A Complete Narrowing Calculus
for Higher-Order Functional logic
Programming

Koichi Nakahara Aart Middeldorp Tetsuo Ida
March, 1995

ISE-TR-95-118

Institute of Information Sciences and Electronics,
University of Tsukuba,

Tsukuba, Ibaraki 305, Japan

E-mail: {koh,ami,ida}@score.is.tsukuba.ac.jp

A Complete Narrowing Calculus for Higher-Order
Functional Logic Programming

Koichi Nakahara, Aart Middeldorp Tetsuo Ida

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305, Japan

{koh,ami,ida}@score.is.tsukuba.ac.jp

ABSTRACT

Using higher-order functions is standard practice in functional programming, but most func-
tional logic programming languages that have been described in the literature lack this
feature. The natural way to deal with higher-order functions in the framework of (first-
order) term rewriting is through so-called applicative term rewriting systems. In this paper
we argue that existing calculi for lazy narrowing either do not apply to applicative systems
or handle applicative terms very inefficiently. We propose a new lazy narrowing calculus for
applicative term rewriting systems and prove its completeness.

1. Introduction

There is a growing interest in combining the functional and logic programming paradigms in
a single language, see Hanus [6] for a recent overview of the field. The underlying computa-
tional mechanism of most of these integrated languages is (conditional) narrowing. Examples
of such languages include BABEL [9] and K-LEAF [4]. Both BABEL and K-LEAF lack higher-order
features. Bosco and Giovannetti [2] extended K-LEAF to the higher-order language IDEAL. The
semantics of IDEAL is given by means a translation from IDEAL programs into K-LEAF pro-
grams. Gonzdalez-Moreno et al. proposed in [5] the language SFL, a higher-order extension of
BABEL. The higher-order aspects of these two languages are modeled by means of first-order
applicative (conditional) constructor-based term rewriting systems. This means in particular
that higher-order unification—like in the higher-order logic programming language A-PROLOG
[11]—is avoided because there are no A-abstractions around. The following example program is
taken from [5]:

plusOy =y map f [] = []
plus(Sz)y = S(pluszy) ~mapflz|yl = [fz|mapfyl
double z = pluszz compose fgz = f(gz)

The functions map and compose are higher-order. Solving the goal
map f [S0,0,50] = [S(S(s0)),S0,5(s(s0))]

means finding a substitution for the higher-order variable f such that the value of the left-hand
side of the goal equals the right-hand side. One easily verifies that

f + compose S double

is a solution to the goal, but actually computing such solutions is a different matter. The
operational semantics of SFL is a particular kind of conditional narrowing and Gonzélez-Moreno
et al. [5] prove its soundness and completeness with respect to a declarative semantics that is
based on applicative algebras over Scott domains.

In this paper we are concerned with lazy narrowing strategies for applicative term rewriting
systems. Most lazy narrowing strategies that have been proposed in the literature are defined for
constructor-based term rewriting systems, e.g. [1, 10, 13]. An easy but important observation
is that while every applicative term rewriting system is a particular kind of term rewriting sys-
tem, not every applicative constructor-based term rewriting system is a constructor-based term
rewriting system. Nevertheless, an applicative orthogonal (constructor-based) term rewriting
system is an orthogonal term rewriting system, so lazy narrowing strategies that are defined
and proved complete for the latter class can be used as a computation model for higher-order
functional logic programming,.

We analyze the behaviour of 0INC—a simple calculus proposed in [7] which realizes lazy
narrowing—for applicative orthogonal term rewriting systems. It turns out that oINC handles
applicative terms very inefficiently. We transform oINC into a calculus NcA that deals with
applicative terms in an efficient way and we prove the completeness of NcA. We would like
to stress that the ideas developed in this paper do not depend on oiNc. The only reason for
choosing OINC is the simplicity of its inference rules.

This paper is organized as follows. In the next section we introduce applicative term rewrit-
ing. In Section 3 we recall the calculus oIiNc. In Section 4 we observe that oINC doesn’t
manipulate applicative term rewriting systems in a very efficient way. The new calculus NCA is
defined to overcome this inefficiency. The completeness of NCA is proved in Section 5. Section 6
is concerned with a further optimization of our calculus, namely we extend NCA with special
inference rules for dealing with strict equality in an efficient way. In Section 7 we compare
the relative efficiency of NCA and OINC on a small example. We conclude in Section 8 with
suggestions for future research.

2. Preliminaries

We assume the reader is familiar with the basics of term rewriting. (See [3] and [8] for exten-
sive surveys.) In this preliminary section we recall only some less common definitions and we
introduce the notion of applicative term rewriting.

The set of function symbols F of a term rewriting system (TRS for short) (F,R) is parti-
tioned into disjoint sets Fp and F¢ as follows: a function symbol f belongs to Fp if there is a
rewrite rule [— r in R such that [= f(t1,...,t,) for some terms t1,...,%,, otherwise f € F¢.
Function symbols in F¢ are called constructors, those in Fp defined symbols. A term built from
constructors and variables is called a constructor term. A constructor system (CS for short) is
a TRS with the property that the arguments t4,...,t, of every left-hand side f(t1,...,t,) of a
rewrite rule are constructor terms. A left-linear TRS without critical pairs is called orthogonal.

We distinguish a binary function symbol =, written in infix notation. A term of the form
s ~ t, where neither s nor ¢ contains any occurrences of =, is called an equation. Observe that
we do not identify the equations s ~ ¢t and ¢t ~ s. A goal is a sequence of equations. The empty
goal is the empty sequence and denoted by O.

In applicative term rewriting we deal with applicative terms. Such terms are built from

variables, constants, and a special binary function symbol application, which is denoted by
Juxtaposition of its two arguments. Examples of applicative terms are (+(S0))0 and S (z 0).
To distinguish constants from variables in applicative terms we denote the former always in
typewriter style. Parentheses are omitted under the convention of association to the left,
which means that missing parentheses are restored by always taking the leftmost possibility, so
(+(s0))0 and +(S0)0 denote the same term, which is different from + S00. The head-symbol
of an applicative term is the symbol that occurs at the leftmost-innermost position. This symbol
is either a constant or a variable. For instance, the head-symbol of + (S0)0 is + and the head-
symbol of z 0 is . We assume that every constant f is equipped with a natural number arity(f).
Intuitively this number indicates the number of arguments we have to supply in order to evaluate
the function or build the data structure. In the following definition we identify a subclass of
applicative terms that is used to define applicative term rewriting systems.

DEFINITION 2.1. A pattern is an applicative term ¢ with the property that the head-symbol of
every non-variable subterm of ¢ is a constant.

So a pattern is either a variable or a term of the form f¢;---t, where t;,...,t, are patterns.
The term + (S0)(+z) is a pattern, but S(z0) isn’t. Now we are ready to define applicative
term rewriting systems.

DEFINITION 2.2. An applicative rewrite rule is a pair | — r of applicative terms such that the
left-hand side ! is a pattern of the form f1ly ---I, with n = arity(f), and Var(r) C Var(l). An
applicative term rewriting system (ATRS for short) consists of applicative rewrite rules.

Every ATRS is a TRS. Hence notions defined for TRSs like orthogonality apply to ATRSs.
We would like to point out however that the definition of CS doesn’t make much sense in the
context of ATRSs. The well-known map function from functional programming can be specified
as the following ATRS:

map fnil — nil

map f (:2y) — :(fz)(mapfy)
We have arity(map) = 2. This ATRS is not a CS because the arguments of the two left-hand
sides contain (hidden) application symbols, which are in Fp. For example, the arguments of
the left-hand side map fnil are map f and nil, not f and nil. Nevertheless, there is a clear
separation between constants that define functions (map) and those that build data structures
(nil and :). This suggests the following definition.

DEFINITION 2.3. Let R be an ATRS. A constant f is said to be applicatively defined if it is
the head-symbol of the left-hand side of some rewrite rule in R. An applicative constructor is
a constant that is not defined. We call R an applicative constructor system (ACS for short) if
the terms #;,...,t, in the left-hand side ft; ---t, of every rewrite rule do not contain defined
symbols. ‘

The ATRS defining the map function is an ACS. We would like to stress that ACSs are not
CSs, except in trivial cases. So narrowing strategies that are defined for CSs do not apply to
ACSs. ‘

When writing applicative terms we find it convenient to abbreviate ft; - -, to f t,. Observe
that t,, is not a term. If n = 0 then ft, denotes the constant f. By the same convention z s,, t,
stands for the term z sy :--8,%; -+ t,,. A term of the form z t,, is called a head-variable term.
In the sequel, when dealing with ATRSs, we usually omit the adjective applicative.

3. The Outside-In Narrowing Calculus

In this section we recall the outside-in narrowing calculus of [7] and state its completeness.

DEFINITION 3.1. Let R be an orthogonal TRS. The outside-in narrowing calculus, oINC for
short, consists of the following inference rules (E denotes an arbitrary sequence of equations):

e outermost narrowing [on]

f(Sl,...,Sn) Nt,E
siml,.. .8yl r=t, E

if t ¢ V and there exists a fresh variant f(l4,...,l,) — r of a rewrite rule in R,

e decomposition [d]

f('519°"a5n) ~ f(tla“'atn)yE

81 ztl,...,snztn,E

o variable elimination [v]

t~z, B
E6

and

r=t FE
Eo

with @ = {2 + t}. In the second variable elimination rule we require that ¢ ¢ V.

We introduce some useful notations relating to the calculus oiNnc. If G and G are the
upper and lower goal in the inference rule [o] (a € {on,d,v}), we write G =[oj G'. This is
called an OINC-step. The applied rewrite rule or substitution may be supplied as a subscript,
that is, we will write things like G = [on),1-r G' and G =), 6 G'. A finite oINC-derivation
G1 =4, -+ =9¢,_, Gn may be abbreviated to G; =) G, with 6 = 6y ---60,_1. A successful OINC-
derivation ends in the empty goal 0. The number of steps in an OINC-derivation A: G =* G’
is denoted by |A|. If |A| > 1 then Ay, denotes the derivation obtained from A by omitting the
first step.

The calculus 0INC has been designed with the restriction in mind that initial goals are
right-normal.

DEFINITION 3.2. A goal G is called right-normal if the right-hand side ¢ of every equation s ~ ¢
in G is a ground normal form. A goal G’ is called proper if there exists an OINC-derivation
G =* G' starting from a right-normal goal G.

The restriction to proper goals is motivated from the understanding that functional logic
programming languages deal with so-called strict equality in order to model non-termination
correctly. Every goal consisting of strict equations is right-normal, see Section 6.

It is not difficult to show that the term ¢ in a proper goal Fy,s =~ t,FE; has no variables
in common with s and E;. This explains why we don’t need the occur-check in the variable
elimination rules. It also explains why there is no ¢mitation rule in oINC. Finally, the absence
of the symmetric outermost narrowing rule

t~ f(s1,...582), E
sicl,.. ., sp=l,trr, FE

is easily explained by the restriction to orthogonal TRSs and proper goals.

DErFINITION 3.3. Let R be a TRS and G a goal. A substitution 6 is called a solution of G if
s0 =g t6 for every equation s & t in G.

Ida and Nakahara [7] obtained the following soundness and completeness result.

THEOREM 3.4. Let R be an orthogonal TRS and G a right-normal goal.
(1) If there exists a successful OINC-derivation G =} O then 6 is a solution of G.

(2) For every normalizable solution 0 of G there exists a successful OINC-derivation G =}, O
such that 6' <z 0 [Var(G)).
O

If the substitution 6 in part (2) is normalized, the subscript R can be dropped.

ExAMPLE 3.5. Consider the orthogonal TRS
R = O+y — y
S@)+y — S+y)
and the right-normal goal z+y =~ $(0). The solutions {« — 0,y — 5(0)} and {z — 5(0),y — 0}
are generated by the oINC-derivations
T+y= S(O) Zlon], 04y -y T 0,y y,n~ S(O)
=[], {z—0} Y~y = 50)
=Wl -y YR S5(0)
= {v-se) U
and

z+y = 5(0) =(on], S(z1)+y1—S(z1+y1) T = I(1),y = y1,5(2z1 + y1) = 5(0)

o], {8 (21)} Y= y1,8(z1 + 1) = 5(0)
=[], {v1mv} S(z1+y) = 5(0)

= d] T3 +y=0

= [on), 0492 —y2 2120,y = y2,0 = yo

= [v], {10} YR Y2, 0= Yo

=[], {v2r-u} 0~y

=[], {y—0} 0.

Note that in each outermost narrowing step a fresh variant of a rewrite rule is used.

4. A Narrowing Calculus for Applicative Systems

Every ATRS is a TRS, hence OINC is complete (in the sense of Theorem 3.4(2)) for orthogonal
ATRSs. However, 0INC doesn’t handle applicative terms very efficiently. The problem is that
the applicable inference rules and (in the case of [on]) rewrite rules are determined by the
outermost symbol of the left-hand side of the leftmost equation of the current goal. In the
context of ATRSs this outermost symbol is almost always the binary application symbol, which
doesn’t carry any useful information for restricting the choice of inference and rewrite rules. Let
us consider two examples.

EXAMPLE 4.1. The (right-normal) goal czy = cab is solved by the following OINC-derivation:

czymRcab =y cxrrca,y~rb
=[d] cCxRc,rRay~rb
=[d] rTxXayrb

= [v], {z—a} y=b
ORI

We need three decomposition steps before we can bind the variables.

ExXAMPLE 4.2. Consider the orthogonal ATRS

) inc — addi
addiz — Sz
The following oINC-derivation computes the solution {z — 0} of the goal incz ~ S0:

incz ® S0 =[] addlz—Se IRC A~ addl,z ~z;,S2; xS0
=[on], inc—add1 addl ~ addl,z &~ z1,Sz; & SO

=d] TR z1,521 S0
= [v], {z1-a} Sz =~S0

=[d] S~S,zx0

=[d] =0

=[], {0} O.

It is essential that we choose the (renamed) rewrite rule add1z; — S z; for the equation incz ~
S0 in the first outermost narrowing step. However, we have no way to implement this choice.
In order to ensure completeness all rewrite rules whose left-hand side is not a single constant
must be used in combination with the outermost narrowing rule.

We overcome the problems mentioned above by looking at the head-symbol rather than
the outermost symbol of the left-hand side of the equation under consideration. This is natural
since the head-symbol of an applicative term corresponds to the outermost symbol of a functional
term. The narrowing calculus defined below implements this idea.

DEFINITION 4.3. Let R be an orthogonal ATRS. The calculus NcA—Narrowing Calculus for
Applicative TRSs—consists of the following five inference rules:

e outermost narrowing of applicative terms [ona]

fsptm =t FE
81 R ULyeeey Sy N Uy, Tty R E,F

if t ¢ V and there exists a fresh variant fu, — r of a rewrite rule in R,
e outermost narrowing of head-variable terms [onv]

sty =t F
(81 R V1y..y 80 R Un, Tty x T, E)0

if t ¢ V, there exists a fresh variant fuiv, — r of a rewrite rule in R, » > 0, and
6 = {x = fuk}a

o decomposition of applicative terms [da]

fsum ft,, E
S1 Rty Sy Rty B

o decomposition of head-variable terms [dv]

s, = ftpu,, F
(81 R Upyevn,Sp R Uy, E)

if={z~ ft,},

o variable elimination [v]

t~z, FE
Ed
if={zw—t}

Observe that the second variable elimination rule of OINC is subsumed by the inference rule
[dv] of NCA. In order to distinguish NCA-derivations from oINC-derivations, we use = instead of
= for the former.

EXAMPLE 4.4. The goal czy = cab is solved by the following NCA-derivation:
cry~cab Sy r~a,yxb
a[dv],{a:Ha} y~b
S [do], {yby O

With respect to the ATRS R of Example 4.2, the goal incz = S0 is solved by the following
NCA-derivation:

incz S0 S[yna), inc—add1 addiz =~ SO

5[ona],add1 ry—8z; TR z1,Sz1 = S0

=[], {z-} Se~S0
a[da] z~0
= [dv], {z—0} a.

The inference rule [onv] of NCA is used to bind higher-order logical variables. This is illus-
trated in the next example.

ExXAMPLE 4.5. Consider the orthogonal ATRS

plusOz - (1)
_) plus(Sz)y — S(pluszy) (2)
map fnil — nil (3)
map f(2:y) — (fo):(mapfy) (4)

Here : is a binary constructor, written in infix notation, and nil is a constant denoting the empty
list. We adopt the usual convention of writing [t1,...,%,] to denote thelist (¢1: (- - - (¢, :nil)--.)).
The goal map z [S0] = [S0] is solved by the following NcA-derivation:

map z [SO] ~ [SO] S[onq), (4) e~ f1,[80] = (z1:31),(f121): (map f1y1) = [SO]
D), {f1—-z} [SO] ~ (z1:%1),(z 1) :(mapzy;) = [SO]
=[dd] SO0~ z1,nil & y1,(z21):(mapzy1) = [SO]
2], {z1-5 0} nil = y;,(2(50)): (mapz y1) = [S 0]
2ol {s-nil} (2(50)):(mapznil) ~ [SO]
2 [da] z(S0)~ SO,map znil ~ nil
S [ona], (1), {z—plus 0} SO X Ya,y2 ~ SO,map (plus0)nil ~ nil
2o, {y2—5 0} S0 &~ SO,map (plus 0)nil ~ nil
Eﬂ}a] map (plus 0)nil =~ nil
S(ond], (3) plusO = f3,nil A~ nil,nil ~ nil
= [v], {f3>plus 0} nil & nil,nil &~ nil
=i 0.

Note that in the =[,)-step the variable & is bound to the higher-order term (plus 0).
Soundness of NCA is expressed in the following theorem.

THEOREM 4.6. Let R be an orthogonal TRS and G a right-normal goal. If there exists a
successful NCA-derivation G =} O then 0 is a solution of G.

ProoF. Straightforward induction on the length of the successful NCA-derivation G =5 0. O

5. Completeness

In this section we establish the completeness of NCA. The idea behind the proof is straightfor-
ward. We show that for every non-empty oINC-derivation A:G =>F O there exist an NCA-step
G =, G’ and an oINC-derivation A’: G’ =}, O such that § = 6’ and |A’| < |A|. Completeness
of NcA is then reduced to the completeness of OINC by a routine induction argument. First we
define an appropriate notion of descendant for oINC-derivations.

DEerFINITION 5.1. Let R be an ATRS. In the oINC-derivation

E =* 3183t t9, Eq =[d] S1 & t1,82 & ty, By =™ Fs

8

the equation s; = ty is called an immediate descendant of the equation $; s; = t;15. In the
OINC-derivation

E=*s1saxt, By =pns1 7,82 %Iy, 7 =t Ey =™ Ey

where [; I3 — ris a fresh variant of a rewrite rule in R, the equation s, ~ [; is called an immediate
descendant of the equation s; s; = ¢t. The notion of immediate descendants generalizes to a
notion of descendant by reflexivity and transitivity.

In Lemmata 5.2-5.7 we observe basic properties of successful oINC-derivations.

LEMMA 5.2. Let G = fs, = gt,,E be a goal such that f # g or n # m. In all successful
OINC-derivations starting from G the rule [on] is applied to a descendant of f s, = gt,,.

Proor. Obvious. O

LEMMA 5.3. Let G = zs, = gt,,E be a goal such that m < n. In all successful OINC-
derivations starting from G the rule [on] is applied to a descendant of zs, ~ gt,.

Proor. Obvious. O

LEMMA 5.4. Let G = fs, ~ t,E be a goal such that n < arity(f). There exist no successful
oINcC-derivations starting from G in which the rule [on] is applied to a descendant of f's, =~ t.

Proor. We use induction on n. If » = 0 then there are no rewrite rules of the form f — r
because arity(f) > 0 and hence [on] is not applicable. Suppose n > 0. Let A be an arbitrary
successful OINC-derivation starting from G. We distinguish the following three cases:

(1) Suppose the inference rule [d] is applied in the first step of A, so A can be written as

fsn=t,E =[d] fsp1mt, 8, Rty, E =20

with ¢ = t; t3. According to the induction hypothesis the inference rule [on] is not applied
to a descendant of fs,—1 & t; in the subderivation As;. Therefore [on] is not applied to a
descendant of fs, =~ tin A.

(2) Suppose the inference rule [on] is applied in the first step of A, so A can be written as

fsn=t,E = [on], Iy lz—r fsnrml, sl r=t, E="0

for some rewrite rule /; l; — 7. We have to show that this is impossible. According to the
induction hypothesis the inference rule [on] is not applied to a descendant of fs,_.; ~ I
in the subderivation As;. Because [j /3 is a pattern, /; is not a head-variable term, so we
may write Iy = gun, with m = arity(g) — 1. We have either f # g or n — 1 # m. Now
Lemma 5.2 yields the desired contradiction.

(3) If the inference rule [v] is applied in the first step of A then by definition there are no
descendants of fs, = t left in Ay to which [on] can be applied. Therefore [on] is not
applied to a descendant of fs, ~ ¢ in A.

O

LEMMA 5.5. Let G = fs, = ft,,E be a goal such that n < arity(f). In every successful
OINC-derivation starting from G the rule [d] is applied to all descendants of f s, = f t..

Proor. Easy consequence of Lemma 5.4. O

LEMMA 5.6. Let G = fs, ~ t,E be a goal such that n = arity(f). If there exists a successful
OINC-derivation starting from G in which the first step is an application of the rule [on], then
the rewrite rule used in this step is of the form fu, — r.

Proor. Easy consequence of Lemmata 5.2 and 5.4. O

LEMMA 5.7. Let G = fsyty =1, F be agoal such that n = arity(f) and m > 0. If there exists
a successful OINC-derivation A starting from G in which the rule [on] is applied to a descendant
fsnty =t (1< k< m)then [on] is applied to the descendant fs, ~t" of fs, t, ~t.
Proor. Without loss of generality we may write A as

G =* fsntr =t/ E
= [on], g ug—r fsn th—1 R gue_1,lk N U, TR tlv E
=74 Fsn=gugy, E”
=3 a

where gu;, — 7 is a fresh variant of a rewrite rule in R. Note that £ = n if f = g. So we have
f#gorn# L~k According to Lemmata 5.2 and 5.4 the inference rule [on] is applied to the
equation fs, ~ guy_g. O

In Lemmata 5.8-5.12 we prove that for certain successful oINC-derivation A: G =>:9" O there
exists an OINC-derivation A":G' =}, O such that G =, G, § = o', and |A'| < |A]. In
Lemma 5.13 we show that there are no other cases to consider.

LEMMA 5.8. Let A:s = z, E =} O be an oINC-derivation. There exists an oINC-derivation
A:Eo =3 0
with 0 = {z > s} such that 0 = 06’ and |A'] < |A|.
ProOF. The first step of A must be an application of the inference rule [v]:
A:s® z,E =)o Eo =5 O
with 6 = 06’ and o = {z ~ s}. Define A’ = A,;. We clearly have |A’| = |A| -1 < |4]|. O
The initial goals of A and A’ in Lemma 5.8 are connected by a 2], o-Step.

LEMMA 5.9. Let A: fs, = ftn, E =} O be an oINC-derivation. If [on] is never applied to a
descendant of fs, = ft, then there exists an OINC-derivation

Alisy Rty 8, X by, E =3 O

such that |A'| < |A|.

Proor. By induction on n. If » = 0 then we take A’ = Ayq. In this case we clearly have
|A’| < |A|. Suppose n > 0. The first step of A must be an application of [d], so we may write A
as

fSn ~ ftn,E i[d] fSn_]_ ~ ftn_l,sn ~ tn,E =>3- .
An application of the induction hypothesis to the oINC-derivation As; yields an OINC-derivation
Alisy Rty 801 R lp1,8, R by, E =3O

with |4| < |As1| = |A| = 1< |4]. O

10

Note that the initial goals of A and A’ in Lemma 5.9 are connected by a =[da]-Step.

LEMMA 5.10. Let A:zsy & ftm u, =7 O be an oINC-derivation. If [on] is never applied to a
descendant of ¢s, ~ ft,, u, then there exists an OINC-derivation

Ali(s1 ® U1y y8n R Uy, E)o =5 0
with o = {z — f1t,,} such that = 08’ and |A'| < |A|.
Proovr. Similar to the proof of Lemma 5.9. O

The initial goals of A and A’ in Lemma 5.10 are connected by a = [dv], o -Step.

LEMMA 5.11. Let A: fspt, & ¢t =} O be an oINC-derivation with n = arity(f). If [on] is
applied to the descendant fs, ~ t' of fs,t, ~ t using the rewrite rule fu, — r then there
exists an OINC-derivation

Alisi ™ UL, ... 8y R Un,rtm ¥t E =50

such that |A'| < |A|.

PRrooF. We use induction on m. If m = 0 then the inference rule [on] with rewrite rule fu, — r

is used in the first step of A. If n = 0 then we take A’ = Asy. If n > 0 then we may write A as
fsn=t,E = [on] [sn—1% fun_1,8n ® up, 7= 1, E :>;- .

According to Lemma 5.5 the inference rule [on] is not applied to descendants of fs,_1 & f u,_1

in the subderivation Ay ;. Hence we can apply Lemma 5.9 to As;. This yields an oINC-derivation

At R UL, e Syl R Up_1, 8y R U, TR, E =50

such that |A’| < |As1| = |A|—1 < |A|. For the induction step, suppose m > 0. Let us abbreviate

81 R Up,...,8y N Uy, to E'. We distinguish the following cases:

(1) Suppose the inference rule [d] is used in the first step of A. This means that we may write
A as

s = taEﬁ[d] fsntm—-l R U, tn & 1)2,E:>:9*- a

with ¢ = vy v2. An application of the induction hypothesis to the subderivation As; yields
an OINC-derivation

B:E 7 tm-1 ~ v1,tm ~ ve, E =5 O
such that |B| < |[As1| < |A]. The oiNc-derivation B can be split into
By:E' 1ty ® vty R vy, E =5, (Ttm_1 R 1,1, R vy, E)fy
and
By: (rtm—1 = v1,tm R ve, E)oy =5, O
with 8 = 6;10,. The oINC-derivation B; can easily be transformed into the oINc-derivation
C:E'\rtm = 102, E =5 (Tm & vy 03, E)b;.

Because m > 0 we can apply the inference rule [d] to the final goal (7 tm & vy v2, E)f; of
C, yielding the oINC-step

D:(rtn, = v1ve, E)6y =g (Ttm-1 R v1,tm = vz, E)f;.

11

Concatenating the three oiNc-derivations C, D, and B; yields the desired oINc-derivation
A E' rt, ~t,E =} 0.
Note that |A’| = [C| 4+ |D|+ |B;| = |B| + 1 < |A|.
(2) Suppose the inference rule [on] is used in the first step of A. This means that there exists
a fresh variant v; v; — 7’ of a rewrite rule in R such that A can be written as

SR E Son) [Sntm1 X v1,tm ¥ vg,r & t,E 2} O
An application of the induction hypothesis to As; yields an oINC-derivation
B:E'\ 1ty 1 RV, bty S vg,7 &, E =5 O
such that |B| < |As1]| < |A]. The oinc-derivation B can be split into
Bi:E'\ 1 tyn—1 R v1,tm R 03,7 R G, E =5 (Ttmey 8 01,tm & 02,7 &1, E)
and
Bo:(rtpm—1 R v1,tm ® vy, 7' R 1, E)0y =}, O
with 6 = 6,0,. We transform Bj into the oINc-derivation
C:E\7tm = t,E =} (rt, = t,E)b;.
Next we apply the inference rule [on] to the final goal (rt,, ~ ¢, E)f; of C, using exactly
the same variant v; v3 — 7. This yields the OINC-step
D:(rtm = t,E)0 =[on) (Ttmo1 & v1,tm = v2,7’ &, E);.

Also in this case the desired oINC-derivation A’ is obtained by concatenating C, D, and B,.
(3) It is not possible that the first step of A is an application of the variable elimination rule
[v] because then there is no descendant left to which [on] can be applied.

Observe that the initial goals of A and A’ in Lemma 5.11 are connected by a B [ona]-Step.

LEMMA 5.12. Let A:z syt ~t,E =} O be an oINC-derivation with n > 0. If [on] is applied
to the descendant x s, ~ t' of s, t,, ~ t using the rewrite rule f uy v, — r and z s, ~ t' is the
last descendant to which [on] is applied then there exists an OINC-derivation

A (s1 R V1, 80 RV, Tty At E)o =5, 0

with 0 = {x — fur} such that 0 = 68’ and |A'| < |A].
ProOF. Similar to the proof of Lemma 5.11. O

In Lemma 5.12 the initial goals of A and A’ are connected by a S [onu], o-5t€P-

LEMMA 5.13. Let G be a proper goal. For every oINC-derivation A:G #3’ O there exist an
NCA-step G =, G' and an OINC-derivation A": G' =}, O such that § = 06’ and |A’| < |A|.
Proor. We have to show that Lemmata 5.8-5.12 cover all possible cases. Let G be the goal
s~ 1, E. The case that t is a variable is covered by Lemma 5.8, so we may assume that ¢ is not
a variable. Because G is proper the right-hand side ¢ is a pattern. Hence t is not a head-variable
term. We distinguish two cases.

(1) Suppose [on] is not applied to a descendant of s ~ ¢.

12

(a) If the head-symbol of s is a constant f then, according to Lemma 5.2, we must have
s = fs, and t = ft,. This case is covered by Lemma 5.9.

(b) If the head-symbol of s is a variable 2 then, according to Lemma 5.3, s = zs, and
t = ft, u,. This case is covered by Lemma 5.10.

(2) Suppose [on] is applied to a descendant of s ~ t.

(a) If the head-symbol of s is a constant f then, according to Lemma 5.4, we have s =
[sn tm with n = arity(f). From Lemma 5.4 we also infer that [on] is never applied to
descendants of the form fs; ~ ¢’ with k < arity(f). Hence the application of [on] is to
a descendant of the form fs, ty ~ t” with 0 < k < m. According to Lemma 5.7 [on] is
applied to the descendant fs, ~ t"”. Lemma 5.6 states that the employed rewrite rule
is of the form fu, — r. Hence this case is covered by Lemma, 5.11.

(b) The case that the head-symbol of s is a variable z is covered by Lemma 5.12, using
similar reasoning as in the previous case.

The completeness of NCA is an easy consequence of the previous lemma and the completeness
of OoINC (Theorem 3.4(2)).

THEOREM 5.14. Let R be an orthogonal ATRS and G a right-normal goal. For every normaliz-
able solution 6 of G there exists a successful NCA-derivation G =}, O such that ' <z 0 [Var(G)).

PRrOOF. According to Theorem 3.4(2) there exists a successful oINC-derivation A: G =}, O such
that 8/ <z 6 [Var(G)]. By induction on |A| we show the existence of a successful NCA-derivation
G =3 0. The case |A| = 0 is trivial. Suppose |A| > 0. According to Lemma 5.13 there exist an
NCA-step G =, G’ and an OINC-derivation A": G’ =}, O such that ¢’ = 06” and |A’| < |A|. The
induction hypothesis yields an successful NCA-derivation G’ =%, O. Combining this derivation
with the NCA-step G =, G’ yields the desired NcA-derivation G =}, 0. O

6. Incorporating Strict Equality into NCA

In functional logic programming languages like K-LEAF [4] and BABEL [9] two expressions are
considered to be equal if and only if they reduce to the same ground constructor normal form.
This so-called strict equality is adopted to model non-termination correctly. In the framework
of applicative term rewriting, strict equality is realized by adding the rewrite rules

c=c — true if ¢ is a nullary constructor,
CXp =CYn — T1=Y1AN--ATp =y, if cisan n-ary constructor with n > 0,
true A '

to a given ATRS R, resulting in the ATRS R,. Here = denotes strict equality and A is a
binary right-associative symbol, written in infix notation, denoting logical conjunction. In our
framework a strict equation is an equation of the form (s = t) & true, which we abbreviate to
s ~, t. A goal consisting of strict equations is trivially right-normal.

Since R inherits orthogonality from R, we can solve (strict) equations with respect to the
calculus NCA and the ATRS R;. However, as observed by Ida and Nakahara [7] in the context
of OINC, it is much more efficient to add special inference rules for the rewrite rules in R,\R.
Based on their ideas, we extend NCA in the following definition.

13

DEFINITION 6.1. Let R be an orthogonal ATRS. The calculus NCA; is obtained by adding the
following inference rules to NCA:

o outermost narrowing of applicative terms for strict equations [onas]

fsntm 8, F
S1 R Ulyee.ySp B U, Tty N 1L, F

if there exists a fresh variant f u, — r of a rewrite rule in R,
e outermost narrowing of head-variable terms for strict equations [onvs]

rspty >, L F
(81 R V1, ey 80 RV, Ty R t, E)

if there exists a fresh variant f uj v, — 7 of a rewrite rulein R, » > 0, and 6 = {2 — fu;},
o decomposition of applicative terms for strict equations [das]

csy, Rgcty, B

81 R tl, ey 8p R tn,E
if ¢ is an n-ary constructor symbol,
o imitation for strict equations [imas]

T8y ~g cty uy, B

(1 Rs t1yere s B Rs by S1 RN Uty e ey Sy R Un, F)0
if ¢ is an (m + n)-ary constructor symbol and § = {z — cxp, } with x,,, fresh variables,
o decomposition of head-variable terms for strict equations [dvs]

S, >, Yty u,, B

(1 s 1y ooy T Rs b,y 81 REs Uty e ey Sy Rs Uy, E)O

if either z = y, m = 0, and @ is the empty substitution, or # y and 0 = {z — yx,,} with
Xy, fresh variables.

Here s ~, t stands for s ~, t or ¢ = s.
Observe that the rewrite rules in R;\R for strict equality are no longer needed in NCA,.

EXAMPLE 6.2. Let R = {a — b}. The following NCA-derivation, starting from the goal G =
T aa X, ya, produces the substitution o = {y — zb}:

G Dldvs], {y—zz} B8R T1,aR;sa

=[onas), a—b b~ 21,82
Slimas), {z1-b} 2~s 2

=[onas], a—b b~ a
S[onas],a—b b =,

S[das] a

14

Note that o is not a solution of G since the terms z aa and z b a do not reduce to the same ground
constructor normal form. However, we would like to stress that o represents (all) solutions of
G in the sense that o6 is a solution of G for all § = {z > ct, | ¢is an (n + 2)-ary constructor
and ty,...,t, are ground constructor terms}.

Below we state the completeness of NCA,. The proof, which is essentially the same as the
completeness proof of the calculus s-0INC studied in [7], is omitted.

THEOREM 6.3. Let R be an orthogonal ATRS and G a right-normal goal. For every nor-
malizable solution 6 of G there exists a successful NCA,-derivation G =7 0O such that ¢’ <z
6 [Var(G)]. O

7. Experimental Results

In this section we compare the performance of NCA and OINC on a small example. We have
implemented both calculi in Sicstus Prolog 2.1. We solved goals of the form

Gn =map f[s"0,8" 10, ..., 0] ~ [s™*10, s 10, ..., 0]
with respect to the example program in Section 1. Here S 0 denotes the term

s(s(...(s 0)))

n

Since for each n there are infinitely many normalized solutions of G, we measured the runtime
of the two programs to compute the first solution {f — compose S double}. Table 1 shows, for
several values of n, these times in milliseconds as well as the length of the resulting successful
derivation. It is apparent that NCA has a much better performance than oINC.

[n] OINC | NCA |
1 3800 msec. (73 steps) 120 msec. (42 steps)
2 5448 msec. (136 steps) 179 msec. (77 steps)
3 7401 msec. (210 steps) 250 msec. (118 steps)
4 8799 msec. (295 steps) 305 msec. (165 steps)
5 10769 msec. (391 steps) 380 msec. (218 steps)

TABLE 1.

8. Concluding Remarks

We have presented complete narrowing calculi for applicative term rewriting. Applicative term
rewriting is a natural first-order framework for dealing with higher-order functions in the frame-
work of functional (logic) programming with lazy semantics.

Although NcA and NCA; have been designed to deal efficiently with applicative terms, there
remains some room for improvement. In order to ensure completeness of the calculi, the various

15

inference rules have to be applied don’t know non-deterministically. In general more than
one inference rule is applicable to a given goal. For instance, both [ona] and [da] apply to
certain goals. One way to remove this particular non-determinism is by restricting ourselves
to ACSs. The restriction to ACSs also enables us to add failure rules which can be used to
prune unsuccessful derivations at an early stage. Another source of inefficiency in our calculi
is in the inference rules [onv] and [onvs] themselves. In the worst case there are arity(f) — 1
different ways to apply the two inference rules with respect to a given rewrite rule fuy v, — r.
A practical restriction to remove this non-determinism is by adding types to applicative term
rewriting systems. In typed systems we can associate a type with every (head-)variable. This
implies that we can uniquely determine the number £ for the rewrite rule f ug v, — r such that
the type of the head-variable z is (an instance of) the type of the term f u.

As a final remark, we emphasize that the basic ideas in this paper do not depend on the
calculus oINC. For example, it is only a matter of diligence to extend NCA to a calculus based
on the calculus LNC studied in [12]. Because the inference rules of LNC are more complex than
those of OINC, the former calculus is complete for arbitrary confluent term rewriting systems
and arbitrary initial goals.

References

1. S. Antoy, R. Echahed, and M. Hanus, A Needed Narrowing Strategy, Proceedings of the
21st ACM Symposium on Principles of Programming Languages, Portland, pp. 268-279,
1994. ,

2. P.G. Bosco and E. Giovannetti, IDEAL: An Ideal Deductive Applicative Language, Pro-
ceedings of the IEEE International Symposium on Logic Programming, pp. 89-94, 1986.

3. N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, in: Handbook of Theoretical Com-
puter Science, Vol. B (ed. J. van Leeuwen), North-Holland, pp. 243-320, 1990.

4. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi, Kernel-LEAF: A Logic plus Func-
tional Language, Journal of Computer and System Sciences 42(2), pp. 139-185, 1991.

5. Juan Carlos Gonzélez-Moreno, M.T. Hortald-Gonzélez, and M. Rodriguez-Artalejo, On the
Completeness of Narrowing as the Operational Semantics of Functional Logic Programming,
Proceedings of the 6th Workshop on Computer Science Logic, San Miniato, Lecture Notes
in Computer Science 702, pp. 216-230, 1992.

6. M. Hanus, The Integration of Functions into Logic Programming: From Theory to Practice,
Journal of Logic Programming 19 & 20, pp. 583-628, 1994.

7. T. Ida and K. Nakahara, Leftmost Outside-In Narrowing Calculi, report ISE-TR-94-107,
University of Tsukuba, 1994. Submitted for publication.

8. J.W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer Science, Vol. II
(eds. S. Abramsky, D. Gabbay and T. Maibaum), Oxford University Press, pp. 1-116, 1992.

9. J.J. Moreno-Navarro and M. Rodriguez-Artalejo, Logic Programming with Functions and
Predicates: The Language BABEL, Journal of Logic Programming 12, pp. 191-223, 1992.

16

10.

11.

12.

13.

J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo, Lazy Narrowing
in a Graph Machine, Proceedings of the 2nd International Conference on Algebraic and
Logic Programming, Nancy, Lecture Notes in Computer Science 463, pp. 298-317, 1990.

G. Nadathur and D. Miller, An Overview of A-Prolog, Proceedings of the 5th International
Conference on Logic Programming, MIT Press, pp. 810-827, 1988.

S. Okui, A. Middeldorp, and T. Ida, Lazy Narrowing: Strong Completeness and Eager
Variable Elimination, Proceedings of the 20th Colloquium on Trees in Algebra and Pro-
gramming, Aarhus, Lecture Notes in Computer Science, 1995. To appear.

U.S. Reddy, Narrowing as the Operational Semantics of Functional Languages, Proceedings
of the IEEE International Symposium on Logic Programming, Boston, pp. 138-151, 1985.

17

