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Abstract. This paper addresses a method for solving two classes of production-transportation
problems with concave production cost. By exploiting a special network structure both the
problems are reduced to a kind of resource allocation problem. It is shown that the resulting
problem can be solved by using dynamic programming in time polynomial in the problem input

length, i.e., the number of supply and demand points and the total demand.

Key words: Concave minimization, global optimization, production-transportation prob-

lem, resource allocation problem, dynamic programming

1. Introduction

In this paper we will discuss special classes of production-transportation problems which
arise in many practical applications, for instance:

There are one factory and a number of warehouses in each of several regions. Every
factory produces a certain amount of goods, and can transport them to only warehouses
in its assigned region. Except these branch factories there is a head factory, which
can transport the products to every warehouse. The decision maker has to decide how
many goods each factory should produce, and which warehouses the head factory should
supply, so as to minimize the total production and transportation cost.

In the above situation (see also Figure 2.1), we are concerned with two cases:

(P1): The production cost of the head factory need not to be considered but the total
supply from it is restricted.

(P2): The total supply from the head factory is not restricted but its production cost
has to be considered.

*The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of
Education, Science and Culture, Grant No. (C)05650061.



The production cost of each factory is in general a nondecreasing and concave func-
tion of the output, whence both the problems (P1) and (P2) have multiple locally optimal
solutions, many of which need not to be globally optimal. If the number of factories
are fixed at k, we can solve the problems in strongly polynomial time by using the algo-
rithms proposed by Tuy, et al. in their recent series of articles [9, 10, 11]. In this case, the
total cost function possesses rank-k property [8] and its global minimum can be found
in the course of solving a transportation problem parametrically. We will show in this
paper that both the problems can be solved in time polynomial in the problem input
length, i.e., the number of factories and warehouses and the total demand of warehouses,
without assuming the fixed number of branch factories.

The organization of the paper is as follows: In Section 2, we will transform the
problem (P1) into a kind of resource allocation problem, referred to as the master problem
of (P1), by exploiting the special network structure stated above. The objective function
of the master problem is defined by solving m Hitchcock transportation problems, where
m represents the number of branch factories. In Section 3, to solve the master problem
we will propose an algorithm using dynamic programming, and show that it requires
(mnb) arithmetic operations and O(nb) evaluations of the production cost function of
each factory, where n and b represent the number of warehouses and their total demand
respectively. In Section 4, we will show that the problem (P2) can also be transformed
into a resource allocation problem of the same form as the master problem of (P1).

2. Decomposition of (P1) into subproblems

The problem we first consider is defined below (see Figure 2.1):

m m
minimize Z Z CijTij + Z fi(z)
=1

i=0jeV;
m

subject to Zyi < b,
i=1

Z$0j=yi, Zx,‘jZZ,‘, i=1,...,m, (21)

JEV: JEV;

To; + x5 = by, JEV, i=1,...,m,
.’IJOJ'ZO, :l?,'jZO, JEV, i=1,...,m,
¥yi20, z2>0, i=1,...,m,

where b, b; > 0, j € V;, i =1,...,m, are integral, ¢;; > 0,j € V;,i =0,1, ..., m,
are real, f; : R' — R', i =1, ..., m, are nondecreasing and concave functions, and V;,

1=0,1, ..., m, are index sets such that
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Vi=Vo={1,...,n}, Vi=0. (2.2)
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Figure 2.1. Illustration of the problem.

A special case of (2.1), where m = 1, involves the problem studied by Tuy et al. in 9],
and can be solved in O(nlogn) elementary operations and n evaluations of function f
if we use the algorithm proposed in [9].

Any feasible solution of (2.1) has to satisfy

zi=a;—Y, t=1,...,

m, (2.3)
where a; = 3 ;cv; b;. We can therefore eliminate all z;’s from (2.1) by defining
Fw) = Fla—w), i=1,...,m. (2.4
Obviously f;’s are still concave but nonincreasing. The first problem is then as follows:
minimize Y Y ¢z + Y fi(y:)
i€0 jeV; i=1
subject to Zy,- <b,

i=1
(Pl) Z%j =Y Zivij =a; -y, 1=1,...,m, (2~5)
JEV: eV
:voj+:1:,-j=bj, jGV,, i=1,...,m,
$0j20> xijzo, JEV;7 i=17"'>m7
inO, i:l,...,m.



2.1. DEFINITION OF MASTER PROBLEM

For any fixed ¥y = (y1, ...,Ym), we have a linear programming problem:
. :
minimize Y Y ¢i;Zi;
ic0 jeV;
(P(y)) subject to jezv,- To; = Vi, Jg\;;. Ty =a;—Y, t=1,...,m, (2.6)
To; + x5 = by, JEV, i=1,...,m,
313[)]'20, 117,'_.,'20, JGI/;, 2=1,,m

Due to the condition (2.2), problem (P(y)) can be decomposed into m subproblems
(Pi(y:)), i = 1, ..., m, each of which is a Hitchcock transportation problem with two
supply points:

minimize Z (cojZo; + cijTij)

JEV:
subject to Zo; = Yi, Tij =0; — Yi ,
(Pi(y:)) ,:‘;f ’ J;/ ’ (2.7)

To; + Tij = bj, JEeV,
zo; 20, z;; 20, jeV.

If 0 <y < a;, then (P;(y;)) has an optimal solution. We denote it by a vector =} (y;),
every element of which is either 27;(y:) or z3;(v:), j € Vi, and by gi(y:) its optimal value.
Obviously z*(y) = (z5(y1), - - -, 2% (ym)) Is an optimal solution of (P(y)) and 37, ¢:(y:)
is the optimal value. The original problem (P1) can be solved if we solve (P(y)) for all
y satisfying Y0, y; < band 0 < y; < a; for every i. Let

hi(yi) = fz(yz) + gi(yi)’ 1= 1’ ceey M (28)

Then (P1) is reduced to a kind of resource allocation problem with m variables:

m
minimize Z hi(y:)
i=1

(MP1) subject to Y y; < b, (2.9)

i=1

Osyisaia izl)"',ma

which we call the master problem of (P1). Without loss of generality we may assume
that

b< > ai (=) b)) (2.10)
i=1 j=1 )
The following lemma summarizes the above arguments:
Lemma 2.1. If y* is an optimal solution of (MP1), then (x*(y*), y*) solves (P1),

where z*(y*) = (z}(y}), ..., x5 (y)) and xi(y?) is an optimal solution of (P;(yf)).
O



2.2. ANALYTIC FORM OF FUNCTION h;

To solve (MP1) we have to know the form of function h;, which is a composition of
two functions f; and g;. While the former is given beforehand, the latter requires one
to solve the Hitchcock transportation problem (P;(y;)) as varying the value of y; in the
interval [0, a;].

Note that the constraint - ;cv; 2;; = a; — y; is expressed by the others and hence can
be deleted from the definition of (P;(y;)), i.e.,

minimize Z (cojzo; + cijij)
JEV:

subject to Zo; = Yi,
J;Vi ’ (2.11)

Toj +$l] = b]y ]G ‘/;7
zo; 20, z;20, jeV,.

We should also note that any feasible solution satisfies

Tij = bj — Zojy, Vj e V. (212)
Then, by substituting (2.12) into (2.11), we have an equivalent problem with |V;| vari-
ables:

minimize Z (Coj — C,'j)fl)oj + Z C,‘jbj
JEV: JeV;
(Q;i(y:)) | subject to Z Toj = Y;, (2.13)
JEV:
0<z; <b;, JEV.

The resulting problem (Q;(y;)) is a continuous knapsack problem, which can be solved
very efficiently for all y; € [0, a;]. Let

¢ = coj = ¢ij, J € Vi (2.14)
and let

G, < < <

(2.15)

m(i)?

where m(i) = [V;|. The following is a well-known theorem (see e.g. [1]), which charac-
terizes the form of g;:

Lemma 2.2. If0 <vy; < a;, then there exists some p such that

b k=1,...,p—1,

Tk
p—1
Toj = %i— Dby, k=p, (2.16)
=1
0, k=p+1,...,|V]



is an optimal solution of (Qi(y;)) and

p—1 p—1
gi(y:) = Z Ej,bj, + p(y: — Z bj,) + Z ci;b; (2.17)
=1 =1 JEV;
18 the optimal value. O
Let
k
a'i0=0a aik=ijl, k=17 ceey “/;la (218)
=1
and let
Iik = [a;,kal, a,-k], k= 1, ey IV,I (2.19)
The analytic form of A; is now identified:
Lemma 2.3.  Function h; is concave on Iy, for every k=1, ... |Vi|.

Proof: We immediately see from (2.16) and (2.17) that g; is a convex and piecewise
linear function with break points among a;, k =0, 1, ..., |Vi|. Hence h; = f; + g¢; is
concave on each linear piece I;; = [a;j-1, ai] of g;, because f; is a concave function

defined on R. O

In [9] Tuy et al. have derived the same result as Lemma 2.3. They straightforward used
the network structure of (P;(y;)) instead of transforming it into the continuous knapsack

problem.

3. Solution Method for the Master Problem (MP1)

Let us proceed to the algorithm for solving the master problem (MP1). We will show
that (MP1) can be solved using dynamic programming. For this purpose let us note

some properties of its optimal solutions.

Lemma 3.1. Problem (MP1) has an optimal solution y* = (v}, ..., y%), at least m—1

elements of which lie inay, k=1,...,|V,i=1,..., m.

Proof: Since b and all a;’s are positive, the feasible region of (MP1) is nonempty and
bounded. Every h; is continuous on [0, a;], and hence the objective function of (MP1)
attains the minimum at some y* in the feasible region. Supp.ose there are two elements
of y*, say y; and y7, which are not in ay’s. Let y5 € int I, = (ap,e—1, Gps), ¥ € int Iy =

Qgt—-1, Qg ), and let
(@qt-1, agt), and 1

Ppg(Yp) = hp(yp) + hp(b — Yp)s



where b = y7 + y;. Also let
d = max{a,,-1, b—ay}, d=min{a,, b—a,.;}.
Then y} € (d, d) and h,, is concave on [d, d]. Hence we have

hpq(yp) 2 min{h,e(d), hpq(—‘z)}a

which implies that if we replace y, yr with either d, b — d or d, b — d then another
optimal solution y’ of (MP1) is provided. In this case, either Y, or y, coincides with an

extreme point of its interval. a
Consider m discrete optimization problems (DP;(y;)), i = 1, ..., m, associated with
(MP1):
minimize Y hy(ye)
(DP;(y;)) | subject to %ye <b-y; (3.1)
L#

Yy € {aw, ..., a’ém(l)}’ t#£1.

We denote by H;(y;) the optimal value of (DP;(y:)). It follows from Lemma 3.1 that an
optimal solution y* of (MP1) will be found if we solve every (DP;(y;)) for y; € [0, ai.

Namely,

min{min{h;(y;) + Hi(y:) | v: € [0, @]} | i =1, ..., m} (3.2)
is the minimum value of the objective function of (MP1).
Lemma 3.2. For eachi there exists an integer y. € [0, a;] such that

hiy;) + Hi(y;) = min{hi(y:) + Hi(y:) | i € [0, ai]}. (3:3)

Proof: Let y; € I;; and suppose y; is not integral. Since b and all ay’s are integral, it
must hold that

Hi(y) = H([y:1) 2 Hi(4)),

where [-] and |-] represent the integers obtained by rounding up and down - respectively.

Hence we have

hi(ys) + Hi(yy) 2 min{hi([yi]) + Hi([4]), ha(lyi)) + Hi(ly])}

by noting concavity of ; on [|¥}], [¥/]]C L,. O
Thus (3.2) turns out to be
min{min{h;(y;) + Hi(y:) |%:=0,1,...,a} |i=1,..., m}. (3.4)

7



3.1. DYNAMIC PROGRAMMING RECURSION
Let us define a partial problem of (DP;(y;)):

minimize > he(ye)
LeM(i,p)

(DPZ(y;)) | subject to Z ye < b—y;, (3.5)
¢€ M(i,p)

Ye € {a'EO’ ceey a’lm(l)}a te ]\/‘[(Zap),
where M(i,p) = {1,...,i~1,i+1,...,p}. Denote by Hf(y;) the optimal value of
(DP?(y;)) and let "

0 if y; <b, p=0,
B (y:) = ‘. (36
+oo f y;>b, p=0or y; >b, p>0.
Lemma 3.3. The values H?(y;)’s satisfy the following recursive formula:
HE(y:) = min{h,(apt) + Hf_l(yi +ap) | k=1, ..., [V} (3.7)

Proof: By definition we have
H(y:) = min{hy(y,) + H ™ (y: + Yp) | Up € {050, -5 Gpm(p) }}
= min{hp(apk) +Hf’_1(yi+apk) | k=1, ..., H/;,l} 0

Since H;(y:) = H["(y:), to obtain H;(y;) for all y; € [0, a;] it is enough to compute H?(y;)
forp=1,...,i=1,i4+1,..., mandy; =b,06—-1, ..., 1,0.

Remark. Problem (DP;(y;)) can easily be transformed into a multiple-choice knapsack
problem (see also [6]): Letting

1 if Yy = Ay, .
Wep = k=1, ... |Ve, €1 ;
t { 0 otherwise, ’ Ve, €74, (38)
then we have an equivalent problem:
m(¢)
minimize Z Z he(ag)we
2#£: k=1 .
m(¢)
subject to Z Z agwe < b—y;,
i k=1 (3.9)
m(£)
Z Wep = 1, 14 7é i,
k=1
Wy, € {0, 1}, k=1,..., V4, £#1.

We will obtain a similar recursive formula as (3.7) from this 0-1 integer programming
problem [2]. O

We are now ready to present the algorithm for solving the target problem (P1):

8



Algorithm A.
Step 1. Fori =1, ..., m do the following:
1° Compute ¢;, j € V;, from (2.14) and sort them as ¢;, < ¢, < -+ < Gy
where m(i) = |V;|.
2° Let ap =0, as = Y51 b5, k=1, ..., |Vi.
Step 2. Fori=1, ..., m do the following:
1° Compute Hf(y;) according to (3.6) and (3.7) in theorderp =1, ..., i—1, i+
L, ..,my;=b-1,b6-2...,1,0.
2° Let

y: = argmin{hi(y,-) + Hlm(y,) I v, =0,1,..., a;} (310)
and let v; = h;(y) + H™(y}).

Step 3. Let
v, = min{vy, va, ..., Un}, (3.11)

and let y7 = y,. Also let y;, i € M(r,m), be an optimal solution of (DP,(y.)).
Then an optimal solution x*(y*) of (P(y*)) is optimal to (P1). a

Theorem 3.4. Algorithm A requires O(mnb) arithmetic operations and O(nb) evalu-
ations of f; for eachi=1, ..., m.

Proof: Step 1 can be carried out in time O(nlogn) for sorting ¢;j’s. If Step 1 is over,
then for any y* we will have *(y*) in time O(logn) using binary search. The total
computational time of the algorithm is therefore dominated by Step 2. 1°: It takes 2|V,|
additions, [V,| — 1 comparisons and |V}| evaluations of f; to compute every H?(y;). For
each ¢ those numbers are bounded by

>, 2 OVl =0(nb).

¥i=0peM(i,m)

Hence the total number of arithmetic operations is )12, O(nb) = O(nmb). O

In general, Algorithm A does not run in time polynomial in the size of m, n, even though
the values of f; are provided by an oracle. However, when all b;’s have a common value,
say one, the number of arithmetic operations is a polynomial function of m and n. In
this case, the value of b is bounded by Y1, |V;

hence the total number of arithmetic operations becomes O(mnb) = O(mn?).

= n under the assumption (2.10), and

9



4. Application of the Algorithm to (P2) and Other Problems

The second problem is as follows:
m m
minimize Y > ¢z + Y fi(y:) + fo(20)
i€0 jeV; i=1

subject to Zyi = zp,
i=1

(P2) ngj =y, Z Ty=a;,—y, 1=1,...,m, (4.1)
JEV: JEV;
JJOj-l-II,‘j:bj, 7€V, 1=1,...,m,
Il,‘onO, iL‘,'jZO, 1€V, t=1,...,m,
20..>_03 inOa Z=1’ y T,

where fj is a nondecreasing and concave function of zy, and all of the other notations

are the same as (P1). As before, we can define the master problem of (P2):
minimize Y A;(y:) + fo(z0)
i=1
(MP2) subject to > y; = 2o, (4.2)
i=1

ZOZO7 Osyisaia i=17"'ama

where a; = Yjev by, hi(y:) = Ffi(yi) + gi(y:) and gi(;) is the optimal value of the
Hitchcock transportation problem (P;(y;)). If we obtain an optimal solution (y*, z3) of
(MP2), then (z*(y*), y*, z;) solves (P2), where 2*(y*) is an optimal solution of (P(y*))
defined by (2.6).

Let ap = 3.7, a; and let

Yo = Gp — 2. (43)

For any feasible solution of (MP2) we have 0 < yp < aq, since 0 < zy < ap must be
satisfied. Also let

ho(¥yo) = fo(ao — yo)- ‘ (4.4)
Then ho is a concave function on Ip; = [0, ao] , and (MP2) is reformulated as
minimize Z hi(y:)

=0
subject to  » y; = ay, (4.5)

=0

Ogyigai, i=0,1,...,m,

which is of just the same form as (MP1). We again apply dynamic programming to (4.5),
then an optimal solution of (P2) will be generated by Algorithm A in O(mnb) arithmetic

operations and O(nb) evaluations of f; for i =0, 1, ..., m, where b = 251 b5

10



4.1. NETWORK FLOW PROBLEMS ASSOCIATED WITH (P1) AnD (P2)

Minimum concave-cost flow problems is one of the most important and most difficult
classes in both combinatorial and global optimization. To solve them many algorithms
have been proposed so far (see [5, 3] and references therein), and some of them have
turned out to be practically efficient for special problems. In particular, when the number
of concave-cost arcs is fixed, one can solve the problem in polynomial time [4, 9, 12].

As well known, every Hitchcock transportation problem can be transformed into a
minimum cost flow problem and vice versa (see e.g. [7]). Similarly, we can generate
a minimum concave-cost flow problem from either (Pl)ﬁ or (P2) by equipping a super-
source and m additional concave-cost arcs with the underlying network. The converse is
also possible in a similar way as in [9, 12], i.e., a certain class of minimum concave-cost
network flow problems with m concave-cost arcs can be transformed into either (P1) or
(P2), the detail of which will be discussed in the subsequent paper.
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