Lazy Narrowing: Strong Completeness

and Eager Variable Elimination
(Extended Abstract)

Satoshi Okui t
Aart Middeldorp 1t
Tetsuo Ida #

University of Tsukuba
Tsukuba 305 Japan

December, 1994
ISE-TR-94-114

t Doctoral Program in Engineering, e-mail: okui@softlab.is.tsukuba.ac.jp
tt Institute of Information Sciences and Electronics, e-mail: ami@softlab.is.tsukuba.ac.jp
! Institute of Information Sciences and Electronics, eemafl: ida@softlab.is.tsukuba.ac.jp

Lazy Narrowing: Strong Completeness
and Eager Variable Elimination
(Extended Abstract)

Satoshi Okui Aart Middeldorp Tetsuo Ida

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305, Japan

ABSTRACT

Narrowing is an important method for solving unification problems in
equational theories that are presented by confluent term rewriting systems.
Because narrowing is a rather complicated operation, several authors stud-
ied calculi in which narrowing is replaced by more simple inference rules.
This paper is concerned with one such calculus. Contrary to what has been
stated in the literature, we show that the calculus lacks strong complete-
ness, so selection functions to cut down the search space are not applica-
ble. We prove completeness of the calculus and we establish an interesting
connection between its strong completeness and the completeness of ba-
sic narrowing. We also address the eager variable elimination problem.
It is known that many redundant derivations can be avoided if the vari-
able elimination rule, one of the inference rules of our calculus, is given
precedence over the other inference rules. We prove the completeness of
a restricted variant of eager variable elimination in the case of orthogonal
term rewriting systems.

1. Introduction

E-unification—solving equations modulo some equational theory E—is a funda-
mental technique in automated reasoning. Narrowing ({19, 4, 11]) is a general
FE-unification procedure for equational theories that are presented by conflu-
ent term rewriting systems (TRSs for short). Narrowing is the computational
mechanism of many functional-logic programming languages (see Hanus [7] for
a recent survey on the integration of functional and logic programming). It is
well-known that narrowing is complete with respect to normalizable solutions.
Completeness means that for every solution to a given equation, a more general
solution can be found by narrowing. If we extend narrowing to goals consisting
of several equations, we obtain strong completeness. This means that we don’t
lose completeness when we restrict applications of the narrowing rule to a single
equation in each goal.

Since narrowing is not easily implemented, several authors studied calculi
consisting of a small number of more elementary inference rules that simulate

narrowing (e.g. [15, 8, 9, 13, 20, 6]). In this paper we are concerned with a
subset (actually the specialization to confluent TRSs) of the calculus TRANS
proposed by Holldobler [9]. We call this calculus lazy narrowing calculus (LNC for
short). Because the purpose of LNC is to simulate narrowing by more elementary
inference rules, it is natural to expect that LNC inherits strong completeness from
narrowing, and indeed this is stated by Holldobler (Corollary 7.3.9 in [9]). We
show however that LNC lacks strong completeness.

An important improvement over narrowing is basic narrowing (Hullot [11]).
In basic narrowing narrowing steps are never applied to (sub)terms introduced
by previous narrowing substitutions, resulting in a significant reduction of the
search space. In this paper we establish a interesting connection between LNC
and basic narrowing: we show that LNC is strongly complete whenever basic
narrowing is complete. The latter is known for complete (i.e., confluent and
terminating) TRSs (Hullot [11]). Other sufficient conditions are right-linearity
and orthogonality (Middeldorp and Hamoen [16]). So LNC is strongly complete
for these three classes of TRSs. We prove completeness of LNC for the general
case of confluent TRSs. In the literature completeness of LNC-like calculi is
proved under the additional termination assumption. Without this assumption
the completeness proof is significantly more involved.

It is known that LNc-like calculi generate many derivations which produce
the same solutions (up to subsumption). Martelli et al. [15, 13] and Holldobler
[9], among others, pointed out that many of these redundant derivations can
be avoided by giving the variable elimination rule, one of the inference rules of
LNc-like calculi, precedence over the other inference rules. The problem whether
this strategy is complete or not is called the eager variable elimination problem
in [9, 20). Martelli et al. stated in [13] that this is easily shown in the case
of terminating (and confluent) TRSs, but Snyder questions the validity of this
claim in his monograph [20] on E-unification. We address the eager variable
elimination problem for non-terminating TRSs. We prove completeness of a
slightly restricted version of eager variable elimination in the case of orthogonal
TRSs. To this end we simplify and extend the main result of You [22] concerning
the completeness of outer narrowing for orthogonal constructor-based TRSs.

The remainder of the paper is organized as follows. In a preliminary section
we introduce narrowing and state the relevant completeness results. The nar-
rowing calculus that we are interested in—LNC—is defined in Section 3. In that
section we also show that LNC is not strongly complete. In Section 4 we establish
the connection between the strong completeness of LNC and the completeness of
basic narrowing. We prove the completeness of LNC for general confluent sys-
tems in Section 5. Section 6 is concerned with the eager variable elimination
problem. In the final section we give suggestions for further research.

Due to lack of space, the present paper doesn’t contain any proof details. All
proofs can be found in the full version [17].

2. Preliminaries

We assume the reader’s familiarity with the basic notions of term rewriting
([2, 12]). We use the position formalism to denote subterm occurrences. The
set of positions in a term is denoted by Pos(t). If p € Pos(t) then ?, denotes
the subterm of ¢ at position p and #[s], denotes the term that is obtained from
t by replacing the subterm at position p by the term s. The set Pos(t) is
partitioned into Posy(t) and Posx(t) as follows: Posy(t) = {p € Pos(t) | 1}, €
V} and Posz(t) = Pos(t) ~ Posy(t). Positions are partially ordered by the
prefix ordering £, i.e., p < ¢ if there exists a (necessarily unique) r such that
pr = ¢q. In that case we define ¢\p as the position r. We write p < ¢ if p < ¢
and p # ¢. If neither p < ¢ nor ¢ < p, we write p L g. The domain D(8) of
a substitution # is the set {z € V | 26 # z}. As usual, this set is required to
be finite. We denote the set {J,¢p(s) V(20) by Z(6). We distinguish a nullary
function symbol true and a binary function symbol =, written in infix notation.
A term of the form s = ¢, where neither s nor ¢ contains any occurrences of ==
and true, is called an equation. The term true is also viewed as an equation.
The extension of a TRS R with the rewrite rule £ = £ — true is denoted by
R4+. A goal is a sequence of equations. We use T as a generic notation for goals
containing only equations true. Let G be a goal and 8 a substitution. If there
exists a rewrite sequence G§ —% + T, we write R G0 and we say that § is an
(R-)solution of G. Narrowing is formulated as the following inference rule:

if there exist a fresh variant | — r of a rewrite rule
in R4, a position p € Posx(e), and a most general
unifier of el and [.

Gl 1 €y G2
(Gy, e[r]p1 Gs)f

In the above situation we write Gi,e,G2 ~gp1wre (G1,e€[r]p, G2)8. This is
called an Nc-step (NC stands for narrowing calculus). Subscripts will be omitted
when they are clear from the context or irrelevant. A sequence Gy ~»g, - -+ ~g, _,
Gy of NC-steps is called an NC-derivation and abbreviated to Gy ~j) G, where
6 = 0,---0,_1. We use the symbol II (and its derivatives) to denote Nc-
derivations. An Nc-derivation which ends in T is called an Nc-refutation. The
following completeness result is essentially due to Hullot [11].

THEOREM 2.1. Let R be a confluent TRS. If R - G0 and 0y ,,(¢) Is normalized
then there exists an NC-refutation G ~}, T such that ¢’ < 8 [Var(G)]. O

There are three sources of non-determinism in NC: the choice of the equation
e, the choice of the subterm e|,, and the choice of the rewrite rule ! — r. The
last two choices are don’t know non-deterministic, meaning that in general all
possible choices have to be considered in order to guarantee completeness. The
choice of the equations e is don’l care non-deterministic, because of the strong
completeness of NC. Strong completeness means completeness independent of
selection functions. A selection function is mapping that assigns to every goal
G different from T an equation e € G different from true. An example of a
selection function is S,z which always returns the leftmost equation different

from true. We say that an NC-derivation II respects a selection function S if
the selected equation in every step G; ~» G2 of II coincides with S(G;). Now
strong completeness of NC is formulated as follows.

THEOREM 2.2. Let R be a confluent TRS and S a selection function. If R + G8
and 0y ,,(g) is normalized then there exists an NC-refutation G ~j, T respecting
S such that ¢’ < 8 [Var(G)]. O

3. Lazy Narrowing Calculus

Calculi in which the narrowing inference rule is replaced by a small number of
more primitive operations are comprehensively examined by Hoélldobler in his
thesis [9] and Snyder in his monograph [20]. The calculus that we investigate in
this paper is the specialization of Hélldobler’s calculus TRANS, which is defined
for general equational systems and based on paramodulation, to (confluent)
TRSs and narrowing.

DEFINITION 3.1. Let R be a TRS. The lazy narrowing calculus, LNC for short,
consists of the following five inference rules:

[on] outermost narrowing
Gl)f(sly"')sn)i‘tyGZ
G1,51 —_.—11,--.,5,, ilnyrityGZ

if there exists a fresh variant f(Iy,...,1,) — 7 of a rewrite rule in R,
[im] imitation
G1,f(s1,...,80) = 2,Gs
(G1,81 =21,...,8n = 25,G2)0
if 8 = {z — f(z1,...,2,)} with z1,...,z, fresh variables,
[d] decomposition
Gl,f(sly"')sn) = f(tly"')tn)702
G1,81 = tl,...,s,. = tn,Gg

]

[v] wariable elimination
Gl, T~ t, Gz
(G1,G)8
if z ¢ Var(t) and 6 = {z — t},
[t] removal of trivial equations
G,z =z,G2
Gi1,Ga

Here s =~ t stands for s =t ort = s.
The variable elimination rule [v] is different from the one of Martelli et al.

[15, 13] in that we don’t keep the solved equation z = t around. The rules {v], [d],
and [t] constitute the syntactic unification algorithm of Martelli and Montanari

[14]. We refer to these three rules as uc, which stands for unification calculus.
Because syntactic unification is performed by uc, the rewrite rule z = z — true
is no longer used in LNC. As a consequence, we may assume that the symbol
true doesn’t occur in LNC-goals.

Contrary to usual narrowing, the outermost narrowing rule [on] generates
new parameler-passing equations s; =1y,..., s, = l,, besides the body equation
r = t. These parameter-passing equations must eventually be solved in order
to obtain a refutation, but we don’t require that they are solved right away.
That is the reason why we call the calculus lazy. We introduce some useful
notations relating to the calculus LNc. If G and G’ are the upper and lower
goal in the inference rule [o] (o € {on,im,d,v,t}), we write G =) G’. This
is called an LNC-step. The applied rewrite rule or substitution may be supplied
as subscript, that is, we will write things like G =(on) 1~ G’ and G =>{im]¢ G'.
LNC-derivations are defined as in the case of NC. An LNcC-refutation is an LNC-
derivation ending in the empty goal 0. uUc-steps, derivations, and refutations
are defined in exactly the same way.

Because the purpose of LNC is to simulate narrowing, it is natural to expect
that LNC inherits strong completeness from Nc. Indeed, Holldobler [9, Corollary
7.3.9] states the strong completeness of LNC for confluent TRSs with respect to
normalizable solutions. However, this does not hold.

COUNTEREXAMPLE 3.2. Consider the TRS R = {f(z) — g(h(z),z),9(z,z) —
a,b — h(b)} and the goal G = f(b) = a. Confluence of R can be proved
by a routine induction argument on the structure of terms. The (normalized)
empty substitution € is a solution of G because f(b) = a —x g(h(b),b) = a —r
g(h(b),h()) = a =-r a = a —xr, true. Consider the selection function Srigns
that selects the rightmost equation in every goal. There is essentially only one
LNC-derivation issued from G respecting Syign::

F)=a =pon]s@)—g(hz)) b= 2,9(h(2),2) =a

Slonlg(ero)—a D=z h(2)=zi,x= 2,024
= b=z,h(z) =21,2 =2
=[v], {71z} b=z, h(z) =z

D im] {o—h(z2)} b= h(zy), h(22) = 2,
= [im],{za—h(zs)}

This is clearly not a refutation. (The alternative binding {z — =z;} in the
=>[y]-step results in a renaming of the above LNC-derivation.) Hence LNC is not
strongly complete.

This counterexample doesn’t refute the completeness of LNC. The goal f(b) =
a can be solved, for instance, by adopting the selection function Sief:.

In Section 5 we show that LNC is complete in the general case of confluent
TRSs and normalized solutions. In the next section we present sufficient condi-
tions for the strong completeness of LNC, which turns out to be a simpler than
proving completeness.

4. Restoring Strong Completeness

In Middeldorp and Hamoen [16] it is shown that basic narrowing is not able to
solve the goal f(b) = a with respect to the TRS R of Counterexample 3.2. This
suggests a connection between strong completeness of LNC and completeness of
basic NC. In this section we prove that LNC is strongly complete whenever basic
NC is complete.

The basis of our proof is the specialization of the transformation process
used by Holldobler in his proof of the (strong) completeness of TRANS. First we
formalize the intuitively clear propagation of equations along Nc-derivations.

DEFINITION 4.1. Let G ~+45,1—» G’ be an NC-step and e an equation in G. If e
is the selected equation in this step, then e is narrowed into the equation e[r],8
in G'. In this case we say that e[r],0 is the descendant of e in G’. Otherwise, e
is simply instantiated to the equation ef in G’ and we call ef the descendant of
e. The notion of descendant extends to Nc-derivations in the obvious way.

Observe that in an Nc-refutation G ~* T every equation e € G has exactly
one descendant true in T. We now introduce four transformation steps on
Nc-refutations. The first one corresponds to Proposition 7.3.4 in Holldobler [9].

LEMMA 4.2. Let II: G1,s = t,G2 ~; T be an Nc-refutation with the property
that narrowing Is applied to a descendant of s = t at position 1. Let V be
a finite set of variables such that Var(Gi,s = t,G3) C V. Ifl — r is the
applied rewrite rule in the first such step then there exists an Nc-refutation
Gon)(M): G, 8 = 1,7 =¢,G2 ~;, T such that 6 =6’ [V]. O

The second transformation step corresponds to Proposition 7.3.3 in [9].

LEMMA 4.3. Lete be theequation f(sy,...,82) = f(t1,...,tn). LetII: G1,¢€,G2

~~% T be an NC-refutation with the property that narrowing is never applied to

a descendant of e at position 1 or 2. Let V be a finite set of variables that includes

Var(G1,e,G3). There exists an NC-refutation (g)(I1): G1, 51 = t1,...,80 = ts, G2
~%, T such that § = ¢’ [V]. O

The third transformation step corresponds to Corollary 7.3.5 in Holldobler
[9]. This corollary is an immediate consequence of Holldobler’s lifting lemma for
reflection, instantiation, and paramodulation (Lemma 6.2.6 in [9]). This easy
proof does not work in our case since narrowing, unlike paramodulation, cannot
be applied at variable positions. Nevertheless, we can repeat the proof of the
lifting lemma (for NC) to obtain the validity of the third transformation step.

LEMMA 4.4. Let II: G ~; T be an Nc-refutation with the property that zf =
f(t1,...,tn) for some ¢ € Var(G) and let V be a finite set of variables such that
Var(G) C V. Let y = {z — f(x1,...,2,)} with z1,...,z, ¢ V. There exists
an NC-refutation @im)(I1): Gy ~5 T which employs the same rewrite rules at
the same positions in the corresponding equatigns of the goals in II such that
¥9' =46 [V]. O

The fourth and final transformation step is presented in the following lemma.

LEMMA 4.5. ForeveryNc-refutationII: Gy, s =1, G ~~¢,,e (G1, true,G2)0;1 ~3,
T there exists an NC-refutation ¢yc(Il): (G1,G2)8y ~5, T. O

The idea now is to repeatedly apply the above transformation steps to a
given Nc-refutation, connecting the initial goals of (some of) the resulting Nc-
refutations by LNGC-steps, until we reach the empty goal. In order to guarantee
termination of this process, we need a well-founded order on Nc-refutations that
is compatible with the four transformation steps.

DEFINITION 4.6. The depth |t| of a term t is inductively defined as follows:
[t] = 1if ¢t is a variable and |t| = 1 + max{|t,|,...,|[ta] | 1 € i < n}ift =
f(t1,...,tn). The complezity |II| of an NC-refutation II: G ~; T is defined as
the triple (n, M,s) where n is the number of applications of narrowing in II
at non-root positions (so the number of steps that do not use the rewrite rule
z = ¢ — true), M is the multiset {|z16],..., |zm0]| | {z1,...,Zm} is the multiset
of variables occurring in G}, and s is the number of occurrences of symbols
different from = and true in G. We define a partial order 3> on Nc-refutations
as follows: IIy > Il if |IIy| lex(>, >mur,>) |M2|. Here lez(>,>mu1, >) denotes
the lexicographic product of > (the standard order on N), >y (the multiset
extension [3] of >), and >.

LEMMA 4.7. The partial order > is a well-founded order on NC-refutations. O

Our complexity measure on Nc-refutations is different from the one in Holl-
dobler [9, p. 188]. Since we are concerned with one-directional term rewriting
and narrowing (as opposed to bi-directional equational reasoning and paramod-
ulation in [9]), our simpler definition suffices. The next lemma states that >> is
compatible with the transformation steps defined above.

LEMMA 4.8. Let II be an Nc-refutation. We have II 3> ¢pon)(Il), ¢(a)(1),
B1im)(I1), ¢uc(II) whenever the latter are defined. O

In the case of ¢(,n) and ¢(q) this is easily verified. The validity of Lemma 4.8
for the transformation steps ¢;n) and ¢y requires more effort. The following
example illustrates how the above results are used to transform Nc-refutations
into LNC-refutations.

EXAMPLE 4.9. Consider the TRS R = {f(9(y)) — y} and the Nc-refutation

O1:g(f(2)) = 2 ~zg(y)y 9(¥) = 9(y) ~ true.

In II; the variable z is bound to g(y), so the complexity of II; is (1,{2,2},4).
Transformation steps ¢[on], ¢(a), and ¢yc are not applicable to II;. Hence we
try ¢pim)- This yields the NC-refutation

2 = ¢im)(I1): 9(f(9(21))) = 9(21) ~{z,~y} 9(¥) = g(y) ~¢ true

which has complexity (1,{1,1},6). Next we apply é(s). This gives the Nc-
refutation

3 = ¢pg)(T2): f(9(%1)) = Tt (g gy} Y = Y ~e tTUE

with complexity (1,{1,1},4). Observe that the initial goal of II; is transformed
into the initial goal of II3 by the single LNC-step g(f(x)) = & =[im],{zg(z1)}
f(g(=1)) = z1. In I3 narrowing is applied to the initial equation at position 1.
This calls for the transformation step ¢n):

Iy = ¢[on](n3):f(g(xl)) = fle()y== Mgy} tTUG Y Ty el

Nc-refutation II4 has complexity (0,{1,1,1,1},8). If we apply ¢4 to Il4, we
obtain the Nc-refutation

5 = ¢(q)(TLa): 9(21) = 9(¥), ¥ = 21 gy} tTUG,Y =Y e T

with complexity (0,{1,1,1,1},6). The initial goals of II3 and II5 are connected
by an =>pon-step: f(9(21)) = 21 =pa) 9(21) = 9(y),y = z1. In the first
step of IIs narrowing is applied at the root position of the selected equation
g(z1) = g(y). Hence we use ¢uc, yielding the Nc-refutation

s = duc(Ils):y = y ~~¢ true

with complexity (0,{1,1},2). The initial goals of IIs and IIs are connected by
the Uc-derivation g(z1) = g(y),y = &1 =[q) £1 = ¥, ¥ = T1] {z1~y} ¥ = ¥
Another application of ¢y ¢ results in the empty NC-refutation

7 = ¢yc(Ils): 0

which has complexity (0,2,0). Clearly y = y =;) . Concatenating the various
LNc-sequences yields an LNC-refutation g(f(z)) = = = O whose substitution ¢
satisfies 26 = g(y).

Unfortunately, the simulation of NC by LN illustrated above doesn’t always
work, as shown in the following example.

EXAMPLE 4.10. Consider the TRS R = {f(z) — z,a — b,b — g(b)} and the
Nc-refutation g f(a) = g(a) ~ f(a) = g(b) ~ a = g(b) ~ b = g(b) ~
g(b) = g(b) ~ true. Because we apply narrowing at position 1 in the descen-
dant f(a) = g(b) of the initial equation f(a) = g(a), using the rewrite rule
f(z) — z, we transform Iz, using @on) and @z This yields the Nc-refutation
S1a)(Bon)(Mgair)): 0 = 2,2 = g(a) ~ a = z,z = g(b) ~ a = g(b) ~ b=g(b) »
g(b) = g(b) ~ true. Observe that the initial goals of Ile; and ¢pa)(¢pon)(Msair))
are connected by =>[,n). Since in the refutation é1a)($1on) (I sait)) narrowing is
applied at position 11in the descendant a = g(b) of the selected equation z = g(a)
in the initial goal a = z,z = g(a), we would like to use once more the trans-
formation steps ¢[on) and ¢4). This is however impossible since the subterm of
z = g(a) at position 1 is a variable.

The reason why IIj,; cannot be transformed to an LNC-refutation by the
transformation steps in this section is that in @g)(é[on)(Ilfeir)) narrowing is ap-
plied to a subterm introduced by a previous narrowing substitution. One might
be tempted to think that this problem cannot occur if we restrict ourselves to nor-
malized solutions. This is not true, however, because Ilz;;; computes the empty
substitution ¢, which is clearly normalized, but @(4)(#(on}(ILfait)) computes the
non-normalized solution {z — a}. So the transformation steps do not preserve
normalization of the computed NC-solutions (restricted to the variables in the
initial goal). However, it turns out that basicness ([11, 16]) is preserved. This is
one of the two key observations to the connection between strong completeness
of LNC and completeness of basic NC.

LEMMA 4.11. Let II be a basic Nc-refutation. The Nc-refutations ¢pon)(II),
¢1a)(I), fim)(II), and ¢y (M) are basic whenever they are defined. O

The other key observation is that for basic NC, strong completeness and
completeness coincide.

LEMMA 4.12. Let S be a selection function. For every basic Nc-refutation
II: G ~j T there exists a basic NC-refutation Ils:G ~~; T respecting S with
the same complexity. O

We are now ready to present the main result of this section.

THEOREM 4.13. Let R be a TRS and G ~»} T a basic Nc-refutation. For every
selection function S there exists an LNC-refutation G =, O respecting S such
that ¢’ = 0 [Var(G)]. O

A related result for lazy paramodulation calculi is given by Moser [18]. He
showed the completeness of his calculus 7gp, a refined version of the calculus 7
of Gallier and Snyder [5], by a reduction to the basic superposition calculus S
of [1]. Strong completeness (of 7gp) follows because Tgp satisfies the so-called
“switching lemma”. Since from every 7pp-refutation one easily extracts a 7-
refutation respecting the same selection function, strong completeness of 7 is
an immediate consequence.

Basic narrowing is known to be complete (with respect to normalized solu-
tions) for confluent and terminating TRSs (Hullot [11]), orthogonal TRSs under
the additional assumption that G is normalizable (Middeldorp and Hamoen
(16]), and confluent and right-linear TRSs ([16]). Hence for these three classes
of TRSs we obtain the strong completeness (with respect to normalized solu-
tions) of LNC as a corollary of Theorem 4.13.

The converse of Theorem 4.13 does not hold, as witnessed by the confluent
TRS R = {f(z) — g(z,z),a — b,g(a,b) — ¢,g(b,b) — f(a)} from Middeldorp
and Hamoen [16]. They show that the goal f(a) = ¢ cannot be solved by basic
narrowing. Straightforward calculations reveal that for any selection function S
there exists an LNC-refutation f(a) = ¢ =* O respecting S.

5. Completeness

In this section we show the completeness of LNC for confluent TRSs with respect
to normalized solutions. Actually we show a stronger result: all normalized so-
lutions are subsumed by substitutions produced by LNC-refutations that respect
Stese. Basic narrowing is of no help because of its incompleteness [16] for this
general case. If we are able to define a class of NC-refutations respecting S
that (1) includes all Nc-refutations respecting Siese that produce normalized so-
lutions, and (2) which is closed under the transformation steps ¢jon], $(a); [im)s
and ¢yc, then completeness with respect to S follows along the lines of the
proof of Theorem 4.13. We didn’t succeed in defining such a class, the main
problem being the fact that an application of ¢(,,) or ¢4 to an Nc-refutation
that respects Siese may result in an Nc-refutation that doesn’t respect Siese. We
found however a class of Nc-refutations respecting Sis that satisfies the first
property and which is closed under ¢pon) © #1, S} © b2, ¢[im), and ¢yc. Here
¢, and ¢, are transformations that preprocess a given Nc-refutation in such a
way that a subsequent application of @,n) and ¢4} results in an Nc-refutation
respecting Siese. The following definition introduces our class of Nc-refutations.

DEFINITION 5.1. An Nc-refutation II: G ~; T respecting Sies is called normal
if it satisfies the following property: if narrowing is applied to the left-hand side
(right-hand side) of a descendant of an equation s = ¢ in G then 82]y,.(,0,)
(821var(ee,)) is normalized. Here 6, and 6 are defined by writing II as G =
GI,S = t, G2 W;‘ T, (S = t,G2)01 "’"’;, T.

The following result states that the class of normal Nc-refutations satisfies
property (1) mentioned above.

LEMMA 5.2. Every NcC-refutation respecting Siese that produces a normalized
solution is normal. []

The converse of this lemma is not true. The next two lemmata introduce the
transformations ¢; and ¢,. Both proofs rely on the same switching lemma.

LEMMA 5.3. Let e be the equation s = t. For every normal Nc-refutation
O:e,G ~j, s = t',GO1 ~g,10r (r = 1',G01)82 ~5 T with the property
that narrowing is not applied to a descendant of e at position 1 in the sub-
derivation that produces substitution 6y, there exists a normal Nc-refutation
$1(I1):e,G ~y, 8" = t01,Go1 ~g,,1,0-r (r = toy,Goy)oy ~,, T with the
same complexity such that oy0203 = 810,03 and narrowing is neither applied at
position 1 nor in the right-hand side of a descendant of e in the subderivation
that produces the substitution oy. O

LEMMA 5.4. Let e be the equation f(s1,...,sn) = f(t1,...,ta). For every nor-
mal Nc-refutation Il:e, G ~; true,G01 ~ T with the property that narrow-
ing is never applied to a descendant of e at position 1 or 2, there exists a normal
Nc-refutation ¢2(I):e,G ~j true,Gf; ~; T with the same complexity such
that in the subderivation producing substitution 6, narrowing is applied to the
subterms si,...,8n,%1,-..,1s In the order s1,11,52,%2,...,8n,tn. O

10

The next result states that the transformation steps (on) 041, da)© ¢2, Gfim],
and ¢y preserve normality.

LEMMA 5.5. Let Il be a normal NC-refutation. The Nc-refutations @on)(¢1(II)),
¢1a)(#2(I)), bim)(1I), and ¢yc(II) are normal whenever they are defined. O

EXAMPLE 5.6. Consider again the Nc-refutation Ilf,;; of Example 4.10. This
refutation is easily seen to be normal. An application of ¢[,n) results in the
Nc-refutation @pon)(Hyait): f(a) = f(z),z = g(a) ~ f(a) = f(z),z = g(b) ~ a =
g(b) ~ b= g(b) ~ g(b) = g(b) ~» true. which doesn’t respect Si.pe. If we first
apply ¢; we obtain the Nc-refutation ¢;(Ilzir): f(a) = g(a) ~ a = g(a) ~ a =
g(b) ~ b = g(b) ~ g(b) = g(b) ~ true. An application of @[,n] to this normal
NG-refutation ields @pon(61(Ii): £(3) = f(2),2 = g(a) ~ @ = g(a) ~» a =
g(b) ~ b = g(b) ~ g(b) = g(b) ~» true. This Nc-refutation is normal even
though the produced substitution restricted to the variable in the initial goal is
not normalized.

The following lemma is the counterpart of Lemma 4.12 for normal Nc-
refutations. ‘

LEMMA 5.7. For every Nc-refutation II: G~y T with 0y, is normalized
there exists a normal NC-refutation s, g, G ~; T of the same complexity. O

Putting all pieces together, the following result can be proved along the lines
of the proof of Theorem 4.13.

THEOREM 5.8. Let R be a TRS. For every Nc-refutation G ~»; T with the
property that 8[y,.) is normalized there exists an LNC-refutation G =3, T
respecting Siee such that ¢’ = 0 [Var(G)]. O

CoROLLARY 5.9. Let R be a confluent TRS. If R + G6 and 0[y,,(c) is nor-
malized then there exists an LNC-refutation G =>4, O respecting Sies: such that
¢ <8 [Var(G)]. O

6. Eager Variable Elimination

LNC has three sources of non-determinism: the choice of the equation in the
given goal, the choice of the inference rule, and the choice of the rewrite rule
(in the case of [on]). In Section 4 we were concerned with the first kind of non-
determinism. In this section we address the second kind of non-determinism.
The non-deterministic application of the various inference rules to selected equa-
tions causes LNC to generate many redundant derivations. Consider for example
the (orthogonal hence confluent) TRS {f(g(z)) — a,b — g(b)}. Figure 1 shows
all LNC-refutations issued from the goal f(b) = a that respect the selection func-
tion Siefe. There are infinitely many such refutations. Because the initial goal is
ground, one of them suffices for completeness. At several places in the literature

11

f(b) =a

lJ'[on]
b=g(z),a=a
Yfon)
g(b)=g(z),a=a
$q)
b=z,a=¢ o] IB)=z,aZ=a Dpm) b=2,0=0 D)

Yiv)) Y)

a=a a=a a=a
Uia) Y Ya)
a 0 O

Fig. 1.

it is mentioned that this type of redundancy can be greatly reduced by applying
the variable elimination rule [v] prior to other applicable inference rules, although
to the best of our knowledge there is no supporting proof of this so-called eager
variable elimination problem for the general case of confluent systems.

In this section we show that a restricted version of the eager variable elim-
ination strategy is complete with respect to S for orthogonal TRSs. Before
we can define our strategy, we need to extend the concept of descendant to
LNC-derivations. Descendants of non-selected equations are defined as in Defini-
tion 4.1. The selected equation f(si,...,sn) =t in the outermost narrowing rule
[on] has the body equation 7 = t as only (one-step) descendant. In the imitation
rule [im), all equations s;0 = z; (1 < ¢ < n) are descendants of the selected
equation f(sy,...,8,) = z. The selected equation f(sy1,...,8.) = f(t1,...,tn)
in the decomposition rule [d] has all equations s; = t1,...,5, =1, as (one-step)
descendants. Finally, the selected equations in [v] and [t] have no descendants.

DEFINITION 6.1. An equation of the form z ~ ¢, with = ¢ Var(t), is called
solved. An LNcC-derivation II is called eager if the variable elimination rule [v]
is applied to all selected solved equations that are descendants of a parameter-
passing equation in II.

Of the infinitely many LNC-refutations in Figure 1 only the leftmost one is
eager since all others apply the outermost narrowing rule [on] to the solved
descendant b = z of the parameter-passing equation b = g(z) introduced in the
first =(oq)-step.

In this section we prove that eager LNC is complete with respect to Sies
for orthogonal TRSs (with respect to normalized solutions). The outline of our
proof is as follows. '

(1) We define outside-in NC-derivations. These are the narrowing counterpart
to the outside-in rewrite sequences of Huet and Lévy [10}].

(2) We show that the completeness of outside-in NC for orthogonal TRSs with
respect to normalized solutions is an easy consequence of Huet and Lévy’s

12

standardization theorem.

(3) We show that the translation steps é1, #2, djon], B(a], d[im], and ¢uc pre-
serve the outside-in property.

(4) We verify that the LNC-refutation obtained from an outside-in Nc-refutation
by means of the transformation described in the previous section is in fact
eager.

Before defining outside-in NC-derivations, we introduce the concept of Nc-trace.

Let I : G ~ G’ be an NC-step and e an equation in G different from true.

Let €’ be the (unique) descendant of e in G'. The construct e —g €’ is called a

one-step NC-trace. NC-traces are obtained by concatenating one-step NC-traces.

An Nc-trace ey =g, +-- »g,_, €, may be rendered as e; >} e, where § =

01 ---0,_1. For every such Nc-trace 7 there is a corresponding rewrite sequence

R(m):€10 —%, en. This rewrite sequence will be shorter than = if the latter

contains one-step NC-traces of the form e; ~g, e;#;—indicating that e; was not

selected in the underlying NC-step—which translate to identity at the rewrite
level.

DEFINITION 6.2. Let R be an orthogonal TRS. A rewrite sequence ey —p, 1, —r,
“or =p i da_i—ra_y €n 1D Ry is called outside-in if the following condition is
satisfied for all 1 < 7 < n — 1: if there exists a j with i < j < n such that
€ < pj < p; then p;\p; € Posx(l;) for the least such j.

This definition is equivalent to the one given by Huet and Lévy in their sem-
inal paper [10] on call-by-need computations in orthogonal TRSs. The following
result is an immediate consequence of their standardization theorem (Theorem
3.19 in [10]). '

THEOREM 6.3. Let R be an orthogonal TRS. For every rewrite sequence e —7% .
true there exists an outside-in rewrite sequence e —%_ true. O

DEFINITION 6.4. Let R be an orthogonal TRS. An Nc-derivation II issued from
a goal G is called outside-in if R(r) is outside-in for all traces 7 of the equations
e€G.

The following result is an easy consequence of Theorem 6.3 and the lifting
lemma for Nc.

THEOREM 6.5. Let R be an orthogonal TRS. For every Nc-refutation G ~; T
with 0[y,.,.c) normalized there exists an outside-in Nc-refutation G ~j, T such
that §' < 0 [Var(G)]. O '

The above theorem extends and simplifies the main result of You [22]: the
completeness of outer narrowing for orthogonal constructor-based TRSs with
respect to constructor-based solutions. One easily verifies that outer narrowing
coincides with outside-in narrowing in the case of orthogonal constructor-based
TRSs and that constructor-based substitutions are a special case of normalized
substitutions. Hence You’s completeness result (Theorem 3.13 in [22]) is a con-
sequence of Theorem 6.5. Since You doesn’t use the powerful standardization

13

theorem of Huet and Lévy, his completeness proof is (much) more complicated.
Moreover, our result covers a larger class of TRSs.

A careful inspection of the transformation steps described in the preced-
ing two sections reveals that @1, ¢2, @[on], P[d]) Plim)s and @dyc preserve the
outside-in property. Moreover, the LNC-refutation obtained from an outside-in
Nc-refutation can be shown to be eager, i.e., we obtain the following result.

THEOREM 6.6. Let R be an orthogonal TRS. For every outside-in NC-refutation
G ~ T with 0]y,,(gy normalized there exists an eager LNC-refutation G =3 T
respecting Siese such that §' < 6 [Var(G)]. O

The combination of the last two results yields the final result of this paper.

THEOREM 6.7. Let R be an orthogonal TRS. If R + G and [y ,,(g) is nor-
malized then there exists an eager LNC-refutation G =>4, T respecting Sief such
that 8’ < 8 [Var(G)]. O

7. Suggestions for Further Research

This paper leaves many questions unanswered. In the near future we would like
to address the following two problems.

In Section 4 we have shown the strong completeness of LNC in the case of
orthogonal TRSs, using the transformation steps @on), $[d)s Pfim], and ¢yc. In
Section 6 we showed the completeness of eager LNC with respect to Sie for
orthogonal TRSs, using the transformation steps @[on) © é1, $[a] © 2, [im}, and
duc. A natural question is whether these two results can be combined, i.e., is
eager LNC strongly complete for orthogonal TRSs. Recall the Nc-refutation I,
in Example 4.10. It is easy to see that Il is outside-in. Nevertheless, ¢[o,,],
together with @pg), results in failure. Hence the use of ¢; and @5 is essential for
the completeness of eager LNC. This suggests that it is not obvious whether or
not eager LNC is strongly complete for orthogonal TRSs.

The orthogonality assumption in our proof of the completeness of eager LNC
is essential since we make use of Huet and Lévy’s standardization theorem. We
didn’t succeed in finding a non-orthogonal TRS for which eager LNC is not com-
plete. Hence it is an open problem whether our restricted variable elimination
strategy is complete for arbitrary confluent TRSs with respect to normalized
solutions. A more general question is of course whether the variable elimination
rule can always be eagerly applied, i.e., is the restriction to solved descendants of
parameter-passing equations essential? In a recent paper Socher-Ambrosius [21]
reports that the eager variable elimination problem has a positive solution in
case of lazy paramodulation for arbitrary equational theories. It remains to be
seen whether his techniques can be lifted to the present setting.

Acknowledgements. We thank an anonymous referee for drawing our attention
to the work of Moser.

14

References

1.

2.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder, Basic Paramodulation and
Superposition, Proc. 11th CADE, LNCS 607, pp. 462-476, 1992.

N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, in: Handbook of Theoret-
ical Computer Science, Vol. B, ed. J. van Leeuwen), North-Holland, pp. 243-320,
1990.

N. Dershowitz and Z. Manna, Proving Termination with Multiset Orderings, Com-
munications of the ACM 22(8), pp. 465-476, 1979.

M. Fay, First-Order Unification in Equational Theories, Proc. 4th CADE, Austin,
pp. 161-167, 1979.

J. Gallier and W. Snyder, Complete Sets of Transformations for General E-
Unification, TCS 67, pp. 203-260, 1989.

M. Hanus, Efficient Implementation of Narrowing and Rewriting, Proc. PDK-91,
LNAI 567, pp. 344-365, 1991.

M. Hanus, The Integration of Functions into Logic Programming: From Theory
to Practice, JLP 19 & 20, pp. 583-628, 1994.

S. Holldobler, A Unification Algorithm for Confluent Theories, Proc. 14th ICALP,
LNCS 267, pp. 31-41, 1987.

S. Holldobler, Foundations of Equational Logic Programming, LNAI 353, 1989.
G. Huet and J.-J. Lévy, Computations in Orthogonal Rewriting Systems, I and
II, in: Computational Logic, Essays in Honor of Alan Robinson (eds. J.-L. Lassez
and G. Plotkin), The MIT Press, pp. 396-443, 1991.

J.-M. Hullot, Canonical Forms and Unification, Proc. 5th CADE, LNCS 87,
pp. 318-334, 1980.

J.W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer Science,
Vol.1I (eds. S. Abramsky, D. Gabbay, and T. Maibaum), Oxford University Press,
pp. 1-116, 1992.

A. Martelli, C. Moiso, and G.F. Rossi, Lazy Unification Algortihms for Canonical
Rewrite Systems, in: Resolution of Equations in Algebraic Structures, Vol. II
(eds. H. Ait-Kaci and M. Nivat), Academic Press, pp. 245-274, 1989.

A. Martelli and U. Montanari, An Efficient Unification Algorithm, ACM TOPLAS
4(2), pp. 258-282, 1982.

A. Martelli, G.F. Rossi, and C. Moiso, An Algortihm for Unification in Equational
Theories, Proc. 1986 Symposium on Logic Programming, pp. 180-186, 1986.

A. Middeldorp and E. Hamoen, Completeness Results for Basic Narrowing,
AAECC 5, pp. 213253, 1994.

A. Middeldorp, S. Okui, and T. Ida, Lazy Narrowing: Strong Completeness and
Eager Variable Elimination (in preparation).

M. Moser, Improving Transformation Systems for General E-Unification, Proc.
5th RTA, LNCS 690, pp. 92-105, 1993.

J.R. Slagle, Automatic Theorem Proving in Theories with Simplifiers, Commuta-
tivity and Associativity, Journal of the ACM 21, pp. 622-642, 1974.

W. Snyder, A Proof Theory for General Unification, Birkhauser, 1991.

R. Socher-Ambrosius, A Refined Version of General E-Unification, Proc. 12th
CADE, LNAI 814, pp. 665-677, 1994. ‘

Y.H. You, Enumerating Outer Narrowing Derivations for Constructor Based Term
Rewriting Systems, JSC 7, pp. 319-343, 1989.

15

