t; —* t5 there exists a term t4 such that t; —* ¢4 and
t3 —=* t4. If | — r is a rewrite rule and 4 a variable renaming then the rewrite rule 1§ — 8
is called a variant of | — r. A rewrite rule | — r is lefi-linear (right-linear) if I (r) does not
contain multiple occurrences of the same variable. A left-linear (right-linear) TRS only contains
left-linear (right-linear) rewrite rules. Let I — r; and I, — 7, be variants of rewrite rules of
a TRS R such that they have no variables in common. Suppose /3 |p> for some p € Posr(ly),
and [l are unifiable with most general unifier §. The pair of terms (I1[rg)y8,716) is called a
critical pair of R, except in the case that l; — ry and I3 — 75 are renamed versions of the same
rewrite rule and p = . A TRS without critical pairs is called non-ambiguous. An orthogonal
TRS is left-linear and non-ambiguous. For orthogonal TRSs a considerable amount of theory
has been developed, see Klop [12] for a comprehensive survey. The most prominent fact is that
orthogonal TRSs are confluent. In Section 6 we make use of the work of Huet and Lévy [10] on
standardization.

We distinguish a nullary function symbol true and a binary function symbol =, written in
infix notation. A term of the form s ~ t, where neither s nor ¢ contains any occurrences of ~
and true, is called an eguation. The term true is also considered as an equation. The extension
of a TRS R with the rewrite rule # ~ z — true is denoted by R4. Let e be an equation and
6 a substitution. If there exists a rewrite sequence e —x, true, we write R I ef and we say
that 6 is an (R-)solution of e. Narrowing is formulated as the following inference rule:

e if there exist a fresh variant | — r of a rewrite rule in R+, a position
(e[r],)6 p € Posx(e), and a most general unifier § of ep and /.

In the above situation we write e ~+9,p,1-r €. This is called an Nc-step (Nc stands for narrowing
calculus). Subscripts will be omitted when they are clear from the context or irrelevant. A
(finite) Nc-derivation is a sequence

€1 “81,p1,h=r1 T a1, Ppet1slno1—7n_1  €n

of NC-steps and abbreviated to e; ~+p €y, Where § = 6y ---6,_;. An Nc-derivation which ends in
true is called an NC-refutation. The following completeness result is due to Hullot [11].



THEOREM 2.4. Let R be a confluent TRS. If R + e and O1Var(e) is normalized then there
exists an NC-refutation e ~j, true such that ¢’ < 6 [Var(e)]. O

The narrowing calculus that we are interested in (LNC—to be defined in the next section)
operates on sequences of equations, the so-called goals. A substitution @ is a solution of a goal
G = e1,...,€n, denoted by R - GO, if R I ¢;0 for all 5 ¢ {1,...,n}. We use T as a generic
notation for goals containing only equations true. So R F G if and only if G6 —%, 1. The
calculus NC is extended to goals as follows:

G1,e,Ga if there exist a fresh variant | — r of a rewrite rule in Ry, a
(G1,e[r]p, G2)8 position p € Posr(e), and a most general unifier 8 of e|p and [

Notions like NC-step, Nc-derivation, and Nc-refutation are defined as in the single equation
case. We use the symbol II (and its derivatives) to denote Nc-derivations over goals. There
are three sources of non-determinism in Nc: the choice of the equation e, the choice of the
subterm e),, and the choice of the rewrite rule I — ». The last two choices are don’t know
non-deterministic, meaning that in general all possible choices have to be considered in order to
guarantee completeness. The choice of the equations e is don’t care non-deterministic, because
of the strong completeness of Nc. Strong completeness means completeness independent of
selection functions. A selection function is mapping that assigns to every goal G different from
T an equation e € G different from true. An example of a selection function is S 1ept Which always
returns the leftmost equation different from true. We say that an Nc-derivation 1T respects a
selection function § if the selected equation in every step Gy ~ G5 of II coincides with S (Gh).
Now strong completeness of NC is formulated as follows.

THEOREM 2.5. Let R be a confluent TRS and S a selection function. If R - G and Ovar(c) is
normalized then there exists an NC-refutation G 3, T respecting S such that 8 < 6 Var(@)]. O

In the last part of this preliminary section we introduce basic narrowing. Hullot [11] defined
basic narrowing for the single equation case. The extension to goals presented below follows
Middeldorp and Hamoen [17].

DEFINITION 2.6. A position constraint for a goal G is a mapping that assigns to every equation
e € G a subset of Posr(e). The position constraint that assigns to every e € G the set Posx(e)
is denoted by G.

DEFINITION 2.7. An Nc-derivation

G1 p1 b1t T Mg 0n 1, i 1=, enct Gy

is based on a position constraint By for G if Pi € Bi(e;) for 1 < ¢ < n— 1. Here the position
constraints Bo, ..., By for the goals Gy,...,G,—1 are inductively defined by

Bi(e) if ¢ € G; — {ei}

Biyi(e) = { B(Bi(e;),pi,r5) if e = eifri]y;

! Often completeness is stated with respect to normalizable solutions: if R F ef and G[VM(e) is normalizable
then there exists an nc-refutation e ~+3, true such that 6’ <R 0 [Var(e)]. Notwithstanding the fact that
completeness with respect to normalized solutions implies completeness with respect to normalizable solutions
but not vice-versa, to all intents and purposes normalization and normalizability are interchangeable.

)



forall 1 i< n—1ande=¢€6; € Gy, with B(Bi(e;), pi, i) abbreviating the set of positions
Bi(ei) — {g € Bi(e:) | ¢ > pi} U {pi-q € Posz(e) | q € Posz(r;)}.

An Nc-derivation issued from a goal G is called basic if it is based on G.

The following statement summarizes the known completeness results for basic narrowing.
Part (1) is due to Hullot [11]. Parts (2) and (3) are due to Middeldorp and Hamoen [17].

THEOREM 2.8. Let R be a confluent TRS. If R G and Olyar(q) is normalized then there
exists a basic NC-refutation G ~»j, T such that ¢’ < 6 [Var(G)], provided one of the following
conditions is satisfied:

(1) R is terminating,

(2) R is orthogonal and G has an R-normal form, or

(3) R is right-linear.

a

3. Lazy Narrowing Calculus

Calculi in which the narrowing inference rule is replaced by a small number of more primitive
operations are comprehensively examined by Holldobler in his thesis [9] and Snyder in his mono-
graph [21]). The calculus that we investigate in this paper is the specialization of Hélldobler’s
calculus TRANS, which is defined for general equational systems and based on paramodulation,
to (confluent) TRSs and narrowing.

DEFINITION 3.1. Let R be a TRS. The lazy narrowing calculus, LNC for short, consists of the
following five inference rules:

[on] outermost narrowing

G1, f(s15---,8n) 2 1,Gy if there exists a fresh variant f(iy,...,1,) —r
G121, .80 2y, T = t,Gy of a rewrite rule in R
[im] imitation
Gy, f(s15.-580) 2 2,Gy it = {2z — f(z1,...,2.)} with zq,...,2,
(G1,81 % T1,..., 8, X Ty, Go)8 fresh variables

[d] decomposition
G’l,f(sl, ceey Sn) =~ f(tl, - ,tn),Gz
G1,81 R t1,. .., 80 = 1y, Ga
[v] wariable elimination
Gi,2 ~t,Gy
(G1,G2)8
[t]  removal of trivial equations
G,z = 2,G,
G1,G2

Here s ~ t stands for s~ t or ¢t ~ s.

if ¢ Var(t) and 6 = {z ~ t}
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The variable elimination rule [v] is different from the one of Martelli et al. [16, 14] in that we
don’t keep the solved equation & =~ t around. The rules [v], [d], and [t] constitute the syntactic
unification algorithm of Martelli and Montanari [15]. We refer to these three rules as uc, which
stands for unification calculus. Because syntactic unification is performed by vc, the rewrite
rule z &~ 2 — true is no longer used in LNC. As a consequence, we may assume that the symbol
true doesn’t occur in LNC-goals.

Contrary to usual narrowing, the outermost narrowing rule {on] generates new parameter-
passing equations s; & Iy, ..., s, = l, besides the body equation r = t. These parameter-passing
equations must eventually be solved in order to obtain a refutation, but we don’t require that
they are solved right away. That is the reason why we call the calculus lazy. We introduce some
useful notations relating to the calculus LNc. If G and G’ are the upper and lower goal in the
inference rule [o] (o € {on,im,d,v,t}), we write G =[o) G'. This is called an LNC-step. The
applied rewrite rule or substitution may be supplied as subscript, that is, we will write things
like G =(on),1~r G’ and G =[im],0 G'. LNC-derivations are defined as in the case of NC. An
LNC-refutation is an LNC-derivation ending in the empty goal O.

Because the purpose of LNC is to simulate narrowing, it is natural to expect that LNC in-
herits strong completeness from Nc. Indeed, Holldobler [9, Corollary 7.3.9] states the strong
completeness of LNC for confluent TRSs with respect to normalizable solutions. However, this
does not hold.

COUNTEREXAMPLE 3.2. Consider the TRS

f(z) - g(h(z),2)
R=< g(z,2) - a
b — h(b)

and the goal G = f(b) ~ a. Confluence of R can be proved by a routine induction argument on
the structure of terms. The (normalized) empty substitution ¢ is a solution of G because

fO)~a —r gh(d),b)~a —z g(h(b),h(b))~a —p ama —R, true.

Consider the selection function Sright that selects the rightmost equation in every goal. There
is essentially only one LNC-derivation issued from G respecting Syighs:

FO) = a =), fa)mg(h(z)e) b~ 2,9(A(z),2) ~ a

:>[°n]:9(271,-1:1)—+a, b ~ x_, h(m) ~ a:l)x ~~ a:l’a, ~a
=1 bz, h(z) ~ 21,2 ~ o
=>[”]1{$1 —z} b~ m,h(a:) =~z

i[im],{xv—»h(xz)} b~ h($2), h(xg) ~ T
= [im], {z2—h(z3)}

This is clearly not a refutation. (The alternative binding {z — 21} in the =[v]-step results in a
variable renaming of the above LNC-derivations.) Hence LNC is not strongly complete.



This counterexample doesn’t refute the completeness of LNC. The goal f(b) = a can be
solved, for instance, by adopting the selection function Steps:

f(b) X a =>[on],f(a:)—->g(h(a:),a:) b~ x,g(h(m),x) ~ a

=[u], {z—b} g(h(b),b) =~ a

= [on], 9(z1,21)—a h(b) = z1,b~ z1,a~ a
=[], {z1—h(b)} bx h(b),a=a

= [on), b—h(b) h(b) = h(b),a =~ a

=] b=ba=a

=14 axa

=1d] a.

In Section 5 we show that LNC is complete in the general case of confluent TRSs and normalized
solutions. In the next section we present sufficient conditions for the strong completeness of
LNC, which turns out to be a simpler than proving completeness.

4. Restoring Strong Completeness

Observe that the TRS R of Counterexample 3.2 satisfies none of the sufficient conditions for the
completeness of basic narrowing stated in Theorem 2.8. As a matter of fact, basic narrowing is
not able to solve the goal f(b) ~ a, see Middeldorp and Hamoen [17]. This suggests a surprising
connection between strong completeness of LNC and completeness of basic NC. In this section
we prove that LNC is strongly complete whenever basic NG is complete.

The basis of our proof is the specialization of the transformation process used by Holldobler
in his proof of the (strong) completeness of TRANS. First we formalize the intuitively clear
propagation of equations along Nc-derivations.

DEFINITION 4.1. Let G ~g, , 1.r G’ be an NC-step and e an equation in G. If e is the selected
equation in this step, then e is narrowed into the equation.e[+],0 in G’. In this case we say that
e[r]pf is the descendant of e in G'. Otherwise, e is simply instantiated to the equation ef in G’
and we call ef the descendant of e. The notion of descendant extends to Nc-derivations in the
obvious way.

Observe that in an NC-refutation G ~* T every equation e € G has exactly one descendant
true in T. We now introduce five transformation steps on Nc-refutations. The first one states
that non-empty NC-refutations are closed under renaming.

LEMMA 4.2. Let § be a variable renaming. For every Nc-refutation
. G wg‘ T
there exists an NC-refutation
¢s(I): G& ~f,, T.
PrOOF. Let G ~; p i1y G be the first step of II and let I0;: ¢ ~+g, T be the remainder of II.

We have 06, = §. We show the existence of an NC-step G§6 W 5-1g,p 161,56 (O« First we show

8



that 70 is a most general unifier of (e6)}, and 5. We have (e8)pd~lo = epo = lo = (16)6~ 10,
so 610 is a unifier of (€6)), and 16. Let 6 be an arbitrary unifier of (€6)|, and 18. Because 86 is
a unifier of e, and /, and o is a most general unifier of these two terms, it follows that o < 66
and thus 6~'c < 6. We conclude that 6=1 is a most general unifier of (ed),, and 16. Write G
as Gy, e,Gy. We obtain

G8 s-10,p,15r5,05 (G16,(eO)[r8]y, GaB)5™20 = (Gu,elr]pyGa)f = .
Concatenating this Nc-step with the Nc-refutation IIy yields the desired Nc-refutation @s(I1):

Gé “;—19 T.

Observe that Lemma 4.2 doesn’t hold for the empty Nc-refutation II. The second transfor-
mation corresponds to Proposition 7.3.4 in Hélldobler [9].

LEMMA 4.3. Let
II: G],SZt,GQ WZ T

be an Nc-refutation with the property that narrowing is applied to a descendant of s ~ t at
position 1. Let V be a finite set of variables such that Var(Gi,s = t,G2) C V. Ifl — r is the
applied rewrite rule in the first such step then there exists an NC-refutation

¢[on](ﬂ): Gr,s=l,r~t,G, ~g T

such that ' = 6 [V].
Proor. Write [ = f(l4,...,1,). The given refutation II is of the form

Gl,Szt,Gg Wsl ’l,f(ul,...,un)zt’,G’g
02,1, 17 (Gllar ~ t/) ,2)02

x*
s R T

with 616265 = 6. Let 2 be a fresh variable (so z ¢ V) and define the substitution 6, as the
(disjoint) union of f; and {z ~ 16,}. Because 8, is a most general unifier of f(uy,...,u,) ~ [
and z ~ z, II can be transformed into the refutation ¢p,)(II):

~ ~ ! ~ ~
G],SNI,TNt,G2 ’V')Zl l,f('UJl,...,un)Nl,?‘Ntl,Gé
/ ~ 4 [AY: /. / ~ 4/ U
Wgéyxqutme (Gl,true,r ~t 5 2)02 = (Gl,true, ret ,G2)02

By T.
Since 610503 = 6 U {z — 10,03} and = ¢ V we obtain 6 = 616465 [V]. O
The third transformation step corresponds to Proposition 7.3.3 in Hélldobler [9].

LEMMA 4.4, Let

II: Gl,f(sl,...,sn)%f(tl,...,tn),Gg 'v-); T



be an Nc-refutation with the property that narrowing is never applied to a descendant of
f(s15--+,8,) = f(t1,...,tn) at position 1 or 2. Let V be a finite set of variables such that
Var(G1, f(s15++.,8n) = f(t1,...,tn),G2) C V. There exists an NC-refutation

(D) Gi 81 R t1,..., 8, R 1y, Go g T

such that 8’ < 0 [V].
ProoF. The given refutation II must be of the form

G1, f(s1,..580) ® f(t1,...,tn), G 5, LIS, 8 = f(, .., 1), GY
~0,.¢ (G true, Gy)0;

%
By T

with 610203 = 6. The first part of II can be transformed into

. ~ ~ * ! I~ 4 !~ 4 U
Hl‘ G1,31~t1,~--,3nNtn>G2 ng 1,81 ~t17"'?sn~tn7G2'

Consider the step from G, f(s},...,,) ~ f(t;,...,1.),G} to (G}, true,G5)0,. Let z ~ 2 —
true be the employed rewrite rule, so 6 is a most general unifier of  ~ z and f(sy, 0,80 =
f(#1,...,1). There clearly exists a rewrite sequence

(G8y Rty sy ™1, GY)0, —F (G, T,Gh)6,.

Lifting? results in an Nc-derivation

. ! !~y 4! !~ 4 U * ! ! /
Hz. 1,51 Ntl,..-,sn Ntn,Gz Weé,e (GI,T,G2)02

such that 65 < 6, [V UZ(6:)]. We distinguish two cases.

(1)
(2)

0

Suppose G7,G% = T. In this case 63 = . We simply define ¢ () = II3; 5. From
03 < 62 [V UZ(61)] we infer that 6 = 6,6} < 6,8, = 6 [V].
The case G, G% # T is more involved. First observe that 6 is a unifier of f(sh,...,8,) and
f(#1,--.,1,). Using the fact that 6; is a most general unifier of f(shseeensh) = f(#,...,t0)
and z % z, it is not difficult to show that 6, < 6 [V — {z}]. Since z ¢ V UZ(6,) we have in
particular 8, < 65 [V UZ(6;)]. It follows that there exists a variable renaming § such that
2 = 026 [V UZ(61)]. Clearly Var(G},G4) C V UZ(6;). The last part of Il can be trivially

transformed (by changing the number of occurrences of true in each goal) into

O5: (G}, T,G4)6, w;,*s T
An application of Lemma 4.2 results in the Nc-refutation

¢5(H3): (Gll, T,Gg)olz W:SI_"103 T.

Define ¢yg(II) = Thy; Ty; ¢5(1Ts). We have 8 = 6,056-165 = 8,0,0; = 6 [V'].

2 The lifting lemma for NC requires the normalization of the substitution 82, which is not necessarily the case
here. The reason for requiring normalization is to avoid rewrite sequences in which a term introduced by 8- is
rewritten, because such sequences cannot be lifted. In the present situation there is no problem since we know
that all steps in the rewrite sequence take place at root positions.
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It should be noted that in general we don’t have 8/ = ¢ [V] in Lemma 4.4. Consider for
example the Nc-refutation

II: axa ~grnz—true true

where we used the (non-idempotent) most general unifier § = {z = a,y — 2,2 — y}. Decom-
position results in the empty goal, so

¢[d](H): O

produces the empty substitution ¢ = ¢. Clearly ¢ # 6 [V]if V contains y or 2.

The fourth transformation step corresponds to Corollary 7.3.5 in Holldobler [9]. This corol-
lary is an immediate consequence of Halldobler’s lifting lemma for reflection, instantiation, and
paramodulation (Lemma 6.2.6 in [9]). This easy proof does not work in our case since narrowing,
unlike paramodulation, cannot be applied at variable positions. Nevertheless, we can adapt the
proof of the lifting lemma (for NC) to obtain the following result.

LEMMA 4.5. Let G ~} T be an Nc-refutation, V a finite set of variables, and v a substitution
such that Var(G) C V, v < 6 [V], and the variables in D(7)UZ(y) are different from the variables
in the employed rewrite rules. There exists an NC-refutation G7 ~p T which employs the same
rewrite rules at the same positions in the corresponding equations of the goals in G ~p T such
that v¢' =6 [V]. O

The proof can be found in Appendix. The validity of the fourth transformation step is an
easy consequence of this lemma.

LEMMA 4.6. Let
II. G w; T

be an Nc-refutation with the property that 26 = f(t1,...,ts) for some x € Var(G) and let V be
a finite set of variables such that Var(G) C V. Lety = {z = f(21,...,2,)} with21,...,2, ¢ V.
There exists an NC-refutation

(ﬁ[;m](ﬂ): Gy W;I T

which employs the same rewrite rules at the same positions in the corresponding equations of
the goals in II such that 6’ = 4 [V].

ProOOF. Define the substitution & as the (disjoint) union of Olv_{oy and {z; = #; | 1 < i < n}.
We clearly have v6 = 6 [V] and thus 7 < 8 [V]. An application of Lemma, 4.5 yields the desired
refutation ¢p;,j(I1). O

The fifth and final transformation step is presented in the following lemma.

LEMMA 4.7. For every Nc-refutation

II: Gi,s=1,Gy ~g,,c (G1,true,Gy)6; ~g, T
there exists an Nc-refutation

duc(): (Gi,Gr)6, ~g, T-

Proor. Consider the subderivation II: (G, true, G2)01 ~3, T of II. Simply dropping a single
occurrence of true in every goal of II’ yields the desired NC-refutation duc(ll). O

11



The idea now is to repeatedly apply the above transformation steps to a given Nc-refutation,
connecting the initial goals of (some of) the resulting Nc-refutations by LNGC-steps, until we
reach the empty goal. In order to guarantee termination of this process, we need a well-founded
order on NC-refutations that is compatible with the (last four) transformation steps. One of
the components of our well-founded order is a multiset order. A multiset over a set A is an
unordered collection of elements of A in which elements may have multiple occurrences. Every
(strict) partial order > on A can be extended to a partial order »,,, on the set of finite
multisets over A as follows: M >, N if there exist multisets X and Y such that @ # X C M,
N =(M-X)UY, and for every y € Y there exists an = € X such that z > y. Dershowitz and
Manna [3] showed that multiset extension preserves well-foundedness.

DEFINITION 4.8. The depth |t| of a term t is inductively defined as follows:

1] = { 1 if t is a variable,
1+ max{[t1],...,[tal | 1 S i< 0} ift = f(t1,...,ta).
The complezity |II| of an Nc-refutation II: G ~»} T is defined as the triple (n, M, s) where n is

the number of applications of narrowing in II at non-root positions (so the number of steps that
do not use the rewrite rule ¢ ~ 2 — true), M is the multiset

{lz16], ..., |2mb| | {z1,...,2m} is the multiset of variables occurring in G},

and s is the number of occurrences of symbols different from ~ and true in G. We define a
partial order 3> on Nc-refutations as follows: II; 3> II, if

'HII lea:(>, > mals >) |H2|

Here lex(>, > mai, >) denotes the lexicographic product of > (the standard order on N), > a1,
and >.

Let M be a multiset {t1,...,t,} of terms. We abbreviate the multiset {t10,...,t,0} to Mo
and {[t1],.. -, [tal} to |M].

LEMMA 4.9. The partial order >> is a well-founded order on Nc-refutations.
Proor. Both lexicographic product and multiset extension preserve well-foundedness. O

Our complexity measure on Nc-refutations is different from the one in Holldobler [9, p. 188].
Since we are concerned with one-directional term rewriting and narrowing (as opposed to bi-
directional equational reasoning and paramodulation in [9]), our simpler definition suffices. The
next lemma states that 3> is compatible with the transformation steps defined above.

LEMMA 4.10. Let I be an Nc-refutation.
(1) IfII is non-empty and 6 a variable renaming then |II| = [s(11)).
(2) Let a € {[on],[d], [im],uc}. If $o(II) is defined then II > éa(10).

Proor.
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(1) Consider the proof of Lemma 4.2. Clearly II and ¢5(II) have the same number of narrowing

(2)

steps at non-root positions. Let X and Y be the multiset of all variables occurring in G
and G§ respectively. Because § is a variable renaming we have Y = {zé |z € X}. Hence
Y610 = {lys~'6l |y e Y} '

{lv67%0] |y € {=8 | = € X}}
{|z66716] | z € X}

= {lzf] |z € X}

= X 9]7
so also the second components of the triples |II| and |¢s(IT)| are the same. Clearly G
and G§ have the same number of symbols different from = and true. We conclude that
T = |s(IT)]-
According to the proof of Lemma 4.3 the Nc-refutation Pon)(I1) has one less narrowing
step at non-root positions than II. According to the proof of Lemma 4.4 the number of
narrowing steps at non-root positions in Pray(IT) is the same in II. Because the substitution
produced in ¢p4(II) subsumes the substitution produced in II for the initial variables, the

. second component of [¢g(II)| doesn’t exceed the second component of III]. Finally, the

initial goal of ¢p4(II) has less symbols different from ~ and true than the initial goal of
II (viz. two occurrences of the function symbol f). Next we consider the case Plim)- Let
II be the NC-refutation G ~} T and Pim)(I) the Nc-refutation Gy ~+3 T. Since both
refutations have the same number of narrowing steps at non-root positions, it suffices to
show that Mg > nu M¢[im1 - Here Mp (Mé[;m](H)) denotes the second component of the
triple |II| (|@fim)(II)]). Let & be the disjoint union of OlVar(@)—{c) and {2~ t; | 1 i < n}.
From (the proof of) Lemma 4.6 we learn that v¢' = § = 4§ [Var(@)]. Let X be the multiset
of all occurrences of the variable z in G, Y the multiset of the all other variable occurrences
in G, and X; for 1 < 7 < m the multiset of all occurrences of the variable z; in G7y. We have

M = |X6| U |Y
and
My, .= 1X10|U. .. U|X,0|U|YE|

For all 2 € {1,...,m} we have z;6' = 2;v0' = 2;46 = 2;6 = t; and hence lz:0'| = ;] <
|f(t1,. . tm)| = |28|. Therefore |X6] >y |X18'| U ... U |Xn6|. For any y € Y we have
y0' = yv8' = yyé = y6 and thus |y8'| = [yf]. Hence [Y8| = [Y6'|. We conclude that
M > pu M¢>[sm](n) and therefore II > Plim)(I1). The final case is dyc. Let I be the
NC-refutation

G1,e,Go ~ g, (Gl,true,G2)91 wsz T.

We partition the variable occurrences in the initial goal G1,e,Gy into the following three
multisets: X the multiset of all occurrences of variables in Var(G1,G2) that belong to
D(61), Y the multiset of all occurrences of variables in Var(G1,G3) that do not belong to
D(61), and Z the multiset of all variable occurrences in e. We have

M = |Xt9102| 6] |Y92| U |Z0192'

Let X' be the multiset of all variable occurrences in the initial goal (Gy1,G7)6; of duc(ID)
that are introduced by 6y, so X/ UY is the multiset of all variable occurrences in (G1,G5)6;.
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We have
Md’UC(n) = |X’02| U |Y6,|.

It is not difficult to see that [X616,| >3, |X'6s|. Hence My >=,, M4y Equality
is only possible if 01ly,.(,,q,) is @ variable substitution and Var(e) = @. (A variable
substitution maps variables to variables.) Hence the number of symbols different from =
and true is exactly the same in the goals (G1,G2)o and Gy, Gy, which is clearly less than
the number of such symbols in the goal G1,e, Ga. Hence we always have II 3> ¢yc(I).

The following example illustrates how the above results are used to transform Nc-refutations
into LNC-refutations.

EXAMPLE 4.11. Consider the TRS R = {f(¢(y)) — v} and the Nc-refutation

O g(f(2)) R T ~fag)y 9¥) = g(y) ~e true.

In II; the variable z is bound to g(y), so the complexity of II; is (1,{2,2},4). Transformation
steps @pon)s P, and duc are not applicable to II;. Hence we try @lim)- This yields the Nc-
refutation

Iy = ¢im) (1) 9(f(9(21))) = 9(21) ~fayyy 9(¥) = g(y) ~c true
which has complexity (1,{1,1},6). Next we apply $1q- This gives the Nc-refutation

Is = gg(a2): flg(z1)) % 21 gy} YRY ~e true

with complexity (1,{1,1},4). Observe that the initial goal of II; is transformed into the initial
goal of II3 by the single LNC-step g(f(z)) =~ = =[im), {zsg(z1)} F(9(21)) = z1. In I3 narrowing
is applied to the initial equation at position 1. This calls for the transformation step Plon):

s = don)(Ms): f(g(z1)) = f(9(4)), Y R 21 gy} tTUG YR Y ~ T.

NcC-refutation Iy has complexity (0,{1,1,1,1},8). If we apply #q to Il4, we obtain the Nc-
refutation

Is = dg(Is): g(z1) = 9(¥), ¥ R 21 gy} tTUGYRY e T

with complexity (0,{1,1,1,1},6). The initial goals of IT3 and II; are connected by an = [on]-Step:
f(g(z1)) = 21 =[n) 9(21) = 9(¥),y = z1. In the first step of IIs narrowing is applied at the
root position of the selected equation g(z1) ~ g(y), so the terms g(z1) and g(y) are unifiable.
A most general unifier is obtained by an application of =q) followed by an application of =[]
So first we use ®(q), yielding the NC-refutation

IIg = ¢[d](H5) 1R Y, YR 2y {1y} true,y Ry =~ T
with complexity (0,{1,1,1,1},4). Next we use ¢yc, yielding the Nc-refutation

7 = ¢uc(lls): y=y =~ true
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with complexity (0,{1,1},2). The initial goals of II5, Ilg, and II; are connected by the vc-
derivation g(21) = ¢(y),y =~ 1 =[d T1 R Y, Y R L1 =), {0y} ¥ X Y. Another application of
@uc results in the empty Nc-refutation

g = ¢yc(llz): O

which has complexity (0,9,0). Clearly y ~ y =) U. Concatenating the various LNC-sequences
yields an LNC-refutation g(f(z)) ~ = =} O whose substitution 6 satisfies z6 = 9(y).

Unfortunately, the simulation of N¢ by LNc illustrated above doesn’t always work, as shown
in the following example.

EXAMPLE 4.12. Consider the TRS

flz) — =
R = a — b
b — g(b)

and the Nc-refutation
Hua: fla)~g(a) ~ fla)=g(h) ~ amgd) ~ bmgh) ~ g(b)~ g(b)

~  true.

Because we apply narrowing at position 1 in the descendant f(a) = g(b) of the initial equation
f(a) = g(a), using the rewrite rule f(z) — z, we transform Iy, using Plon) and ¢ygp. This yields
the NC-refutation ¢pa)(pon(Msair)):

arz,zgla) -~ amz,zxg(d) ~ true,an g(b) ~ true,b= g(b)
~  true,g(b) = g(b) ~ T.

Observe that the initial goals of Iz, and Ba)(#on)(Msait)) are connected by =[on]- Since in the
refutation @g)(Ppon)(Il1i1)) narrowing is applied at position 1 in the descendant g = g(b) of the
selected equation # = g(a) in the initial goal a ~ z,z ~ g(a), we would like to use once more the
transformation steps Plon) and #1q)- This is however impossible since the subterm of z & g(a) at
position 1 is a variable.

The reason why II;,; cannot be transformed to an LNC-refutation by the transformation
steps in this section is that in B1d)(P(on) (i) narrowing is applied to a subterm introduced by
a previous narrowing substitution. One might be tempted to think that this problem cannot
occur if we restrict ourselves to normalized solutions. This is not true, however, because st
computes the empty substitution e, which is clearly normalized, but ¢g (¢[on](1'[fa_,-1)) computes
the non-normalized solution {z + a}. So the transformation steps do not preserve normalization
of the computed Nc-solutions (restricted to the variables in the initial goal). However, it turns
out that basicness (cf. Definition 2.7) is preserved. This is one of the two key observations to
the connection between strong completeness of LNC and completeness of basic NC.

LEMMA 4.13. Let II be a basic NC-refutation. The NC-refutations Blon)(I1), ¢1g(I0), Blim (11),
and ¢yc(II) are basic whenever they are defined. If II is non-empty and § a variable renaming
then ¢4(11) is basic.

Proor. The transformation ¢yc trivially preserves basicness. It is not difficult to see that
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narrowing is never applied to subterms introduced by previous narrowing substitutions in Pay(1I)
and @jon)(I1) whenever this is true for II. Hence P1q)(I1) and ¢poy(IT) are basic provided that II is
basic. Next we consider @[;,,). From Lemma 4.5 we learn that @fim)(I1) and II employ the same
rewrite rules at the same positions in the corresponding equations of the goals. Hence Blim(1I)
inherits basicness from II. This reasoning also applies to ¢s(II). O

The other key observation is that for basic Nc, strong completeness and completeness coin-
cide. This is an easy consequence of the following switching lemma, whose proof can be found
in the appendix.

LEMMA 4.14. For every NC-derivation

G1,e1,G2,e2,G3 “p1,01,h o, e (Glael[rl]p1aG2>62aG3)Ul

~p3,02, o1z, 201 (G, el[rl]m » G2, e2[12]p,, G3)o109

with py € Posx(ez) there exists an Nc-derivation

’
Gl) €1, Gz, €2, G3 “’“’pz,aé,lz——»rg,ez (Gh €1, G27 62[T2]P2 ) G3)02

"y 01 l1—r1, e10} (G17 el[Tl}m ) GZ) €2 [r2]p2 ’ G3)0'520'{

such that o109 = ohof. O

Observe that the requirement p; € Posr(e;) in Lemma 4.14 is always satisfied if the two
steps are part of a basic narrowing derivation. Moreover, the exchange of the two steps preserves
basicness. This is used in the proof below.

LEMMA 4.15. Let S be a selection function. For every basic Nc-refutation II: G ~p T there
exists a basic NC-refutation Ils: G ~} T respecting S with the same complexity.

Proor. Using the basicness of the given Nc-refutation II, we can transform II into a basic
refutation IIs: G ~} T that respect S by a finite number of applications of Lemma 4.14. Since
the transformation in Lemma 4.14 preserves the number of narrowing steps at non-root positions,
it follows that the complexities of II and IIs are the same. O

Now we can state and prove the main result of this section.

THEOREM 4.16. Let R be a TRS and G ~j T a basic Nc-refutation. For every selection
function S there exists an LNC-refutation G =, O respecting S such that ¢ < 8 [Var(G)).

Proor. We use well-founded induction on the complexity of the given basic Nc-refutation
II: G ~3 T, which is possible because of Lemma 4.9. In order to make the induction work we
prove §' < 6 [V] for a finite set of variables V that includes Var(G) instead of ¢ < 8 [Var(G)].
The base case is trivial: G must be the empty goal. For the induction step we proceed as
follows. First we use Lemma 4.15 to transform II into a basic Nc-refutation Ils: G ~p T
respecting § with equal complexity. Next we show the existence of an LNC-step II": G =4, G',
an Nc-refutation II;: G/ ~g, T of smaller complexity than Ils, and a finite set of variables V’
such that (V — D(8,)) U Z(621v) C V', Var(G') C V', and 6,6, < [V]. We distinguish the
following cases, depending on what happens to the selected equation e = §(G) in the first step
of Ils. Let G = G1,e,Gq and e = s ~ t.
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(1) Suppose narrowing is applied to e at root position. We may write

IIs: G 0o, €, zRNT—true (GlatrueaGQ)oo W;{ T

with 6ofl; = 6. We may assume that & is a fresh variable, so z ¢ V. We distinguish the

following two cases.
(a) Suppose s € V or t € V. We distinguish two further cases, depending on whether or not

s and t are equal.

(1)

(i)

Suppose s and ¢ are the same variable, say y. Let G’ be the goal G1,G, and G”
the goal (G1,G2)8y. We clearly have G = G'. X G’ is the empty goal O then
we let II; be the empty Nc-refutation (and thus 61 = €) and we define 6, = ¢
and V! = V. Otherwise we proceed as follows. From Lemma 4.7 we obtain the
(non-empty) Nc-refutation

Hi = d’UC(HS): G" w;; T.
Define 0, = {2 +— y}. Clearly 6} is a most general unifier of the equations z ~ z
and y = y. Since also fp is a most general unifier of these equations, there exists
a variable renaming é such that 6,6 = 5. Let 6; = 61¢,. From Lemma 4.2 we
obtain an Nc-refutation

¢5(H/1) (Gl, G2)905 W;-l T.
Because z ¢ V we have 6; = 646, = 6,66~1¢, = 607 = 6 [V]. Moreover,
(G1,G2)806 = (G1,G2)8, = G'. Hence we can take II; = #s(1I}), 62 = ¢, and
Vi=V.
Suppose s # t. We assume that s € V, say ¥. (The case t € V is similar.) Let 6, be
the substitution {y — ¢} and G’ the goal (G1,G2)8;. We clearly have G =)0, G
Since o ¢ D(2), 6y = 6, U {z — t} is a well-defined substitution. Clearly ¢ is a
unifier of the equations e and z & z. It is not too difficult to show that 65 is a most
general unifier of these two equations. Since also g is a most general unifier of e
and ¢ ~ z, there exists a variable renaming § such that b5 = 6o6. If G' is the empty
goal O then we let II; be the empty NC-refutation (and thus 6; = ¢) and we define
Vi= (V—D(82))UZ(6;]y). In this case we have f,0; = 6, = 03<b=0[V]. &

- is not the empty goal, we reason as follows. Let G” = (G1,G2)bp. From Lemma 4.7

we obtain the Nc-refutation

I = ¢yc(lls): G" ~} .
According to Lemma 4.2 II} canlbe transformed into the Nc-refutation

Hl = (}55(]1/1) G"§ wg'l T
with 0; = §7161. Observe that G"6 = (Gy,G,)f}, = (G1,G3)f, because z does not
occur in Gy, Gy. We have 646, = 0066710 = 6,0 = 6. Since 65 = 85 [V] we obtain
6261 = 6 [V]. Define V! = (V — D(8,)) UZ(, lv). Clearly Var(G') C V'.

(b) Suppose neither s nor ¢ is a variable. We may write s = f(s1,...,8,) and t =
f(t1,-..,tn). Let G’ be the goal Gy, 81 ~ t,..., 8 R tn, G3 We clearly have G > G
According to Lemma 4.4 there exists an Nc-refutation

H1=¢[d](H5): G wzl T

such that 6; < 6 [V]. Define 6y =¢ and V/ = V.
(2) Suppose narrowing is not applied to e at root position. We distinguish the following three

cases.

(a) Suppose narrowing is applied to a descendant of s = # at position 1. Let f(l1,...,0,) — »
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be the used rewrite rule the first time this happens. Since Il is basic s cannot be variable
for otherwise narrowing would be applied to a subterm introduced by previous narrowing
substitutions. Hence we may write s = f(s1,...,8,). Let G” be the goal

Glaf(sla'“asn) zf(ll)“')ln)a"‘ztaG’2

and let G’ be Gy,81 = l1,...,8, ~ ly,7 = t,G3. We have the LNC-step G = G'.
Applying Lemma 4.3 to IIs yields an Nc-refutation

H2=¢[on](H): G" ~e T

such that §' = 8 [V]. An application of Lemma 4.4 to II; results in an Nc-refutation

H1=¢[C[](H2): G’ wzl T

such that §; < &' [V]. Define = cand V' =V U Var(f(ly,...,0)).
(b) Suppose narrowing is applied to some descendant of s ~ t at position 2. The basic
Nc-refutation IIs can be transformed into a basic Nc-refutation

Hfst Gi,t= s,Gy w; T

by simply swapping the two sides in every descendant of e. This simple transformation
doesn’t affect the complexity. Now we apply case (2)(a) to II.

(c) Suppose narrowing is never applied to a descendant of s ~ ¢ at position 1 or 2. We
furthermore distinguish the following three cases.

()
(i)

Suppose s,t ¢ V. We must have s = f(s1,...,5,) and t = f(t1,...,tn), hence we
can repeat case (1)(b).
Suppose s ¢ V and t € V. Write s = f(s1,...,8,) and let ¢ be the variable z.
Let 67 be the substitution {2z — f(zy,...,2,)} where 1,...,, are fresh variables.
Define the goal G” as (G, f(s1,...,8,) = f(21,.. .y %y),G2)8, and let G’ be the
goal (G1,51 R &1,...,8, ~ T,,Gq)f. We have G =[im),, G'- Since z6 is of the
form f(%1,...,%,) we can apply Lemma 4.6 to IIs, resulting in the NC-refutation
Iy = $my(Ils): GV w3 T
such that 6260 = 6 [V]. Define V' = (V ~ D(6,)) U Z(82]v). Clearly Var(G") =
Var(G') C V'. Next we apply Lemma 4.4 to II;. This yields the Nc-refutation
II; = ¢[J](H2) G’ wsl T
with 6; < 6o [V']. From Lemma 2.2(1) we obtain 6,8, < 656, [V]. Combining this

(iii) Suppose s € V and t ¢ V. In this case we transform IIg into the basic NC-refutation

IIs: Gh,t=s,Gy ~g T
by simply swapping the two sides in every descendant of e. This simple transfor-
mation doesn’t affect the complexity. Now we apply case (2)(c)(ii) to .

It is not possible that both s and t are variables, due to the basicness of IIs. (The case
s,t € V is covered in (1)(a).)

In all cases we obtained II; from IIs by applying one or two transformation steps Blons Pl Plim)>»
¢uc together with an additional application of ¢s in case (1)(a)(i) and (1)(a)(ii). According
to Lemma 4.10 II; has smaller complexity than IIg. According to Lemmata 4.13 II; is basic.
Hence we can apply the induction hypothesis. This yields an LNC-refutation II": G =3, O
respecting S such that 63 < 61 [V’]. Now define 6’ = 6565. From 6201 < 0 [V], 3 < 6; [V'], and
(V=D(62))UZ(b1v) C V', we infer—using Lemma 2.2(2)—that ¢’ < 6 [V]. Concatenating the
LNC-step II’ and the LNC-refutation II” yields the desired LNC-refutation. OI

A related result for lazy paramodulation calculi is given by Moser [18]. He showed the
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completeness of his calculus 7pp, a refined version of the calculus 7 of Gallier and Snyder [5],
by a reduction to the basic superposition calculus S of [1]. Strong completeness (of 7gp) follows
because 7pp satisfies the so-called “switching lemma” ([13]). Since from every Tgp-refutation
one easily extracts a 7-refutation respecting the same selection function, strong completeness
of 7 is an immediate consequence.

- Combining Theorem 4.16 with Theorem 2.8 yields the following result.

COROLLARY 4.17. Let R be a confluent TRS and S a selection function. If R + G and
O[VG,(G) is normalized then there exists an LNC-refutation G =4 O respecting S such that
¢' < 6 [Var(G)], provided one of the following conditions is satisfied:

(1) R is terminating,

(2) R is orthogonal and GO has an R-normal form, or

(3) R is right-linear.

0

The converse of Theorem 4.16 does not hold, as witnessed by the confluent TRS

) = o)
R=1 dab) -

from Middeldorp and Hamoen [17]. They show that the goal f(a) = ¢ cannot be solved by basic
narrowing. Straightforward calculations reveal that for any selection function S there exists an
LNC-refutation f(a) ~ ¢ =* O respecting S.

5. Completeness

In this section we show the completeness of LNC for confluent TRSs with respect to normalized
solutions. Actually we show a stronger result: all normalized solutions are subsumed by substi-
tutions produced by LNC-refutations that respect Sless- Basic narrowing is of no help because
of its incompleteness [17] for this general case. If we are able to define a class of Nc-refutations
respecting Spp that

(1) includes all Nc-refutations respecting Sy that produce normalized solutions and

(2) which is closed under the transformation steps ¢s, Blon)s Pra ¢[im], and ¢yc,

then completeness with respect to Slegi follows along the lines of the proof of Theorem 4.16. We
didn’t succeed in defining such a class, the main problem being the fact that an application of
Plon) OF Plg) to an NC-refutation that respects Slest may result in an Nc-refutation that doesn’t
respect Spp. We found however a class of Nc-refutations respecting Sy that satisfies the
first property and which is closed under ®s, Blon) © ¢1, Bra) © b2, @im)> and ¢yc. Here ¢; and
@2 are transformations that preprocess a given NC-refutation in such a way that a subsequent
application of Plon) 20d @pg) results in an Nc-refutation respecting Sz The following definition
introduces our class of Nc-refutations.

DEFINITION 5.1. An Nc-refutation II: G ~p T respecting Sy, is called normal if it satisfies the
following property: if narrowing is applied to the left-hand side (right-hand side) of a descendant
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of an equation s ~  in G then 621Var(s0,) (62 [Var(t6,)) is normalized. Here 6y and 6, are defined
by writing II as

G= Gl,S ~ t,Gz Wzl T,(S ~ t,G2)01 W;2 T.

The following result states that the class of normal Nc-refutations satisfies property (1)
mentioned above.

LEMMA 5.2. Every NC-refutation respecting St that produces a normalized solution is normal.
Proor. Straightforward. O

The converse of this lemma is not true, see Example 5.7 below. Before introducing the
transformations ¢ and ¢, we present a switching lemma which is used in the existence proofs.
For the proof of this switching lemma we refer to the appendix.

LEMMA 5.3. For every normal NC-refutation

. * / !
H. e., G """91 € ) G
! !
Wal)plv Il —T1 € [Tl]Pl 017 G 01

/ !
02,02, la—12 ((6 [Tl]zh 0'1)[7‘2]P2aG g1 )0'2
s
~, T
with p; L p, there exists a normal Nc-refutation
. !
I e,G’ ->:'9<1 e’, G
! ! /
ob,p2,la—re (e [TZ]Pz , G )02

el p1,li—om ((61[7‘2]}72 )[Tl]m , G')oyo!

wzz T
with the same complexity such that 61010905 = 61040%6,. O
LEMMA 5.4. For every normal Nc-refutation
I smt,G g §'=t,GO ~g 1,00 (1= ', G61)0, g T

with the property that narrowing is not applied to a descendant of s ~ t at position 1 in the
subderivation that produces substitution 6y, there exists a normal NC-refutation

Hn(Il): s~t,G w;; s =167, Go; g1 1,0 (T R 107, GOY)Y wzé T

with the same complexity such that 66505 = 616,63 and narrowing is neither applied at position
1 nor in the right-hand side of a descendant of s ~ t in the subderivation that produces the
substitution 6.

Proor. Let II’ be the subderivation
sxt,G WZI =t ,Go ~30,,1, I (r= t',G01)02

of II. All steps in II' take place in a descendant of s & t. If there are steps in II' such that
narrowing is applied to the right-hand side of the descendant of s ~ t then there must be two
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consecutive steps in II' such that the first one applies narrowing at the right-hand side and the
second one at the left-hand side. The order of these two steps can be changed by an appeal
to Lemma 5.3, resulting in a normal Nc-refutation that has the same complexity and produces
the same substitution as II. This process is repeated until there are no more steps before the
step in which position 1 is selected that apply narrowing at the right-hand side. Termination
of this process is not difficult to see. We define ¢, (II) as an outcome of this (non-deterministic)
transformation process. O

LEMMA 5.5. For every normal Nc-refutation
II: f(sl, cos ,Sn) ~ f(tl, ces ,tn),G wzl true, G4, -)22 T

with the property that narrowing is never applied to a descendant of f(s1,...,8n) = f(t1,... ytn)
at position 1 or 2, there exists a normal NC-refutation

@o(11): f(sl,...,sn')zf(tl,...,tn),G ~g true,Gb, g, T

with the same complexity such that in the subderivation producing substitution 6, narrowing
is applied to the subterms sy,...,s,,t1,...,%, in the order 81,81,82,%2, ..+ Sp,y T

Proor. By a similar transformation process as in the proof of the preceding lemma. O

The next result states that the transformation steps ¢s, Ppon) © ¢1, Prq © b2, Plim)» and ¢yc
preserve normality.

LEMMA 5.6. Let II be a normal Nc-refutation. The NC-refutations Blon)($1(1D)), Pray(42(11)),
Pim)(I1), and dyc(Il) are normal whenever they are defined. If 11 is non-empty and § a variable
renaming then ¢s(1I) is normal.

Proor. First we will show the normality of ¢>[on](¢1(11)), From Lemma 5.4 it follows that
¢1(II), which we can write as

Szt,G Wzl s’ztﬁl,Gel 5,1, 17 ('I‘%tal,Gal)az Wss T,

is normal. This NC-refutation is transformed by P[on) into

selrxt,G g s xlr=~th,Go
0, zam—true  tTUS, (7 & 101, GO )0) = true, (r ~ 16, G6: )6,
-+§3 T.

Here 6, is the substitution 6, U {z — 16,}. We have to show that the condition of Definition 5.1
holds for every equation in the initial goal s = I,7 = t,G of the Nc-refutation Blony(¢1(I1)).
Consider the equation s ~ I. By construction Blon)(¢1(I1)) doesn’t contain steps in which
narrowing is applied to I. Suppose there is a step in which narrowing is applied to the left-
hand side of a descendant of s. (This is equivalent to saying that the derivation from s & l
to s’ ~ [ is non-empty.) We have to show that 0103631 var(s) is normalized. Because in ¢1(11)
narrowing is applied to the left-hand side of a descendant of s = t, we obtain the normalization
of 610263var(s) from the normality of ¢;(II). This implies that 616563yar(s) is normalized
since 616, Var(s) = 6163 [Var(s)- By construction, the descendants of the equation r & ¢ and
the equations in G are only selected in the common subrefutation (r ~ t6,,G0:1)0, ~g, T of
$1(I1) and @pon)(¢1(I1)). We conclude that Blon)(¢1(I1)) is normal. Next we consider Pray(P2(11)).
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According to Lemma 5.5 the transformation ¢, preserves normality. It is easy to see that Plq)
preserves normality and hence ¢q)(#2(1I)) inherits normality from II. Now consider Plim)- Let
e = s~ t be an equation in the initial goal of II. We may write I as

G], €,G2 W;] T, (B,Gz)ol sz T.
From the proof of Lemma 4.6 we learn that Ppim)(IT) can be written as
(G1>67 G2)7 M’;; T’(e’ G2)917, "";g T

with v/60% = 05 [Var((e,G2)01)]. Suppose in Bpim)(IT) narrowing is applied to the left-hand side
of a descendant of ey. In order to conclude normality, we have to show that 65 [Var(s61+7) 18
normalized. By construction, in II narrowing is applied to the left-hand side of a descendant
of e. The normalization of II yields the normalization of 65 [Var(s6;)- Because sf; occurs in
(e,G2)f1 we obtain the normalization of 76} [Var(s6,). Lemma 2.3 yields the desired normal-
ization of €5y,, (59,4 The transformation ¢yc trivially preserves normality. The remaining
transformation ¢;s is easily seen to preserve normality. O

ExXAMPLE 5.7. Consider again the Nc-refutation it of Example 4.12. This refutation is easily
seen to be normal. An application of ®lon) Tesults in the Nc-refutation Bron) (Wpair):

fla)~ f(e), e~ g(a) ~ fla)~ f(z),amg(b) ~ amg(d) ~ b g(h)

~ brb ~  true
which doesn’t respect Siey. If we first apply ¢; we obtain the Nc-refutation A1(Igaa):
fla)~gla) ~ a=mgla) - amgd) - brgh) ~ bmb - true.
An application of ¢y, to this normal Nc-refutation yields Bron)(P1(Mgeir)):
fla)~ f(z),z = g(a) ~ amgla) - amg(d) —~ b= g(d) ~ bmb ~ true.

This Nc-refutation is normal even though the produced substitution restricted to the variables
in the initial goal is not normalized.

Lemma 5.9 below is the counterpart of Lemma 4.15 for normal Nc-refutations. The proof is
an easy consequence of the following switching lemma, whose proof can be found in the appendix.

LEMMA 5.8. For every Nc-refutation

II: G1,317G2,e2,G3 ""21 ll)elh ,276,27G:l3
Mp1,01, 1o, € (Gll7e,1[rl]p1aG,2)Ulael20'l, G301
“p2,02,la—r2, eh01 ((Gilaea[rl]pn I2)0'1>(e,20'1)[7'2]p2,Géal)od
w§2 T

that produces a normalized substitution there exists a NC-refutation

Ir: G],el,Gg,eg,G3 wzl {1,6{[, g,e’z,G’s

“p2,04,l 12, ¢} (Gh, €1, /2a612[r2]p2,G,3)0J2
pi,ohhoreio) (G €[y, Gy, eb[ralp,, Gh)opo}
'v-)zz T

with the same complexity such that 61010262 = 61050%68,. O
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LEMMA 5.9. For every NC-refutation II: G ~+5 T such that 01var(c) is normalized there exists a
normal NC-refutation Ils,, #: G ~5 T with the same complexity.

Proor. Straightforward consequence of Lemma 5.8 and Lemma 5.2. O

Putting all pieces together, the following result can be proved along the lines of the proof of
Theorem 4.16.

THEOREM 5.10. Let R be a TRS. For every Nc-refutation G ~y T with the property that
O1var(c) is normalized there exists an LNC-refutation G =g T respecting Si.p such that ¢ <
8 Var(G)).

PROOF. First we apply Lemma 5.9 to the given NcC-refutation. This results in a normal Nc-
refutation II: G -5 T. We use well-founded induction on the complexity of II. In order to
make the induction work we prove that for any finite set of variables V that includes Var(G),
there exists an LNC-refutation G =% O such that II': G =3, G, an Nc-refutation ¢ < 6 [V].
The base case is trivial: G must be the empty goal. For the induction step we proceed as
follows. We show the existence of an LNC-step II':G =>4, G’ respecting Sleft, a normal Nc-
refutation II;: G/ ~5, T of smaller complexity than II, and a finite set of variables V/ such that
(V = D(62)) UZ(82ly) C V', Var(G') C V', and 86, < 6 [V]. We distinguish the following
cases, depending on what happens to the selected equation e = S;4(G) in the first step of II.
Let G=¢,Gyande=s~1.

(1) Suppose narrowing is applied to e at root position. We may write

I:. G ~*0, ¢, zRT—trUe (true’Gl)oo ""’;g T

with o8] = 6. We may assume that z is a fresh variable, so 2 ¢ V. We distinguish two
cases.
(2) Suppose s € V or t € V. This case is only notationally different from case (1)(a) in the
proof of Theorem 4.16.
(b) Suppose neither s nor ¢ is a variable. Apart from notation, the only difference with case
(1)(b) in the proof of Theorem 4.16 is the replacement of Py by Ppa) © ¢o.
(2) Suppose narrowing is not applied to e at root position. We distinguish the following three
cases.
(a) Suppose narrowing is applied to a descendant of e at position 1. The essential difference
with case (2)(a) in the proof of Theorem 4.16 is the replacement of ¢pg o Blon) by ) ©
$2 0 Plon © ¢1 and the use of normality rather than basicness to conclude that s is not a
variable. :
(b) Suppose narrowing is applied to some descendant of s ~ ¢ at position 2. This case is
reduced to the previous one as in the proof of Theorem 4.16.
(c) Suppose narrowing is never applied to a descendant of s ~ ¢ at position 1 or 2. The
essential difference with case (2)(c) in the proof of Theorem 4.16 is the replacement of
Pla) bY pa) © $2 in subcase (2)(c)(ii).
The proof is concluded by an appeal to Lemmata 4.10, 5.6, 5.4, and 5.5, followed by an appli-
cation of the induction hypothesis, similar to the final part of the proof of Theorem 4.16. O

COROLLARY 5.11. Let R be a confluent TRS. If R F GO and O1var(c) is normalized then there
exists an LNC-refutation G =}, O respecting Stest such that ¢’ < 6 [Var(G)). O
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6. Eager Variable Elimination

LNC has three sources of non-determinism: the choice of the equation in the given goal, the
choice of the inference rule, and the choice of the rewrite rule (in the case of.[on]). In Section 4
we were concerned with the first kind of non-determinism. In this section we address the second
kind of non-determinism. The non-deterministic application of the various inference rules to
selected equations causes LNC to generate many redundant derivations. Consider for example
the (orthogonal hence confluent) TRS

_J fle(=)) — a
R—{ bo— g(b)

Figure 1 shows all LNC-refutations issued from the goal f(b) = a that respect the selection
function Spp. There are infinitely many such refutations. Because the initial goal is ground,

fO)=~a
Yion)
brg(z),ama
‘U’[on]
9(0) =~ g(z),a ~a
Ui
b= z,axa =n 9(0) = z,axa =hm] 0N TaR A Dy
0 Yy Y
a~a a~a a~ a
Yig $ig $ia
o o o

FIGUuRE 1.

one of them suffices for completeness. At several places in the literature it is mentioned that
this type of redundancy can be greatly reduced by applying the variable elimination rule [v]
prior to other applicable inference rules, although to the best of our knowledge there is no
supporting proof of this so-called eager variable elimination problem for the general case of
confluent systems.

In this section we show that a restricted version of the eager variable elimination strategy is
complete with respect to Sy, for orthogonal TRSs. Before we can define our strategy, we need to
extend the concept of descendant to LNC-derivations. Descendants of non-selected equations are
defined as in Definition 4.1. The selected equation f(81,-+.,8n) 2 t in the outermost narrowing
rule [on] has the body equation 7 ~ t as only (one-step) descendant. In the imitation rule [im],
all equations s;0 =~ z; (1 < ¢ < n) are descendants of the selected equation f(s1,...,8,) ~ z.
The selected equation f(s1,...,8s) = f(t1,...,t,)in the decomposition rule [d] has all equations
81 R 1,..,8n R 1 as (one-step) descendants. Finally, the selected equations in [v] and [¢] have
no descendants. ‘

DEFINITION 6.1. An equation of the form z =~ t, with & ¢ Var(t), is called solved. An LNC-
derivation II is called eager if the variable elimination rule [v] is applied to all selected solved
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equations that are descendants of a parameter-passing equation in II.

Of the infinitely many LNC-refutations in Figure 1 only the leftmost one is eager since all
others apply the outermost narrowing rule [on] to the solved descendant b ~ g of the parameter-
passing equation b =~ g(2) introduced in the first = [on]-SteD.

In this section we prove that eager LNC is complete with respect to S left for orthogonal TRSs
(with respect to normalized solutions). The outline of our proof is as follows.

(1) We define outside-in Nc-derivations. These are the narrowing counterpart to the outside-in
rewrite sequences of Huet and Lévy [10].

(2) We show that the completeness of outside-in NC for orthogonal TRSs with respect to nor-
malized solutions is an easy consequence of Huet and Lévy’s standardization theorem.

(3) We show that the translation steps b5, 1, P25 Plon)s P}y Plim)> and ¢y preserve the
outside-in property.

(4) We verify that the LNC-refutation obtained from an outside-in Nc-refutation by means of
the transformation described in the previous section is in fact eager.

Before defining outside-in Nc-derivations, we introduce the concept of NC-trace. Let Il : G~y G

be an NC-step and e an equation in G different from true. Let ¢ be the (unique) descendant

of e in G'. The construct e —g €’ is called a one-step NC-trace. NC-traces are obtained by

concatenating one-step NC-traces. An NC-trace

€1 =g, - g €n

n—1

may be rendered as e; —p €n Where 6 = 6;--.6,_,. For every such NC-trace 7 there is a
corresponding rewrite sequence R(7): e;6 —R, €n- This rewrite sequence will be shorter than
7 if the latter contains one-step NC-traces of the form e; ¢, e;f0;—indicating that e; was not
selected in the underlying Nc-step—which translate to identity at the rewrite level.

DEFINITION 6.2. Let R be an orthogonal TRS. An R -rewrite sequence

€1 “pi,hiori Y ppgdni—oral €n

is called outside-in if the following condition is satisfied for all 1 < @ < n— 1: if there exists a j
with ¢ < j < n such that € < p; < p; then Pi\p; € Posx(l;) for the least such j.

This definition is equivalent to the one given by Huet and Lévy in their seminal paper
[10] on call-by-need computations in orthogonal TRSs. The following result is an immediate
consequence of their standardization theorem (Theorem 3.19 in [10]).

THEOREM 6.3. Let R be an orthogonal TRS and e an equation. For every rewrite sequence
€ —>;‘2+ true there exists an outside-in rewrite sequence e -——>;‘z+ true. O

DEFINITION 6.4. Let R be an orthogonal TRS. An Nc-derivation II issued from a G is called
outside-in if R() is outside-in for all traces 7 of the equations e € G.

EXAMPLE 6.5. Consider the orthogonal TRS
72:{ fz) — o

a — b
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The Nc-refutation
I fa)= 94, f(9)=b ~ie)ms =Y fH)RE ~po)os amyy=b
Mg} tTUE, QR D ~gmsb true,bxb ~ T
is outside-in, because the rewrite sequences
R(m): fla)=a — am~a — true
and
R(ma): fla)=b — amb — bxb — true
corresponding to the maximal Nc-traces
T fla)my — amy — amxy —{ysa)} TTUE
and
T fyY)=b — fly)=b — y=b ~{ypsa) GRbO — bRb — true
are outside-in. The Nc-refutation
': fla)=y, fly)=b “f@)me =Y fY)=b ~* {yrra) true, f(a) = b
~ab true, f(b) = b 3 f(zy)—z, tTUE,D R D ~ T
is not outside-in because the rewrite sequence
R(m): fla)m=b — f(b)mb — bmb — true
corresponding to the trace
T fy)mb o~ fy)mb —pay fla)mb — f(B) b — bmxb — true
of the second equation in the initial goal is not outside-in.

THEOREM 6.6. Let R be an orthogonal TRS. For every NC-refutation G ~ T with O1var(c)
normalized there exists an outside-in NC-refutation G ~}, T such that 8’ < 6 [Var(G)).

PROOF. Let II be the given Nc-refutation G ~} T. By instantiation we obtain the corresponding
rewrite sequence R(II): G0 =% T. Let Gf = ey,...,e,. Clearly R(Il) can be partitioned into
rewrite sequences from e; to true for 1 < ¢ < n. To each of these n rewrite sequences we apply
Theorem 6.3, yielding outside-in rewrite sequences from e; to true (1 € i< n). Putting these n
outside-in rewrite sequences together results in a outside-in rewrite sequence from G to T. Let
01 = Olyar(g). Evidently, G6; = G and 6; is normalized. An application of the lifting lemma,
(for NC) to the outside-in rewrite sequence G, —%, T results in an outside-in Nc-refutation
G ~5 T with ¢ <6,=6 [V(IJ‘(G)]. O

The above theorem extends and simplifies the main result of You [23]: the completeness
of outer narrowing for orthogonal constructor-based TRSs with respect to constructor-based
solutions. One easily verifies that outer narrowing coincides with outside-in narrowing in the
case of orthogonal constructor-based TRSs and that constructor-based substitutions are a special
case of normalized substitutions. Hence You’s completeness result (Theorem 3.13 in [23]) is a
consequence of Theorem 6.6. Since You doesn’t use the powerful standardization theorem of
Huet and Lévy, his completeness proof is (much) more complicated than the proof presented
above, which covers a larger class of TRSs.
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LEMMA 6.7. The transformations ¢s, ¢1, ¢a, Plon]s Pla)» ®lim); and ¢yc preserve the outside-in
property.
Proor. Straightforward by inspecting the various transformations. CI

LEMMA 6.8. IfII: G ~; T is an outside-in NC-refutation such that O1var(c) is normalized, then
H,g,eﬂ is outside-in.

PROOF. Let e be an arbitrary equation in G and let 7 and 7 be the respective traces of e in II
and Ils,,,. The lemma is an immediate consequence of the equality R(r)=R(x"). O

We define a property of equations in the initial goal of NC-refutations. In Lemma 6.10 we
show that the parameter-passing equations introduced in the proof of Theorem 5.10 satisfy this
property, provided we start from a normal Nc-refutation that is outside-in. In Lemma 6.11 we
show that the property is preserved by LNc-descendants obtained during the transformations in
Theorem 5.10. Finally, in Lemma 6.12, we show that the variable elimination rule is applied to
selected solved equations that satisfy the property in the LNC-refutation obtained in the proof
of Theorem 5.10.

DEFINITION 6.9. Let II: G ~* T be an Nc-refutation and e € G. We write Pr(e) if the following

two properties are satisfied:

(1) narrowing is not applied to the right-hand side of a descendant of e in II, and

(2) if narrowing is applied to the left-hand side of a descendant of ein I and 1-p is a narrowing
position in a descendant of e such that later steps in the left-hand side of descendants of e
do not take place above 1-p, then 2-p € Posx(e).

A position 1-p satisfying the condition in property (2) will be called critical.

LEMMA 6.10. Let II: G ~* T be an outside-in normal NC-refutation such that narrowing is
applied to a descendant of the (selected) leftmost equation in G at position 1. Let II': G' ~* T
be the NC-refutation P1a)(B2(Bpon)($1(11)))). We have Pr(e) for all parameter-passing equations
eeG.

PRroor. Let e be a parameter-passing equation in G'. The first condition of Pr(e) holds by
construction. Suppose narrowing is applied to the left hand side of a descendant of ein II'. Let
1-p be a critical position. We have to show that 2:p € Posr(e). Let s be the left-hand side of e.
The initial goal of ¢;(II) has the form f(s1,...,8,...,8,) ™ t,G. Suppose s is the i-th argument
of f(s1,...,5,...,8,). The NC-refutation #1(II) can be written as

f(81,000,8,000,8,) = 1,G ~* f(s1eens sy )t G
~1dep (st o8, syt G
'\"-}* f(sllll’...,slll,..‘,'s;ll/)zt///,G”I
1,0, f(lhydn)=r (T R, G0
s T

where all narrowing steps in the subderivation
" i "N ~ 4/ " 4 " N ~ 411 1"
F(sTsee oy sy sy =t G 8" s m G

don’t take place at positions above 1-i-p. According to Lemma 6.7 ¢;(II) is outside-in. Hence,
by definition, 1-¢-p\1 = i-p € Posr(f(l1y...,1,)). Therefore p € Posx(l;) and thus 2:p €
Posr(s = I;) = Posg(e). O
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In the following lemma, II; and II' refer to the NC-refutation and the LNC-step obtained from
Il in the proof of Theorem 5.10.

LEMMA 6.11. Suppose II: G ~* T is a normal NC-refutation and let e be an-equation in G that
satisfles Pri(e). If ¢ is a descendant of e with respect to I’ then Pr, (¢').

PRrOOF. Let G’ be the initial goal of II; and let ' € G’ be a II'-descendant of e. We distinguish
two cases.
(1) Suppose e is the selected (leftmost) equation in G. Consider the case analysis in the proof
of Theorem 5.10.
(2) In cases (1)(b) and (2)(c)(i) we have Iy = ¢g(¢2(Il)). It is easy to see that Pey(my(e)
holds. Write €’ as s = t. The equation e must be of the form

(8150038000 8n) R ft1, .00yt tn).
Let s be the ¢-th argument of f(sy,...,s,...,s,). The first part of P, () clearly holds.
Suppose narrowing is applied to the left-hand side of a descendant of ¢’ in IT;. Let 1-p
be a critical position. By construction of @4), 1+¢-p is a critical position in ¢o(IT). Hence
we obtain 2-i-p € Posr(e) from Py, (m)(e). This implies 2-p € Posz(e’). We conclude
that P, (e') holds.

(b) In case (2)(a) we have II; = ¢pq)(B2(PLon)(#1(11)))). Let e” be the (unique) descendant
of € in Gpon)(¢1(11)). It is not difficult to see that Py, (m)(e) holds. From the construction
of ¢[on) We learn that the trace of e” in Blon)(#1(I1)) is essentially the same as the trace
of e in ¢;(II). Hence Piony(s:(m) (€”) is a consequence of Py, (my(e). The step from
Pojomy (¢ () (€") t0 Py, () is the same as above.

(c) In case (2)(c)(ii) we have I} = ¢pq)(d2(Bpim)(I1))). Let v be the substitution employed
In @Gfim). Since @pm)(I) uses the same rewrite rules at the same positions in the cor-
responding equations of the goals in II, 'P¢[,-m](n)(67) is an immediate consequence of
Pri(e). The desired Pr, (€’) is obtained by repeating case (1)(a) in this proof.

(d) In cases (1)(a), (1)(b), (2)(b), and (2)(c)(iii) we have nothing to show. (Either e has no
II'-descendants or the first part of Pr(e) doesn’t hold.) .

(2) Suppose e is not the leftmost equation in G. Consider again the case analysis in the proof
of Theorem 5.10. In most cases the unique II'-descendant e’ of e equals e and the trace of e
in II; differs at most a renaming from the trace of e in II. Hence P, (e) follows from Pr(e).
In the case that II; consists of a =[,}-step, so in case (1)(a)(ii) of the proof of Theorem 5.10,
¢’ is a II-descendant of e and the trace of €’ in II; is contained (modulo variable renaming)
in the trace of e in II;. Hence also in this case we have P, (¢’). In the remaining case—II;
consists of a =>[;,)-step—the desired result is also easily obtained.

The following result is an easy consequence of the preceding Lemmata. Here II* denotes the
LNC-refutation G =>* O constructed in the proof of Theorem 5.10.
LEMMA 6.12. Suppose II: G ~* T is a normal Nc-refutation and let e be an equation in G that
satisfies Pri(e). The variable elimination rule [v] is applied to all selected solved descendants of
ein II*. O

THEOREM 6.13. Let R be an orthogonal TRS. For every outside-in NC-refutation G ~y T with
Olver(c) normalized there exists an eager LNC-refutation G =g T respecting Sip such that
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6 < 0 [Var(G)).

PRrOOF. Let II be the given outside-in NC-refutation G ~+} T. From Theorem 5.10 we obtain an
LNC-refutation IT*: G =3, T respecting Sp.z; such that ¢ < 6 [Var(G)]. From Lemmata 6.10 and
6.12 we learn that the variable elimination rule [v] is applied to all selected solved descendants
of parameter-passing equations in IT*, i.e., IT* is eager. O

The combination of Theorems 6.6 and 6.13 yields the final result of this paper.

THEOREM 6.14. Let R be an orthogonal TRS. If R + G8 and O1var(c) is normalized then there
exists an eager LNC-refutation G =, T respecting Sjo such that ¢ < 6 [Var(G)]. O

7. Suggestions for Further Research

This paper leaves many questions unanswered. In the near future we would like to address the

following problems.

o We have seen that LNC lacks strong completeness. This does not mean that ail selection
functions result in incompleteness. We already showed that LNC is complete (for confluent
TRSs and normalized solutions) with respect to Siy. Extending this to selection functions
that never select descendants of a body equation before all descendants of the corresponding
parameter passing equations have been selected shouldn’t be too difficult. :

¢ In Section 4 we have shown the strong completeness of LNC in the case of orthogonal TRSs,
using the completeness of basic NC. In Section 6 we showed the completeness of eager LNG
with respect to S.p for orthogonal TRSs, using the completeness of outside-in NC. A natural
question is whether these two results can be combined, i.e., is eager LNC strongly complete
for orthogonal TRSs. Consider the orthogonal TRS R of Example 6.5 and the goal f(a) ~ b.
There are two different Nc-refutations starting from this goal:

Ii: fla)mbd ~1 amb ~; bxb -, true
and
IMy: fla)mb ~q f(B)mb ~y brb ~, true.

Refutation II; is not basic and refutation II, is not outside-in. Hence basic outside-in NC is
not complete for orthogonal TRSs. This suggests that it is not obvious whether or not eager
LNC is strongly complete for orthogonal TRSs.

o The orthogonality assumption in our proof of the completeness of eager LNC is essential since
we make use of Huet and Lévy’s standardization theorem. We didn’t succeed in finding a non-
orthogonal TRS for which eager LNC is not complete. Hence it is an open problem whether
our restricted variable elimination strategy is complete for arbitrary confluent TRSs with
respect to normalized solutions. A more general question is of course whether the variable
elimination rule can always be eagerly applied, i.e., is the restriction to solved descendants of
parameter-passing equations essential? In a recent paper Socher-Ambrosius [22] reports that
the eager variable elimination problem has a positive solution in case of lazy paramodulation
for arbitrary equational theories. It remains to be seen whether his techniques can be lifted
to the present setting.

¢ In Section 6 we addressed non-determinism between the variable elimination rule on the one
hand and the outermost narrowing and imitation rules on the other hand. This is not the
only non-determinism between the inference rules. For instance, there are conflicts among
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the outermost narrowing, imitation, and decomposition rules. A question that arises here
is whether it is possible to remove all non-determinism between the various inference rules.
(This does not prohibit the generation of different solutions to a given goal, because the
outermost rule is non-deterministic in itself due to the various rewrite-rules that may be
applied.) The very simple orthogonal constructor-based TRS {f(a) — f(b)} together with
the goal f(z) = f(b) show that the restrictions for ensuring the completeness of a truly
deterministic subset of LNC have to be very strong. Observe that the solution {z — a} can
only be produced by outermost narrowing, whereas decomposition is needed for obtaining
the unrelated solution {z ~ b}.
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| Appendix

A.1. Proof of Lemma 4.5

The following lemma, can be viewed as a kind of partial lifting. It is the key to prove Lemma 4.5.

LEMMA A.l. Let II: G ~} T be an NC-refutation. Let W be the set of variables in the employed
rewrite rules and V a set of variables which includes both Var(G) and W. For all substitutions
v with v < 6 [V] and (D(Y) UZ(7)) N W = @ there exits an NC-refutation II': Gv ~3% T such
that v8' = @ [V]. Moreover, we may assume that II and II' employ the same rewrite rules at the
same positions in the corresponding equations of the goals.

Proor. The proof is by induction on the length n of II. The case 7 = 0 is obvious. Suppose
n > 0. Without loss of generality we assume Var(G)NW = @. For all i € {1,...,n} let o; be
the substitution in the i-th step in IT and define W; = W — (Var(ly) U...U Var(l;)). Without
loss of generality we furthermore assume that W; N (D(0i)UZ(0;)) = @. These two assumptions
simply state that the variables in the rewrite rules are sufficiently fresh. Let the first step of II
be '

G= (G’,e,G”) “o1,p1, e (G e[r1]p,, G")or = Gy

and let I1,: G4 ~+g, T be the remainder of II. We have 0,6; = 6. Since 7 £ 6 [V] there exists a
substitution § such that v6 = 6 [V]. Since Var(G)UW C V and D(y)NW = & we have

(67)Ip15 = ejp, (76) = e, 0 = (elplal)ﬁl = (l1o1)81 = 116 = 1176 = 116,

50 (e7)}p, and { are unifiable. Hence there exists an idempotent most general unifier o of these
two terms. We have 016’ = § for some substitution 6. Now e (701) = ((e7)ppy )0t = liof =
li(v01), so o} is a unifier of €lp, and ly. (The last equality is due to D(y) N W = @.) Since
o1 is a most general of €lp, and Iy there exists a substitution 4/ such that 017 = yo!. Let
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Vi =V = D(01) UZ(o1ly) and 71 = 7'ly,. Using Lemma 2.1(2) we obtain 017, = v [V].
Hence there exists an NC-step

G7 Wplyo'{:ll —7T1,eY¥ Gl’yl'

Using 0171 = 701 [V] we obtain 01(716") = 7016’ = v6 = 016; [V]. Lemma 2.1(1) yields
718" = 61 [Vi], so 11 < 61 [V4]). Before we can apply the induction hypothesis to II;, we
must verify that Var(G1) UW; C Vi and (D(11) UZ(11)) N Wy = @. First we show that
Var(G1) U Wi C Vi. We have

Var(G1) = (Var(G) = D(61)) UZ(011var(c)) € (Var(G) - D(01)) UL(o}y) € Vi.

From the assumptions W1 N D(01) = @ and W C V we infer that Wy C V4. Hence we obtain
Var(G1) U Wy C Vy. Next we prove that (D(y;) UZ(71)) N Wy = 2. Idempotency of o yields

D(o})UI(o}) C Var((e'y)lm? UVar(l1) € (Var(e) — D(y)) UZ(y) U Var(h).

From this we easily obtain (D(o]) UZ(0})) N Wy = @. Suppose to the contrary that (P(m) U

I(m)) N W1 # . We distinguish two cases: (1) D(y1) N W1 # @ and (2) I(m)NW # @.

(1) In the former case there exists a variable 2 such that z € D(m)and 2 € Wy. From Wy C V4
and W1 NI(01) = @ we obtain Wi C V —D(oy). Hence we see that 2y, = zo1y; = Yoy =
z0oy. (The last equality follows from the assumption D(y) N W = @.) Because z € D(7;)
we also have 2 € D(01). Hence D(0}) N Wi # @ which yields a contradiction.

(2) Suppose Z(y1) N Wi # @. We have Z(y) N W, = @ by assumption. Let z be a variable
such that @ € Z(71) N Wi. There exists a variable y € D(7;) such that z € Var(yyi). We
distinguish two cases: y € V — D(oy) and y € Z(oy]y). Suppose y € V — D(o1). Since
Y71 = yo1m1 = yyoy we obtain & € Var(yyo!). Because D(v;) N Wy = & we have y ¢ Wi
Because (Z(y) UZ(01)) N W1 = @, we have Var(yyo;) N\ Wi = . This contradicts z € W;.
In the remaining case we have y € Z(oy]y). So there exists a variable z € D(o1) NV such
that y € Var(zoy). Since zo171 = 270}, we have 2 € Var(yy1) C Var(zo17y) = Var(zyo}).
Because D(o1) N Wy = @, z ¢ Wy. From this we obtain a contradiction with z € Wy asin
the previous case.

We conclude that (D(y1) UZ(y1)) N Wy = @. Now we are in a position to apply the induction

hypothesis to II;. This yields an Nc-refutation

*
Gim o T
such that y;167 = 6, [Vi]. Concatenating this Nc-refutation with the NC-step
G7 ol G171

yields the Nc-refutation Gy ~g T. Here §/ = 0167. It remains to show that v’ = 4 [V].
Lemma 2.1(2) yields 01716} = 016, = 8 [V]. Hence 46’ = y010) = om0y =6 [V]. O

LEMMA 4.5. Let G ~j T be an Nc-refutation, V a finite set of variables, and v a substitution
such that Var(G) C V, v < 8 [V], and the variables in D(y)UZ(7) are different from the variables
in the employed rewrite rules. There exists an NC-refutation G7 ~} T which employs the same
rewrite rules at the same positions in the corresponding equations of the goals in G ~j T such
that v8' = 6 [V].

ProoF. Let W be the set of variables in the employed rewrite rules in the given NC-refutation
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and define V' = VUW. There exists a substitution p such that vp = 8 [V]. From D(Y)NW =g
we obtain v0 = 6 [W]. Since Z(y)NW = @, the substitution § = Plz(y) U Olw is well-defined. It
is easy to see that 76 = 6 [V'] and thus v < 6 [V’]. From Lemma A.1 we obtain an NC-refutation
Gy ~p T which employs the same rewrite rules at the same positions in-the corresponding
equations of the goals in G~} T such that 76’ =  [V"]. In particular 76’ = 8 [V]. O

A.2. Proof of Lemma 4.14
LEMMA 4.14. For every Nc-derivation
Gl) €1, G27 €2, GB “p1,01, 011, €1 (Gla el[rl]pl ) G2a €32, GS)UI
2,062,112, 6201 (Gh61[7'1]191aG2762[T2]P2aG3)0'10'2
with py € Posr(eq) there exists an NC-derivation
Gl, €1, G29 €2, GS sz,aé, lo—ra, 60 (G17 €1, G27 62[7‘2]122 ) G3)Ué
I,
“Pp1,0{, 111, e10h (Gl’el["l]maG2,e2[7'2]p2>G3)‘7201

such that o103 = 0}o].
PRrOOF. Since we may assume that the variables in l; are fresh, we have D(o1) N Var(l) = .
Hence

(62|p2)0102 = (6201)|p20'2 = 120'2 = 120'10'2.

So ez)p, and Iy are unifiable. Let o} be an idempotent most general unifier of these two terms.
There exists a substitution p such that ofp = 0y05. We have D(03) C Var(ez)p,) U Var(ly).
Because we may assume that Var(l;) N Var(ez) = @, we obtain D(o3) N Var(ly) = @. Hence

(€102)p: £ = (113,)0%p = (enpp, )10 = hio1oa = liohp = lyp.

So the terms (e103),, and /; are unifiable. Let ¢ be an idempotent most general unifier. We

have o7 < p. It follows that 040y < 0109. Using D(o%) N Var(l1) = @ we obtain

! / "o o ! N
(61,P1)0201 = (6102)|p101 = lioy = loyoy,

so o40] is a unifier of €1}, and l;. Because oy is a most general unifier of these two terms,
we must have oy € o0{. Let v be any substitution satisfying 017 = oj0y. With help of
D(o1) N Var(l;) = @ we obtain ' '

(€201) 1,7 = (e21p, )17 = (€2, )0h0T = Lyohot = lyory = lyy.

(In the first equality we used the assumption p; € Posx(ez).) Hence we obtain o, < 7 from the
fact that o, is a most general unifier of (6201)|p2 and ly. Therefore o109 < 0111 = oy0!. Since
we also have o450 < 0109, there is a variable renaming 6 such that 04076 = 0y0,. Now define
o1 = o74. Since most general unifiers are closed under variable renaming, o is a most general
unifier of (egaé)lm and /y. This proves the lemma. O
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A.3. Proof of Lemma 5.3

LEMMA 5.3. For every normal NC-refutation

II: e,G g e,G
or1,p1, - eI[TI]M 01,G'oy
o2, p2, k212 ((el[rl]m Ul)[”]pzaG/Ul)OQ
wé‘? T
with p; L py there exists a normal NC-refutation
II': e,G ~j e, G
ol p2,la—r2 (el[r2]]’27 G/)OJ2
el p1, oy ((e,[”]pz )[rl]m ) G/)Glei
w;2 T
with the same complexity such that 601040, = 61045010,.
Proor. First we show that p; € Posx(e). Suppose to the contrary that p; ¢ Posr(e'). That
means that p; > ¢ for some ¢ € Posy(e’). Without loss of generality we assume that ¢> 1. Let

ei o be the variable z. The term (€'0y ), is a subterm of 20y. Hence (€'01)|p, 02 is a subterm of
z0107. Because p; L py we have

('01)1p, 02 = ((€'[r1]p, )01) 1y, 02 = 203

So zoj07 is not a normal form. Hence zoy096; is also not a normal form. There exists a
reduction sequence from ef; to €’ consisting of non-root reduction steps. Hence z € Var(eil) -

Var((ef1)}1). From the normality of IT we infer that 6107046, [Var(e,) is normalized. This yields
a contradiction with Lemma 2.3. Therefore p; € Posx(e').
Since the variables in I3 are fresh, we have D(o1) N Var(ly) = @. Hence

! / — —_
6|p20'10'2 = (6 0'1)|p20'2 = l20‘2 = 120'10'2.

" So 010, is a unifier of eim and l;. Hence there exists an idempotent most general unifier o
of eipz and /y such that o) < 070,. Let p be a substitution satisfying ojp = 0105. Since o} is
idempotent, D(0%) N Var(ly) = @. Hence

(€'03)jp, P = €], 090 = (€], 01)02 = (101)02 = Lol = lyp,

ie., p is a unifier of (€'03)|,, and /1. Let of be an idempotent most general unifier of these two

terms. We have o7 < p and thus 0407 < 0hp = 0109. Using D(04) N Var(l}) = @ we obtain

/ !l 1 ! "o Hno__ o/

Since o4 is a most general of eipl and /y, we have oy < o)0?, so there exists a substitution Y
such that 017 = 0307. Using D(01) N Var(ly) = @ we obtain

(€'01)p,Y = €lp, 17 = (€lp,92)01 = (lob)o = lyory = lpy.

Because o is a most general unifier of (¢ 01)jp, and ly, we must have o3 € 7 and hence 0,09 <
017 = 0301. So 0103 and o0y are variants. Hence there exists a variable renaming § such that
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03016 = 0103. Now define o} = of6. Since o/ is a most general unifier of ¢’ 0’2'p1 and /1, and
most general unifiers are closed under variable renaming, we infer that also 01 is a most general
unifier of these two terms. Hence we obtain

6,, G’ “’"’a‘é,pg,lz—-»rz (e/['r2]p2>G/)aé
“ol,p1,li—r ((eI[TZ]pz )[Tl]Pl ) G’)aéai
Clearly ((€'[r1lpy01)lralp,s G'ov)os = ((€/[ralpy r1lpy» G')oho?. Replacing the two steps that
produce o103 in II by the above two steps yields the desired refutation II’. We clearly have
6101026, = 610507 6,. Because the number of narrowing steps at non-root positions is the same

in IT and IT', it follows that they have the same complexity. It is also easy to see that II’ inherits
normality from II. O

A.4. Proof of Lemma 5.8
LEMMA 5.8. For every NC-refutation
I: Gi,e1,Ga,62,G3 ~},

Y, ' / '
p1,01,li—r1, €l (G1, e1lr1lp Gy o, €501, G301

“p2,02,—72,eh01 ((G1, ei[ri]py Go)o, (201)[r2]p, » G40y )o2

]
g, T

! ! ! / /
1,€1,Ga,€5,G5

that produces a normalized substitution there exists a NC-refutation

I Gl,el,GQ,eg,G3 Wzl
LT 1N
“p2,0h,l2—r2, el (GYyyel, 2,62[r2]p2,G3)02

1l 1l AP

Wpl,a{,ll—»rl,egaé (G17 61[7‘1]pl ) G27 € [r2]P27 G3)0201

£ 3
0, T

TR R R
1,€1, Gy, €3, G

with the same complexity such that 6,010,609 = b610h0"0,.

ProOF. First we show that p, € Poss(e}). Suppose to the contrary that py ¢ Posr(ey). That
means that py > ¢ for some g € Posy(e}). Without loss of generality we assume that ¢ > 1. Let
(€2))q be the variable z. The term (€201)p, is a subterm of z0y. Hence (€301)jp, 02 is a subterm
of zo104. Since (€501)jp, 02 = la02, we conclude that zo1 0, is not a normal form. Hence 2010905
is also not a normal form. There exists a reduction sequence from ey8; to € consisting of non-
root reduction steps. Hence z € Var((ey)1) € Var((e261)}1). Because II produces a normalized
solution, 6, alagﬁgrva,((ez)ll) is normalized. This yields a contradiction with Lemma 2.3. Hence
we have py € Posx(e;). This implies that

((Gll’ 6/1 [Tl]pl 5 Gl2)01) (6,2 01)[7‘2],,2 ’ G\{So'l )02 = (Glh ell [Tl]m ’ G’27 6'2[7‘2]1,2 ) G:,3)0'102‘

Now we apply Lemma 4.14, resulting in a refutation I of the desired shape with 61010960, =
6105010;. It is easy to see that the transformation of Lemma 4.14 preserves complexity. O
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