Level-Confluence of Conditional Rewrite

Systems with Extra Variables in
Right-Hand Sides
Taro Suzuki Aart Middeldorp Tetsuo Ida

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305, Japan
{taro,ami,ida}@softlab.is.tsukuba.ac.jp
Novermber 1994
ISE-TR-94-116

Level-Confluence of Conditional Rewrite Systems
with Extra Variables in Right-Hand Sides

Taro Suzuki Aart Middeldorp Tetsuo Ida

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305, Japan

{taro,ami,ida}@softlab.is.tsukuba.ac.jp

ABSTRACT

Level-confluence is an important property of conditional term rewriting systems that allow
extra variables in the rewrite rule because it guarantees the completeness of narrowing for
such systems. In this paper we present a syntactic condition ensuring level-confluence for
orthogonal, not necessarily terminating, conditional term rewriting systems that have extra
variables in the right-hand sides of the rewrite rules. To this end we generalize the parallel
moves lemma. Our result bears practical significance since the class of systems that fall
within its scope can be viewed as a computational model for functional logic programming
languages with local definitions, such as let-expressions and where-constructs.

1. Introduction

There is a growing interest in combining the functional and logic programming paradigms in a
single language, see Hanus [13] for a recent overview of the field. The underlying computational
mechanism of most of these integrated languages is (conditional) narrowing. Examples of such
languages include BABEL [19] and K-LEAF [9]. In order to ensure the desirable completeness of
narrowing strategies, restrictions have to be imposed on the programs, which for the purpose
of this paper are viewed as conditional term rewriting systems, written in these languages. In
this paper we are concerned with the level-confluence restriction, a key property (Giovannetti
and Moiso [10], Middeldorp and Hamoen [18]) for ensuring the completeness of narrowing in
the presence of so-called extra variables. Very few techniques are available for establishing
level-confluence of conditional systems, this in contrast to the confluence property for which
several sufficient criteria are known, e.g. [2, 3, 7, 8, 12, 17, 20, 21, 23]. We only know of an
early paper by Bergstra and Klop. In [3] they show that orthogonal normal conditional systems
are level-confluent. (Actually they show confluence—Giovannetti and Moiso [10] remark that
the proof yields level-confluence.) Bergstra and Klop restrict the use of extra variables to the
conditional part of the rewrite rules. Several authors remarked that it makes good sense to
lift this restriction, since it enables a more natural and efficient way of writing programs in a
functional logic language. For example, the Haskell program

divide Zero (S y) (Zero, Zero)
divide (S x) (Sy) | x<y (Zero; S x)
| x>=y =(Sq, 1)
where (g, r) = divide (x - y) (S y)

corresponds to the conditional term rewriting system

div(0,5(z)) — (0,0)
div(S(z),S5(y)) — (0,5(z)) < z<y=true
div(S(z),8(y)) — (9(g),r) & z>y=true, div(z—y,5)) = (qr)

which has extra variables ¢ and r in the right-hand side of the last rewrite rule.

The criterion—orthogonality together with normality—of Bergstra and Klop [3] is no longer
sufficient when extra variables are permitted in right-hand sides. For instance, the orthogonal
normal system

a — f(z) < g(z)=true
g(b) — true

g(c) — true

from [15] is not confluent, let alone level-confluent, since the term a can be rewritten to the
different normal forms f(b) and f(c). In this paper we present a useful syntactic condition for
level-confluence in the presence of extra variables in right-hand sides of rewrite rules.

The remainder of the paper is organized as follows. In the next section we recapitulate
the basics of conditional term rewriting. In Section 3 we introduce and motivate our syntactic
criterion. In Section 4 we prove that our criterion indeed implies level-confluence. In the next
section we extend our result to the larger class of join conditional systems. In Section 6 we
relate our result to the recent work of Avenhaus and Lorfa-Senz [2] and Hanus [14]. In the final
section we discuss further extensions of our result.

2. Preliminaries

We assume the reader is familiar with term rewriting. (See [6] and [16] for extensive surveys.)
In this preliminary section we recall only some less common definitions and introduce the basic
facts concerning conditional term rewriting.

The set of function symbols F of a term rewriting system (TRS for short) (F,R) is parti-
tioned into disjoint sets Fp and F¢ as follows: a function symbol f belongs to Fp if there is a
rewrite rule [— 7 in R such that I = f(¢4,...,t,) for some terms y,...,%,, otherwise f € F¢.
Function symbols in F¢ are called constructors, those in Fp defined symbols. A term built from
constructors and variables is called a data term.

The rules of a conditional TRS (CTRS for short) have the form I — 7 < c. Here the
conditional part ¢ is a (possibly empty) sequence s; = ti,...,8, = t, of equations. At present
we only require that [is not a variable. A rewrite rule without conditions will be written as

[— r. Depending on the interpretation of the equality sign in the conditions of the rewrite
rules, different rewrite relations can be associated with a given CTRS. In this paper we are
mainly concerned with what we will call oriented CTRSs. The rewrite relation — associated
with an oriented CTRS R is obtained by interpreting the equality signs in the conditional part
of a rewrite rule as reachability (—*). Formally, —x is the smallest (w.r.t. inclusion) rewrite
relation — with the property that lo — ro whenever there exist a rewriterule ! - r < cin R
and a substitution o such that so —* to for every equation s = ¢ in ¢. The existence of —y is
easily proved. For every oriented CTRS R we inductively define TRSs! R, (n > 0) as follows:

Ro = g,
Rat1r = {lo—ro|l—r<«c€Randsoc -3 toforeverys=tinc}.

In the sequel we write R, I co instead of so —% to for every s = t in ¢. Observe that
Rn C Rpq for all n > 0. We have s —»g t if and only if s —»x,, t for some n > 0. The minimum
such n is called the depth of s — t. The depth of a reduction s —% ¢ is the minimum n such
that s —% ¢. The depth of a ‘valley’ s |z ¢ is similarly defined. We abbreviate -z, to —,.
The same applies to the derived relations of —%,,.

The TRS obtained from a CTRS R by dropping the conditions in rewrite rules is called
the underlying TRS of R and denoted by R,. Concepts like orthogonality and data term are
defined for CTRSs via the underlying TRS. Following [18], we classify rewrite rules I — r « ¢
of CTRSs according to the distribution of variables among [, r, and ¢, as follows:

type requirement

1 [Var(r)UVar(c) C Var(l)
2 | Var(r) C Var(l)
3 | Var(r) € Var(l) U Var(c)
4

no restrictions

An n-CTRS contains only rules of type n. An extra variable z in a rewrite rule ! — r < ¢
satisfies ¢ € (Var(r) U Var(c)) — Var(l). So a 1-CTRS contains no extra variables, a 2-CTRS
may only contain extra variables in the conditions, and a 3-CTRS may also have extra variables
in the right-hand sides provided these occur in the corresponding conditional part. Most of the
literature on conditional term rewriting is concerned with 1 and 2-CTRSs. We are concerned
with level-confluence of 3-CTRSs in this paper. An (oriented) CTRS R is called level-confluent
if every TRS R, (n > 0) is confluent.

A normal CTRS R is an oriented CTRS satisfying the additional restriction that every
right-hand side of an equation in the conditions of the rewrite rules is a ground R,-normal

form.

'If R contains rewrite rules that have extra variables in their right-hand sides, the TRSs R, may violate
the usual restriction Var(r) C Var(l) imposed on (unconditional) rewrite rules. This doesn’t cause us any

concern.

3. Syntactic Restrictions

In the introduction we saw that 3-CTRSs are not confluent in general, even if they are orthogonal
and normal. In this section we present syntactic conditions that ensure (level-)confluence. The
first consideration is that we have to severely restrict the many possible terms substituted for
extra variables in right-hand sides of the rules.

DEFINITION 3.1. An oriented CTRS R is called properly oriented if every rewrite rule — r <
81 =11y...,8n = tp, with Var(r) € Var(l) in R satisfies the following property:
i-1
Var(s;) C Var(l)U U Var(s; = t;)
Jj=1

forall i € {1,...,n}.

A properly oriented oriented CTRS is simply called a properly oriented CTRS. Clearly every
2-CTRS is properly oriented. Proper orientedness guarantees that the value of extra variables in
the right-hand side is completely determined by the values of the variables in the left-hand side.
So extra variables in a properly oriented CTRS are not really ‘extra’. The following example
illustrates this point.

ExaMPLE 3.2. Consider the properly oriented 3-CTRS

f(z) — g(z,9,2) < h(a,z)=1(y), h(a,y)=1i(z)
h(a,a) — 1i(b)
h(a,b) — i(c)
h(b,b) — i(d)

Suppose we rewrite the term f(a) by the first rewrite rule. In this rule y and z are extra
variables. The value of y is determined by the condition h(a,z) = i(y) since a is substituted for
z and h(a, a) reduces to i¢(b). So y is bound to b. This determines the value of the extra variable
z as h(a,b) reduces to i(c). Hence the term f(a) rewrites only to g(a,b,c).

Since we didn’t impose any restrictions on the right-hand side of the conditions so-far,
properly oriented orthogonal CTRSs are in general not normal. Bergstra and Klop [3] showed
that orthogonal oriented 2-CTRSs are in general not confluent. Hence it is necessary to further
restrict the class of properly oriented 3-CTRSs, before we can conclude level-confluence. In order
to get a better understanding of such a restriction, we first present a number of counterexamples
against the level-confluence of properly oriented 3-CTRSs.

CoUNTEREXAMPLE 3.3. Consider the properly oriented orthogonal 3-CTRS

f(z) — 9(y) < h(z,a)=1i(y,y)
R =19 hlz,y) — iz, f(y)
a — f(a)

and the term f(f(a)). Because h(a,a) — i(a, f(a)) — i(f(a), f(a)), f(a) rewrites to g(f(a)),
and hence f(f(a)) — f(g(f(a))). We can also rewrite f(f(a)) to g(f(a)) because h(f(a),a) —
i(f(a), f(a)). Both steps have depth 2. We claim that f(g(f(a))) and g(f(a)) don’t have a
common reduct in R2. Suppose to the contrary that f(g(f(a))) |2 g(f(a)). This is only possible
if there exist terms #;, t2, and t3 such that f(a) —3 t1, h(g(t1),a) —7 i(t2,12), f(a) —3 t3 and
ty —3 t3. The sequence h(g(t1),a) —7 i(t2,t2) must have the following form: h(g(t1),a) —3
h(g(ts), fr(a)) —1 i(g(ts), [t (a)) -7 i(t2,¢t2) for some term ¢4 and n > 0. However, since
f**1(a) is an R;-normal form, the common reduct ¢ of g(t4) and f™*+1(a) doesn’t exist. We
conclude that R, is not confluent.

COUNTEREXAMPLE 3.4. Consider the properly oriented orthogonal 3-CTRS

f(z) = 9(y) < z=hy), i(z)=y
i(z) —

a — b < ¢=d

a
R =

c — d

and the term f(h(a)) with the two R, reducts f(h(b)) and g(a). These two terms have a common
reduct g(b), but the only sequence from f(h(b)) to g(b) has depth 3 because the instantiated
second condition of the first rule is i(h(b)) = b which requires depth 2: i(h(b)) —1 a —2 b.

COUNTEREXAMPLE 3.5. Finally, consider the following properly oriented orthogonal 3-CTRS:

Rz{f(w) ~ v = =)
g(a) — h(b)

We can rewrite the term f(g(a)) both to f(h(b)) and a. These two reducts are not joinable since
they are (different) normal forms.

Based on the above findings, we introduce the following restriction.

DEFINITION 3.6. A CTRS R is called right-stableif every rewriterulel — r < sy = t3,...,8, = t,
in R satisfies the following conditions:

(Var(l)u iL—Jl Var(s; = t;) U Var(s;)) N Var(t;) =0

i=1

and t; is either a linear data term or a ground R,-normal form, for all 7 € {1,...,n}.

4. Level-Confluence

In this section we show that orthogonal properly oriented right-stable 3-CTRSs are level-
confluent. It is not difficult to see that every normal 2-CTRS is right-stable. Hence our class
of CTRSs properly extends the class of orthogonal normal 2-CTRSs (III, systems in the ter-
minology of [3]) of Bergstra and Klop. They showed that orthogonal normal 2-CTRSs satisfy

5

the so-called parallel moves lemma. Hence these systems are confluent. Giovannetti and Moiso
[10] observed that the confluence proof in [3] actually reveals level-confluence. Let us briefly
recapitulate the result of Bergstra and Klop.

DEFINITION 4.1. Let A:s —[p . r&q ¢ be a Tewrite step in a CTRS R and let ¢ € Pos(s). The
set g\ A of descendants of ¢ in t is defined as follows:

{q} ifg<porql|lp,
A\A=< {ppspz|rp, =lp,} if ¢=pp1-p2 Withp, € Posy(l),
) otherwise.

If Q C Pos(s) then Q\A denotes the set |J,cq ¢\A. The notion of descendant is extended to
rewrite sequences in the obvious way.

DEFINITION 4.2. Let R be a CTRS. We write s 4, t if t can be obtained from s by contracting
a set of pairwise disjoint redexes in s by R,. We write s {p¢ if s {p, ¢ for some n > 0. The
minimum such n is called the depth of s 4 t. The relation 4p is called parallel rewriting.

The parallel moves lemma for orthogonal normal 2-CTRSs can now be stated as follows.

LEMMA 4.3. Let R be an orthogonal normal 2-CTRS. If t {pr, t; and t {pr, t2 then there exists
a term t3 such that t; Jb, t3 and ty {pm t3. Moreover, the redexes contracted in t; n t3
(t3 dbm t3) are the descendants in ty (i) of the redexes contracted in t 4s t2 (¢ 4pm t1). O

Unfortunately, the parallel moves lemma does not hold for our class of 3-CTRSs, as shown
in the following example.

EXAMPLE 4.4. Consider the properly oriented right-stable 3-CTRS

flg) = g(z,y) < 2=1i(y)
Mz) — i(y) & z=5)
R=9 k(z) — j(=)
a — b
b — ¢

and the term t = f(h(k(a))). Because k(a) —1 j(a) —1 j(b) —1 j(c) we have h(k(a)) —2 i(c)
and hence t —3 f(i(c)) = t;. We also have t —3 g(h(k(a)),a) = t; since k(a) —1 j(a) and thus
h(k(a)) —2 i(a). From t; we can only perform a single rewrite step: ¢1 —2 g(i(c),c). However,
we can never reach the normal form g(i(c),c) from t; in a parallel step because we clearly need
two steps (¢ —1 b —1 c) in the second argument of t5. The first argument of ¢ rewrites in a
single R,-step to i(c), so t; and t, do have a common reduct.

In the above example the depth of the non-parallel sequence from a to c in the sequence from
ty to g(i(c),c) is lower than the depth of the step from ¢ to 2;. This is the key to level-confluence
for orthogonal properly oriented right-stable 3-CTRSs. First we introduce a new relation on
terms.

DEFINITION 4.5. Let R be a CTRS. We write s 4p, t if there exists a set P C Pos(s) of pairwise
disjoint positions such that for all p € P either -

(1) s, rewrites in a single root reduction step to t|p whose depth does not exceed n, or

(2) there exists a rewrite sequence from s), to |, whose depth is less than n.

Clearly 4po is the identity relation and 4p; coincides with 1. We also have 4, C =7 C 4bnyy
for all » > 0. The infinite union 4p of the relations 4p, (n > 0) is called ertended parallel
rewriting. The depth of an extended parallel rewrite step s b ¢ is the smallest n such that

s 4pn t.

The following result states that in case of orthogonal properly oriented right-stable 3-CTRSs
extended parallel rewriting satisfies the (important) first part of the parallel moves lemma.

THEOREM 4.6. Let R be an orthogonal properly oriented right-stable 3-CTRS. If t 4p, t; and
t dpbn, t2 then there exists a term t3 such that t; 4pn t3 and ty 4, t3.

ProoF. We use induction on m + n. The case m + n = 0 is trivial. Suppose the result
holds for all m and n such that m +n < k for some k£ > 1 and consider the case m 4+ n = k.
Before we proceed, observe that the induction hypothesis implies the validity of the diagrams
in Figure 1. If m = 0 then ¢t = t; and we can take t3 = t3. The case n = 0 is just as simple.

m' +n' <k, # = 4p

n' n' n’

*

I | |

| | |

| | 1
m == m' m! " * == m'! m' * * == m'

| | !

v v v

*
e —— g——
n' n' '

FIGURE 1.

So we may assume that m,n > 0. Let P (@) be the set of positions justifying (according to
Definition 4.5) t 4bm t1 (¢ 4pn t2). Define a set U of pairwise disjoint positions as follows:
U= {pe P|thereisno g€ Q with ¢ < p}U{q € Q | thereis no p € P with p < ¢}. Since U
dominates all positions in PUQ, we have t; = t[(t1)|u}ucr and t2 = t[(t2)}u]uecv. Hence for every
u € U we have extended parallel rewrite steps tj, qbm (t1)j and t, 4pn (f2). If for every
u € U we can show the existence of a term t* such that (¢1)j, 4bn t* and (t2)ju fpm t*, then
we can take t3 = t[t*],cv since ¢y 4pn t3 and ty dpy t3. Let u € U. Without loss of generality
we assume that u € P. Let P, (Q.) be the subset of P (Q) contributing to ¢, Ypm (t1)
(tju 4bn (t2)ju)- We have P, = {e} and @, = {g | u-g € Q} by assumption. Let m, (n,) be the
depth of the extended parallel rewrite step t|, 4p (f1)ju (tju 4b (t2)}). We clearly have m, < m
and n, < n. If my +n, < k then we obtain a term ¢* such that (1)}, 4pn, t* and (£2)j, pm. t*
from the induction hypothesis. Since m, < m and n, < n this implies the desired (1)}, 4pn t*
and (t2)}u 4bm t*. So we may assume that m, +n, = k. This implies that m, = m and n, = n.
By definition the extended parallel rewrite step #), qpm (f1). is either a rewrite step of depth m

7

at root position or a rewrite sequence tj, —* (%1)|, whose depth is m — 1. In the latter case we
have |, 4py—1 (t1)u- The strengthened induction hypothesis (cf. Figure 1) yields a term t* such
that (t1)[s bn t* and (2)j, 4pin—y t*. Clearly (t2)u by t* implies (t2)u 4pm . So we may
assume that tj, 4pm (t1)}u is a rewrite step of depth m at root position. There exists a rewrite
rule I — r < ¢ and a substitution o such that t), = lo, ({1), = 70, and Rm—1 F co. Let ¢ be
the sequence of conditions s; = ti,...,s; = t;. Forevery i € {0,...,7} let ¢; be the subsequence
of ¢ consisting of the first 7 conditions. (So co is the empty sequence.) We distinguish two cases.

(1)

(2)

Suppose Q. = {¢}. By definition the extended parallel rewrite step |, qpn (f2)}, is either a
rewrite step of depth n at root position or a rewrite sequence t|, —* (%2), whose depth is
n—1. The latter case follows from the strengthened induction hypothesis, exactly as above.
So we may assume that ¢}, rewrites in a single root Rp-step to (t2)ju- By orthogonality the
employed rewrite rule of R must be | — r < c. Let 7 be a substitution such that #}, = I,
(t2)ju = 77, and Rp1 F cr. If Var(r) C Var(l) then ro = r7 and we simply define t* = ro.
If the right-hand side 7 of the rewrite rule contains extra variables, we reason as follows.
By induction on i € {0,...,5} we show the existence of a substitution p; such that

(a) pi=o =1 [Var(l)),
(b) D(pi) € Var(l) U Var(c;),
(c) 2o dpx_, zp; and a7 4p},_, zp; for every variable 2 € Var(l) U Var(c:).

The substitution po = olys.) clearly satisfies the requirements for 7 = 0. Suppose 7 > 0
and consider the i-th condition s; = t;. Because R is properly oriented we have Var(s;) C
Var(l) U Var(c;—1). Using part (c) of the induction hypothesis, we easily obtain sio b7 _;
sipi—1 and &7 b% _; sipi—1. Two applications of the strengthened induction hypothesis
(cf. Figure 1) yields a term s’ such that t;o 4p_; &' and t;7 b5,y &', see Figure 2. From
the right-stability of R we learn ¢; is either a ground R,-normal form or a linear data term.
In the former case we have t;0 = ¢ = t;7 and hence the substitution p; = pi—1 satisfies
the three requirements. (Note that Var(c;) = Var(ci—1) in this case.) In the latter case
there must be a substitution p such that ' = t;p with D(p) C Var(t;). Right-stability
yields Var(t;) N (Var(l)U Var(ci-1))) = @. As a consequence p; = pj—1 Up is a well-defined
substitution. It is easy to see that p; satisfies the requirements (a)-(c). This concludes
the induction step. Now consider the substitution p;. Since R is a 3-CTRS we have
Var(r) € Var(l)U Var(c;). Hence, using property (c), we obtain (t1), = 7o 4p5_, 7p; and
(t2)ju = 7 by 7p;. Since pr_; C by and 4p7,_; € 4bm, we can define t* = rp;.

The second case is Q, # {¢}. Using the orthogonality of R we obtain a substitution 7 such
that (t2), = I7, D(1) C Var(l), and 0 4pn o7 for every z € Var(l). In this case there is no
need to distinguish Var(r) C Var(l) from Var(r) € Var(l). By induction on i € {0,...,5}
we show the existence of a substitution p; such that

(a) pi=T Var(l)],

(b) D(pi) C Var(l) U Var(c;),

(¢) Rm-1F cipi, and

(d) 2o 4pn zp; for every variable z € Var(l) U Var(c;).

\ /
N /s
m-—1 N n-1 m-1 n—1
N ’
K XN
* * N /7 * *
N ’
N Y
t;o SipPi-1 tiT
N / /
N s /
N n—1 m-1 7 //
\ Vs
/(\\\\ /
* 7N\ 7 O x /
\ 7’ 4
3 / m—1 //
\\ ,’ *
N n-1 ,/
\
K 4 _
RN ! = b
N\ 7/
N ¥
Y
FIGURE 2.

If i = 0 then po = 7|y, satisfies the requirements. Suppose 7 > 0 and consider the i-th
condition s; = ¢;. From R,,—1 F co we infer that s;o —7,_; t;o. Hence also s;o by, _; tio.
Let V = Var(s;) — (Var(l)UVar(c;-1)) and define the substitution p as the (disjoint) union
of p;—1 and oy. Using part (d) of the induction hypothesis we learn that s;c 4, s;p. The
strengthened induction hypothesis (cf. Figure 1) yields a term ¢’ such that s;p 4p},_; ¢’ and
t;o 4pn t'. From the right-stability of R we learn that #; is either a ground R,-normal form
or a linear data term. In the former case we have t;o0 = t; = t/ and hence the substitution
p; = p satisfies the four requirements. In the latter case there must be a substitution p’ such
that t’ = ¢;p’ with D(p') C Var(t;). Right-stability yields Var(t;) N (Var(l) U Var(c;-1)) =
@. Hence p; = pU p' is a well-defined substitution. It is not difficult to check that p;
satisfies the requirements (a)-(d). For instance, we have s;p; = s;p and t;p; = t;p’, hence
Rm—1 F (s = t;)p’ follows from s;p 4p*. _; tip’. This concludes the induction step. Now
consider the substitution p;. We have I7 = lp; by property (a) and R,,—1 I ¢p; by property
(c). Therefore (t3)|, = IT —n Tp; and thus (22), pm 7p;. Since R is a 3-CTRS we have
Var(r) C Var(l) UVar(c;). Hence, using property (d), we obtain (t1)|, = ro 4pn 7p;. Thus
rp; is the desired term t*.
So for every u € U we could define the desired term t*. This concludes the proof. O

The main result of this paper is an immediate consequence of the above theorem.

COROLLARY 4.7. Orthogonal properly oriented right-stable 3-CTRSs are level-confluent. O

5. Join Systems

We extend the result of the previous section to join 3-CTRSs. The (only) difference between join
and oriented CTRSs is that the equality signs in the conditions of the rewrite rules is interpreted
differently: | in the case of join CTRSs and —* in the case of oriented CTRSs. In the following
we make the explicit notational convention of writing R? (R°) if the CTRS R is considered as
a join (oriented) CTRS.

For an arbitrary CTRS R, the rewrite relation associated with the oriented CTRS R° is in
general a proper subset of the one associated with the join variant R7. Consider for example
the CTRS

a - T <« b=z
R = b —» d

c — d

We have ¢ —x; ¢ because b |; ¢, but @ —xo ¢ does not hold because b does not rewrite to ¢ (in
R°). Nevertheless we a |zo ¢ holds since a —xo d and ¢ —xo d. This relationship (—z; C |ro)
holds for all orthogonal properly oriented right-stable 3-CTRSs, as will be shown below. First
we prove a special case.

LEMMA 5.1. Let R be an orthogonal properly oriented right-stable 3-CTRS. If s —pi t by
application of a rewrite rule | — r < ¢ with substitution o such that s'oc |gs_, t'o for every
equation s’ = t' in ¢ then s |Rrs t.

PROOF. Let ¢ be the sequence of conditions sy = t1,...,5; = t;. For every i € {1,...,7} let ¢;
be the subsequence of ¢ consisting of the first i conditions. By induction on i € {0,...,5} we
show the existence of a substitution ; such that

(a) 7 =0 [Var(l)],

(b) D(r) € Var(l)UVar(c;),

(¢) R2_;Fcimi, and

(d) zo —Ro_, @i for every variable z € Var(l) U Var(c;).

The substitution ™ = oy, clearly satisfies the requirements for ¢ = 0. Suppose ¢ > 0 and
consider the i-th condition s; = t;. By assumption s;c and t;0 have a common R¢_;-reduct,
say t'. Let V = Var(s;) — (Var(l) U Var(ci—1)) and define the substitution p as 7,y U o[y.
Using part (d) of the induction hypothesis we obtain an RJ_,-rewrite sequence from s;o to
s;p. According to Corollary 4.7 R° is level-confluent. This implies that the RS_,-reducts t/
and s;p of s;oc have a common RZ_,-reduct, say t”. From the right-stability of R we learn
that t; is either a ground R,-normal form or a linear data term. In the former case we have
tio = t; = t' =t and hence the substitution 7; = p satisfies the four requirements. In the latter
case there must be a substitution p’ such that t” = ¢;p’ with D(p’) C Var(t;). Right-stability
yields Var(#;) N (Var(l) U Var(c;-1)) = @. Hence 7; = pU p' is a well-defined substitution
which is easily seen to be satisfying the requirements (a)—(d). This concludes the induction
step. Consider the substitution 7;. We have an RJ_,-rewrite sequence from ro to r7; as a

10

consequence of property (d). From properties (a) and (c) we learn that lo = Ir; —Re
Therefore s [go_ t. O

-1 TT;.

LEMMA 5.2. Let R be an orthogonal properly oriented right-stable 3-CTRS. If s —p; then
S 17?.5’, t

Proor. We use induction on n. If n» = 0 then we have nothing to prove, so suppose n > 0. Let
I — 7 <= c be the rewrite rule and o the substitution used in s —; t. We have R -1 Fco.
Using Corollary 4.7, we obtain RS _; I co from the induction hypothesxs by a routine induction
argument. Lemma 5.1 yields the desired s |ro £. O

The main result of this section is an easy consequence of Corollary 4.7 and Lemma 5.2.

COROLLARY 5.3. Orthogonal properly oriented right-stable join 3-CTRSs are level-confluent. O

6. Related Work

Bertling and Ganzinger [4] defined the class of quasi-reductive and deterministic 3-CTRSs.
Deterministic CTRSs are very similar to properly oriented CTRSs, the difference being that we
don’t impose the restrictions (i € {1,...,n})

1—-1
Var(s;) C Var(l)u | Var(s; = t;)
j=1
when the right-hand side r of the rewrite rule/ — r < s; = #1,...,8, = i, doesn’t contain extra

variables. So deterministic CTRSs are a proper subclass of properly oriented CTRS. Quasi-
reductivity is an (undecidable) criterion guaranteeing termination. Bertling and Ganzinger
showed that every quasi-reductive deterministic 3-CTRS has a decidable rewrite relation.

In a recent paper Avenhaus and Lor{a-Sdenz [2] provide a simple but powerful decidable
condition for quasi-reductivity. Moreover, they show that every strongly deterministic and quasi-
reductive 3-CTRS with joinable critical pairs? is confluent. A strongly deterministic CTRS R is
a deterministic one with the additional property that for every right-hand side ¢ of the equations
in the conditional parts of the rewrite rules and every normalized substitution o, the term to
is a normal form. Every right-stable deterministic CTRS is strongly deterministic but not vice-
versa, e.g., the 3-CTRS of Counterexample 3.3 is strongly deterministic but not right-stable. So
the class of strongly deterministic quasi-reductive 3-CTRSs is incomparable with our class of
orthogonal properly oriented right-stable 3-CTRSs. The essential difference however is that we
do not impose the termination restriction. From a programming point of view, the termination
assumption is quite severe. Strongly deterministic quasi-reductive 3-CTRSs are in general not

2 Overlays obtained from a rewrite rule and (a renamed version of) itself don’t have to be considered.

11

level-confluent. For instance, the 3-CTRS

a — b

a — ¢
R =
b — ¢ & d=e

d — e

is clearly strongly deterministic. The reduction order @ > b > ¢ > d > e can be used to
show quasi-reductivity. We have @ —1 b and a —; ¢, but the step from b to ¢ has depth 2.
Observe that R is properly oriented and right-stable. Hence we know that the system cannot
be orthogonal, and indeed there is a critical pair between the first two rules. Finally, we would
like to mention that the termination assumption makes the task of proving confluence easier.
Very recently (and independently) Hanus [14] presented a sufficient condition for the level-
confluence of properly oriented orthogonal 3-CTRSs with strict equality. Strict equality means
that a substitution ¢ satisfies a condition s = ¢ of a rewrite rule only if so and to reduce to the
same ground data term. CTRSs with strict equality can be viewed as a special case of normal
CTRSs. The proof in [14] is however insufficient since it is based on the parallel moves lemma for
orthogonal normal 2-CTRSs (Bergstra and Klop [3]), which, as we have seen in Section 4, is not
valid for 3-CTRSs. Our proof method can be specialized to complete Hanus’ proof. Actually,
Hanus considers almost orthogonal ([1]) CTRSs. These are left-linear systems in which the
non-overlapping restriction is relaxed by allowing trivial overlays. Although we only considered
orthogonal CTRSs in this paper, our result immediately extends to almost orthogonal systems.

7. Concluding Remarks

In this final section we discuss some further extensions of our sufficient condition. First of
all, Dershowitz et al. [8] and Gramlich [12], among others, distinguish feasible from unfeasible
critical pairs. A critical pair is unfeasible if the instantiated combination of the two conditional
parts of the rewrite rules that induce the critical pair is unsolvable. Unfeasibility is undecidable
in general, but see Gonzdlez—Moreno et al. [11] for a decidable sufficient condition. Unfeasible
critical pairs are harmless, so orthogonality can be strengthened by allowing unfeasible critical
pairs. This is important in practice since it permits systems like

div(0,5(z)) — (0,0)
div(S(z),S(y)) — (0,5(z)) < =z <y=true
div($(z),5(y)) — (S(g),r) < x>y=true, div(z—y,5(y))=(¢,7)

with disambiguating conditions. Because the condition < y = true, z > y = true has no
solutions, the critical pair between the last two rules is unfeasible. The proofs in this paper
remain valid if we allow unfeasible critical pairs. Secondly, satisfiability of the conditional
part of a rewrite rule is independent of the order of its equations. Hence we can relax proper
orientedness and right-stability by allowing any permutation of the equations in the conditions to
satisfy the requirements in Definitions 3.1 and 3.6. Finally, and more in spirit with the results

12

of this paper, we consider relaxing the proper orientedness restriction. Proper orientedness
requires that extra variables in the left-hand side of some equation in the conditional part of
some rewrite rule occur in the preceding equations. This requirement is not necessary, however,
if the extra variable under consideration does not affect the values of extra variables that occur
in the right-hand side of the rewrite rule. This leads us to the following definition.

DEFINITION 7.1. In an eztended properly oriented CTRS the conditional part ¢ of every rewrite

rule | — r < ¢ can be written as s; = t1,...,85 = tm, 8} = t],...,8, = t, such that the follow-
ing two conditions are satisfied:
i-1
Var(s;) C Var(l)U U Var(s; = t;)
j=1

forall: € {1,...,m}, and

Var(r) N Var(s; = ;) C Var(l)u | Var(s; = t;)

Jj=1
forallie {1,...,n}.

The proofs in this paper can be adapted to deal with extended properly oriented CTRSs.
Hence all orthogonal extended properly oriented right-stable 3-CTRSs are level-confluent. An
interesting application is the class of 3-CTRSs with strict equality and so-called local definitions.
With respect to Definition 7.1 this means that t; denotes the constant true and s the strict
equation sj; = sh;, for i € {1,...,n}. Here = is a function that tests whether its two arguments
denote the same ground data term. The local definitions s; = t1,..., 8, = tm support (poten-
tially) infinite data structures. An interesting ekample is the following Miranda like program
(based on Bird and Wadler [5], page 248, with a correction due to Takeichi [22], page 259):

delete x Nil = Nil

delete x (Bin y t1 t2) = Bin y (delete x t1) t2, if x <y
join t1 t2, if x ==
Bin y t1 (delete x t2), if x >y

]

t2
Bin x t t2
where (x, t) = split ti1

]

join Nil t2
join t1 t2

split (Bin x ti1 Nil)
split (Bin x t1 t2)

(x, t1)
(y, Bin x t1 t)
where (y, t) = split t2

The idea is that evaluating delete x t results in the deletion of a node with label x from the
binary search tree t. This program can handle (potentially) infinite trees. The function join
corresponds to the following 3-CTRS with strict equality and local definitions:

join(nil,tg) ~ 19
join(ty,t2) — bin(z,t,t2) <t = bin(y,s1,82), split(ty) = (z,1)

13

This is an orthogonal (in the sense of having only unfeasible critical pairs) extended (with strict
equality) properly oriented right-stable 3-CTRS.

References

1.

10.

11.

S. Antoy and A. Middeldorp, A Sequential Reduction Strategy, Proceedings of the 4th
International Conference on Algebraic and Logic Programming, Madrid, Lecture Notes in
Computer Science 850, pp. 168-185, 1994.

J. Avenhaus and C. Lorfa-Saenz, On Conditional Rewrite Systems with Extra Variables and
Deterministic Logic Programs, Proceedings of the 5th International Conference on Logic
Programming and Automated Reasoning, Kiev, Lecture Notes in Artificial Intelligence 822,

1994.

J.A. Bergstra and J.W. Klop, Conditional Rewrite Rules: Confluence and Termination,
Journal of Computer and System Sciences 32(3), pp. 323-362, 1986.

H. Bertling and H. Ganzinger, Completion-Time Optimization of Rewrite-Time Goal Solv-
ing, Proceedings of the 3rd International Conference on Rewriting Techniques and Appli-
cations, Chapel Hill, Lecture Notes in Computer Science 355, pp. 45-58, 1989.

R. Bird and P. Wadler, Introduction to Functional Programming, Prentice Hall, 1988.

N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, in: Handbook of Theoretical Com-
puter Science, Vol. B ed. J. van Leeuwen), North-Holland, pp. 243-320, 1990.

N. Dershowitz and M. Okada, A Rationale for Conditional Equational Programming, The-
oretical Computer Science 75, pp. 111-138, 1990.

N. Dershowitz, M. Okada, and G. Sivakumar, Confluence of Conditional Rewrite Systems,
Proceedings of the 1st International Workshop on Conditional Term Rewriting Systems,
Orsay, Lecture Notes in Computer Science 308, pp. 31-44, 1987.

E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi, Kernel-LEAF: A Logic plus Func-
tional Language, Journal of Computer and System Sciences 42(2), pp. 139-185, 1991.

E. Giovannetti and C. Moiso, A Completeness Result for E-Unification Algorithms based
on Conditional Narrowing, Proceedings of the Workshop on Foundations of Logic and Func-
tional Programming, Trento, Lecture Notes in Computer Science 306, pp. 157-167, 1986.

Juan Carlos Gonzélez-Moreno, M.T. Hortald-Gonzalez, M. Rodriguez-Artalejo, Denota-
tional versus Declarative Semantics for Functional Programming, Proceedings of the 5th
Workshop on Computer Science Logic, Berne, Lecture Notes in Computer Science 626,
pp. 134-148, 1992.

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. Gramlich, On Termination and Confluence of Conditional Rewrite Systems, Proceedings
of the 4th International Workshop on Conditional Term Rewriting Systems, Jerusalem,
Lecture Notes in Computer Science, 1994. To appear.

M. Hanus, The Integration of Functions into Logic Programming: From Theory to Practice,
Journal of Logic Programming 19 & 20, pp. 583-628, 1994.

M. Hanus, On Extra Variables in (Equational) Logic Programming, report MPI-1-94-246,
Max-Planck-Institut fiir Informatik, 1994.

T.Ida and S. Okui, Outside-In Conditional Narrowing, IEICE Transactions on Information
and Systems, E77-D(6), pp. 631-641, 1994.

J.W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer Science, Vol. II
(eds. S. Abramsky, D. Gabbay and T. Maibaum), Oxford University Press, pp. 1-116, 1992.

A. Middeldorp, Completeness of Combinations of Conditional Constructor Systems, Journal
of Symbolic Computation 17, pp. 3-21, 1994.

A. Middeldorp and E. Hamoen, Completeness Results for Basic Narrowing, Applicable
Algebra in Engineering, Communication and Computing 5, pp. 213-253, 1994.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo, Logic Programming with Functions and
Predicates: The Language BABEL, Journal of Logic Programming 12, pp. 191-223, 1992.

E. Ohlebusch, Modular Properties of Constructor-Sharing Conditional Term Rewriting Sys-
tems, Proceedings of the 4th International Workshop on Conditional Term Rewriting Sys-
tems, Jerusalem, Lecture Notes in Computer Science, 1994. To appear.

P. Padawitz, Generic Induction Proofs, Proceedings of Third International Workshop on
Conditional Term Rewriting Systems, Pont—a-Mousson, Lecture Notes in Computer Science
656, pp. 175-197, 1993.

M. Takeichi, Functional Programming, Kindai Kagakusha, 1991. (In Japanese.)

Y. Toyama and M. Oyamaguchi, Church-Rosser Property and Unique Normal Form Prop-
erty of Non-Duplicating Term Rewriting Systems, Proceedings of the 4th International
Workshop on Conditional Term Rewriting Systems, Jerusalem, Lecture Notes in Computer
Science, 1994. To appear.

15

