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Summary

Nested relational models were proposed as natural extensions of the relational model to support
new emerging database applications. Prototype implementations of nested relational database
systems (NRDBSs) have been done by some research groups. However, there remain many
research issues on nested relations. One important issue is query processing, in particular query
optimization. In NRDBSs, efficient execution of queries involving hierarchical data structures
inherent in nested relations is required. In this paper, we focus on two join-type operations
on nested relations: nested join and embed, and propose an algorithm to derive a cost optimal
execution sequence of nested joins and embeds for a given query graph. The complexity of the

algorithm is proved to be O(N 2), when N nested relations are included in the query graph.



1 Introduction

The relational database technology has had a significant impact on data processing applications.
However, it is now commonly recognized that the relational model, with its flat representation
of data, is not sufficiently powerful to support new application domains such as engineering
design and office automation(10-(17:(26)  The difficulty relates to the recognized semantic mis-
match between the entities that are commonly encountered in these application domains and
the representations provided by the underlying database management system.

A number of approaches have been taken to remedy this drawback. The nested relational
model, which abandons the first normal form assumption in the original relational model, has
been studied as an approach to resolve this problem(l)“(7)’(9)’(12)‘(14)’(18)_(22)’(27). A variety
of algebras have been proposed for nested relations(D=B)(7M:(9),(12),19)-(21) " Prototype imple-
mentations of nested relational database systems (NRDBSs) were reported by some research
groups(-(4):(5),(19)

However, there remain many research issues on nested relations. One important issue is
query processing, in particular query optimization. A query optimizer in the NRDBS trans-
lates non-procedural queries into a procedural plan for execution as in the relational database
system (RDBS)(23). It generates a number of candidate plans for the execution, estimates the
execution cost of each, and chooses the plan having the lowest estimated cost. Increasing this
set of feasible plans improves the chances that it will find a better plan, while increasing query
opfimization cost. In the study of query optimization in RDBSs, a special attention has been
paid on execution of join operations(”)’(w)’(%). Since the join is implemented in most systems as
a 2-way operator, the optimizer must generate plans that achieve an N-way join as a sequence of
2-way joins. In joining more than a few relations, giving the cost optimal sequence is important,
because evaluating the joins in a wrong order could require much processing time and produce
an enormous number of intermediate tuples, even if the final result is small.

The same discussion applies to nested relations, and the join query optimization is an impor-
tant research issue in implementing NRDBSs. Nested relations allow attributes to be relation-
valued, which enables direct and concise representation of hierarchical structures, or more pre-
cisely trees. Tree structures are inherent in many complex data objects which appear in advanced

database applications. This feature of nested relations indeed contributes to elimination of some



join operations which would be required in the decomposed flat data representation in the rela-
tional model(??). However, real world objects have complex structures and relationships. Their
structures usually form DAGs and networks rather than simple trees. Therefore, we still have to
decompose complex data object structures into trees to get the database schema in the nested
relational model. In such cases, joins are required in the query and navigation to restore orig-
inal data structures and relationships. Joins are also indispensable in processing many ad-hoc
queries, which are posted based on a variety of users’ viewpoints. Importance of joins and their
efficient execution in the NRDBS is also pointed out by Korth and others(6)-(14),

In the research on nested relations, a number of variants of join have been proposed. In
this paper, we consider two join-type operations: nested join and embed. The nested join is a
straightforward extension of the join in the original relational algebra, and represents basic and
standard functionality of joins in many nested relational algebras(3)’(6)’(12)’(21). The embed was
introduced in our nested relational algebra@2+(13) and creates a new nested structure combining
two nested relations. Logically, embed can be regarded as a combination of nested join and nest
operations. Although creation of new nested structures is essentially important in manipulation
of nested relations, optimization of queries including nested joins and nests in general is a tough
research issue. However, their specific combination, namely the embed, can be discussed with
a slight extension of the framework of study for the nested join. For this reason, we consider
embeds as well as nested joins to make our discussion more general.

In this paper, therefore, generating an execution plan is ordering the sequence of nested
joins and embeds. We represent a query in a gquery graph and use a processing tree to represent
a query execution plan. We give an algorithm producing a linear processing tree (LPT) for a
given query graph. The algorithm derives a cost optimal LPT for the given query under some
assumptions. The time complexity of the algorithm is proved to be O(N?), when N nested
relations are included in the query graph. Some researchers have been investigating query
processing schemes in advanced database systems(6)+8):(16):(24) However, no query optimization
algorithm has been reported on execution of join-type operations on nested relations to the best
of our knowledge.

The remainder of this paper is organized as follows: Section 2 introduces basic concepts and

terminology in this paper. It also explains nested join and embed operations discussed in the



paper. Section 3 clarifies our assumptions and presents a cost model for nested join and embed
operations. Section 4 presents the optimization algorithm and its sample application. Section
5 shows that our algorithm generates a cost optimal LPT and discusses its time complexity.

Section 6 concludes the paper.

2 Basic Concepts and Terminology

2.1 Nested Relations

A nested relation is a relation which allows attributes to be relation-valued, abandoning the first
normal form assumption in the original relational model. A relation-valued attribute brings
a nested structure into the flat table structure in the relational model, and this nesting can
continue recursively a finite number of times. Fig. 1 shows a nested relation R;. The schema
of R; is denoted by So(4, B, S1(C)). Attributes Sy and S are relation-valued, while attributes
A, B, and C are atomic.

More formally, let V' be the universe of attribute names. Then, the schema NS of a nested
relation R is given as a set of rules of the form S; = (A;1,: -+, Ain;), Where S;, Aj1,-+, A, €V
and A;; # A for j # k. Attributes whose names appear on the left hand side of some rule are
called relation-valued, and others are called atomic. If a relation-valued attribute S; appears
on the right hand side of the rule S; = (A1, ,4n;), Si is called a parent of S; and S; is
called a child of S;. For a set NS of rules to be qualified as a schema of a nested relation,
two conditions must be satisfied. First, for each relation-valued attribute S;, there can be only
one rule in NS where S; appears on the left hand side. Secondly, relation-valued attributes in
NS must form a rooted tree based on the parent-child relationship. Attributes except the root
are called internal. The terms “descendant”’ and “ancestor” are defined in an obvious way. If
we follow this more formal definition, the schema R; is specified as a set consisting of the two
rules: Sy = (4,B,S51), S1 = (C). For notational convenience, we will use the concise linear
representation form So(4, B, 51(C)).

Each attribute A has a set of potential instances, namely attribute Values, named the domain
dom(A). A set of primitive values is associated with each atomic attribute. Given a relation-

valued attribute S; accompanied by the rule S; = (4;1,- -+, Ain;), the domain of S; is defined as



follows:

dom(Si) — 2dom(Ai1)><...><dom(A,>ni)1"

where elements in dom(4;1) X ... X dom(Aiy,;) are called S;-tuples or generally tuples. An
instance of a nested relation, or simply a nested relation, is formally an instance of its root
relation-valued attribute. When a relation-valued attribute S; is internal, instances of S; are
called S;-subrelations or generally subrelations, and tuples in an S;-subrelation are called S;-
subtuples or generally subtuples. The number of S;-(sub)tuples in R is denoted By Y(R, S;).
When S; is the root of R, v(R, S;) is simply denoted by v(R). In Fig. 1, v(R1,S0) = v(R3) =2
and y(R1,S1) = 5. |

In the remaining part of this paper, we use the term “relation” as a synonym of “nested

relation,” if there is no possibility of confusion.
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Figure 1: Nested Relation

2.2 Join-Type Operations
2.2.1 Nested Join(®)(6):(11),(20)

The nested join is a straightforward extension of the original relational join. In the remaining
part of this paper, we simply refer to nested joins as joins, and joins in the original relational
algebra are called relational joins. Let us consider the join Ry M[Sk, JC] Ry of two relations
R; and Rs. Here, Si denotes a relation-valued attribute of Rj, called the target attribute, and

JC' denotes the join condition. We assume that the join condition may only reference child

tFor a set X, 2% stands for the power set of X.



attributes of S in R; and child attributes of the root in Rs. We also assume that they are
all atomic. The join Ry X[Sk, JC] Rz combines each Sg-(sub)relation with Ry in a way similar
to the relational join operation based on the join condition. Fig. 2 (a) illustrates the join
Ry M[S1,C = C] R;. Note that y(Ry X[Sk, JC] R2,Sm) = ¥(R1,Sm) holds for a relation-valued
attribute Sy, in Ry X[Sk, JC] Ry, if Sy, is not S nor its descendant.

In analogy to the original relational algebra, natural join is defined to remove the obvious
redundancy when the join condition involves only equality conditions. Fig. 2 (b) shows the
natural join R; X[S1] Rg._ When S, is the root of Rj, the natural join Ry X[Sg] Rz is simply
denoted by R; X Ra.

R R2
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1 C D
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3 cl d2
a2 | b2 | c4 <3 d3
c5 c4 d4
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c3 d3
az | b2 c3 c3| d3 a2 b2
c4| c4| da c4 | da
@) )

Figure 2: Join and Natural Join

As is the case with the relational join, there are a number of strategies to execute the join(6),
The nested-loop join as specified in Fig. 3 is the simplest one. In Fig. 3, we assume that Sy
is the root of Ry and S; is the parent relation-valued attribute of S;4; for ¢ =0,---,k—1. 5}

attribute value of a tuple ¢ is denoted by ¢;.S;. This algorithm becomes the nested-loop join



begin
for (each tuple ¢; in R;)
begin
Build a partial result tuple from ¢; except the Si-subrelation;
for (each Si-subtuple #11 in ¢1.51)
begin

Build a partial result subtuple from ¢;; except the Sp-subrelation;

for (each Sg-subtuple 1 in ¢1.57. - .Sk)
for (each tuple t2 in Ro)
if (t1; and to satisfies JC)

Build a partial result subtuple concatenating ¢1; and t2;
end
end

end

Figure 3: Nested-loop Join



devised for the relational join, when Sy is the root of R;. In the following part of this paper, we
consider only natural joins for simplicity of discussion. However, the discussion applies to joins

in general with a slight modification.
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Figure 4: Embed and Natural Embed

2.2.2 Embed(12):(13)

The embed differs from the join in that it creates a new subrelation by embedding the second
relation. Let us consider the embed R; €[Sk, EC] R3 of two relations R; and R3. Here, Si
denotes a relation-valued attribute of R, called the target atiribute, and EC denotes the embed
condition. As in the join condition, the embed condition may only reference child attributes
of S; in R; and child attributes of the root in R3. We also assume that they are all atomic.
The embed R €[Sk, EC| R3 creates a new relation-valued attribute, say S, in R; as a child of
Sk, and, for each Sg-(sub)tuple in an Si-(sub)relation, appends the S-subrelation consisting of

tuples from Ry that satisfy the embed condition. Here, S is called the embedded attribute. Fig.



4 (a) illustrates the embed R €[Sy, B = B] R3. Note that y(R; €[Sk, EC] R3,Sm) = v(R1,Sm)
holds for a relation-valued attribute Sy, in R; €[Sk, EC| R3, if Sp, is not S nor its descendent.
In analogy to the natural join, natural embed is defined to remove the obvious redundancy
when the embed condition involves only equality conditions. Fig. 4 (b) shows the natural embed
Ry €[So] R3. When S is the root of Ry, the natural embed R; ¢[Sk] R3 is simply denoted by
R; ¢ R3. The nested-loop embed as specified in Fig. 5 is the simplest algorithm to execute the
embed. In the following part of this paper, we consider only natural embeds for simplicity of

discussion.

begin
for (each tuple ¢; in Ry)
begin
Build a partial result tuple from ¢; except the Si-subrelation;
for (each Si-subtuple t1; in ¢1.51)
begin

Build a partial result from %17 except the Sa-subrelation;

for (each Sg-subtuple 1 in ¢1.51.- - .Sk)
begin
Build a partial result subtuple from 15 except the S-subrelation;
for (each tuple %3 in Ro)
if (1 and tg satisfies EC)
put t9 as an S-subtuple;

end
end
end

end

Figure 5: Nested-loop Embed



2.3 Query Graph

In this paper, we consider queries consisting of joins and embeds. A query graph is used to
represent a query. In the query graph, relations involved in the query are represented by vertexes
and joins and embeds are represented by edges. The join Ry X[Si] Rs is represented by a join
edge (directed solid edge) from R; to Ry with the label Si. In case Sy is the root of Rj, the label
can be omitted. In that case, we can also omit the arrow, since the join is essentially symmetric
if Sy is the root as the relational join operation. The embed R; €[Sk] Ro is represented by an »
embed edge (directed dotted edge) from R; to Rz with the label Si. In case Sy is the root of Ry,
the label can be omitted. Fig. 6 shows a sample query graph. A maximal connected subgraph
that does not include embed edges is called a join cluster. The query graph in Fig. 6 has four

join clusters C1 - Cy.

Figure 6: Query Graph

2.4 DProcessing Tree

A query execution plan is represented by a processing tree (PT). A PT is a binary tree where
leaf nodes represent base relations involved in the query and non-leaf nodes represent join and
embed operations. In PTs, circles, rectangles, and triangles represent base relations, joins, and
embeds, respectively. Operations in a PT is executed from the bottom to the top. A PT is
called a linear processing tree (LPT), if all operations appear in a linear sequence, in other
words, they are totally ordered. LPTs considered in this paper are sometimes called left-deep

LPTs, since base relations always become inner relations in the nested-loop join and embed
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algorithms. We use the term “LPT” as a synonym of “left-deep LPT.” Fig. 7 shows an example
of an LPT. LPTs can be represented in a linear form. The LPT of Fig. 7 is represented as
Rie R3 X Rs X Ry W Rge Rg X Rye Rg, or simply RiR3RsR4RoRsR7Rs.

A class of PTs defines an ezecution space over which the optimization is performed. The
LPT execution space is the set of query executions whose processing trees are LPTs. The LPT

execution space is the search space assumed by many query optimizers.

Figure 7: LPT

3 Cost Model

3.1 Selectivity

For the join R; X [Si] R;, join selectivity denoted by SJ;; represents the ratio of the number of

tuple pairs from R; and R; that meet the join condition. That is,

(R N[Sk] Rj, Sk)

SJ;; = .
T y(Ri, Sk) *v(R;)

11



Similarly, for R; €[Sk] R;, embed selectivity denoted by SE;; represents the ratio of the number

of tuple pairs from R; and R; that meet the embed condition. That is,

— 'y(Ri €[Sk] Rj,S')
T y(Ri, Sk) + v(Rj)’

where S is the embedded attribute in R; €[Sk]| R;.

SE;

3.2 Assumptions

In this paper, we make the following assumptions to develop a cost model and to construct a

query optimization scheme.
1. Query graphs satisfy the following conditions:
(1) For each R; X[Si] R; or R; €[Si] R; represented by an edge in a query graph, Sy is
the root of R;,
(2) The internal structure of each join cluster forms a tree, and
(3) At most one embed edge may exist between any pair of join clusters, and the structure

connecting join clusters forms a rooted tree.

2. The processing tree is restricted to be an LPT, and the left bottom relation of the LPT is

restricted to be one in the root join cluster in a given query graph.

3. Database is memory resident, and the execution costs of joins and embeds are evaluated

in terms of in-memory processing costs.

4. Joins and embeds in a given query do not interact with each other as far as their selectivities
are concerned. For example, the same join selectivity SJ;; is not only applicable to R; X
[Sk] R; but also to the joins R; X[Si] E(R;) and E(R;) X[Sk] R;, where E(R;) and E(R;)
stand for valid subexpressions joining and/or embedding other relations with R; and R;,

respectively. A similar remark applies to the embed selectivity.

5. Any base or intermediate relation R satisfies the condition that, for an arbitrary inter-
nal relation-valued attribute Si, every Si-subrelation in R has the same number of Si-

subtuples.
The query graph of Fig. 6 and the LPT of Fig. 7 satisfy the assumptions 1 and 2, respectively.

12



3.3 Cost Equation

The cost of a query execution plan represented by an LPT is evaluated as the sum of the costs

of all joins and embeds in the LPT. In the following, we give formulas to derive processing costs.

3.3.1 Join and Embed Costs

In the execution of join and embed, we have to compare a (sub)tuple from one relation with one
from the other relation many times to check the join and embed conditions. In the memory res-
ident model, the number of (sub)tuple comparisons is one of the most important cost measures.

In our model, costs of join R; X[Si] R; and embed R; €[Si] R; are expressed as follows:
Cost(R; X[Sk] Rj) = (R;, Sk) * CJ(RJ')

Cost(R; €[Sk] Rj) = 7v(Ri,Sk)* CE(Ry),

where CJ(R;) and CE(R;) are called unit costs and represent the join and embed costs, respec-

tively, per Si-(sub)tuple of R;. They depend on join and embed execution algorithms. When

we use the nested-loop join and nested-loop embed algorithms, both of them are « values, since

the numbers of (sub)tuple comparisons required in the join and embed are given as follows:
Cost(R; X[S] Rj) = v(Ri,Sk)* v(R;)

Cost(R; €[Sk] Rj) = ~(Rs, Sk)*v(R;).

3.3.2 Cardinalities of Intermediate Relations

As mentioned above, v values are required to evaluate the join and embed costs. Although
they are given from the beginning for base relations, we have to calculate them for intermediate
relations derived in the query processing. From the basic property of join and the assumption

5 in Subsection 3.2, y(R; X[Sk] R;,Sm), is calculated as follows:

Case 1: S,, is S, or a descendant of S

Y(Ri X[Sk] Rj, Sm) = SJij % v(Rs, Sm) * v(R;),

Case 2: Otherwise
Y(R; [X][Sk] Rjasm) = v(Ri, Sm).

13



Similarly, v(R; €[Sk] Rj, Sm) is calculated as follows:

Case 1: S,, is S or a descendant of S
V(Ri &[Sk] Rj, Sm) = SEij xy(Ri, Sm) *v(R;),

where S is the embedded attribute in R; €[Sk] R;,

Case 2: Otherwise
Y(R; €[Sk] Rj, Sm) = v(Ri, Sm)-

3.3.3 Cost of LPT

Let P be an LPT which satisfies the assumption 2 in Subsection 3.2. As mentioned before, the
cost of an LPT is computed as the sum of join and embed costs. Fig. 7 shows such an LPT
RiR3R5R4RoRgR7Rg. From the expressions in Subsection 3.3.1 giving join and embed costs,

we get the following expression giving the total cost of P.
k-1
Cost(P) = Y (y(Ri2-i,8i) x CJE(Riy1)),
i=1

where Rig.; (¢ > 1) is the (¢ — 1)-th intermediate relation, S; is the target relation-valued
attribute of the i-th (join or embed) operation, and CJE(R;+1) is the unit cost of the i-th (join
or embed) operation. In P, k = 8. y(R12..541,5;) is calculated by the expressions in Subsection

3.3.2.

4 Query Optimization

In this section, we show an algorithm which derives a cost optimal LPT for a given query
graph under the assumptions and the cost model in Section 3. In our algorithm, we utilize
the KBZ method, which was proposed to optimize join queries in the relational database, as a
subprocedure. We first give an overview of the KBZ method, and then present our algorithm

with an example.
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4.1 KBZ Method

The KBZ method was originally proposed by Krishnamurthy, Boral, and Zaniolo!®), Given a
join tree for a relational database, the KBZ method derives a cost optimal LPT of joins. In the
KBZ method, the database is assumed to be memory resident, and the cost of join R; M R; is
calculated by the expression v(R;)*g(R;), where g(R;) depends on the join execution algorithm.
Furthermore, joins are assumed to be independent of each other as far as their selectivities are
concerned. These assumptions just coincide with our discussion here.

The KBZ method is composed of two levels of procedures. The first procedure KBZ;
generates a cost optimal LPT of joins for a given rooted join tree under the restriction that the
root relation always comes at the left bottom of the LPT. The second procedure K BZ5 inputs
a join tree, and finds a cost optimal LPT by invoking K BZ; for each selection of the root.

The procedure K BZ; works on the rooted join tree in a bottom-up manner. All relations in
subtrees are sorted to form a linear sequence based on the value of the rank (y(R;)*JS;—1)/g(R:),
where JS; is the join selectivity of R; and its parent, and g(R;) is the above mentioned factor
used to determine the join cost. This process is recursively continued from the bottom to the
top. When this process stops, we get an LPT, which gives a cost optimal join sequence for the
given rooted join tree.

The procedure K BZ, invokes K BZ; so as to find a cost optimal LPT for each selection of
the root in the input join tree. If there exist N relations in a join tree, it calls KBZ; N times.
After that, K BZs selects the cost optimal LPT. It has been shown that the time complexity of
KBZ; is O(Nlog N) and that the whole KBZ method can be accomplished in O(N 2) time(19),

4.2 Basic Strategy

As mentioned in Subsection 3.2, the left bottom relation of an LPT is restricted to one in the
root join cluster. Therefore, in any LPT under consideration, one of the relations in the root
join cluster is selected as the left bottom relation, and then adjacent relations are repeatedly
joined or embedded with the intermediate result along the join and embed edges. This process
stops when all the base relations in the query graph are joined or embedded, and the final result

relation is obtained.

Here, we define Depth-First-Ezecution LPTs (DFE-LPTs) as LPTs which satisfy the follow-
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ing additional restriction:

Let e is an arbitrary embed edge in the query graph. Assume e goes from join
cluster C; to C;. Then, in a DFE-LPT, once the embed e is performed, all the joins
and embeds involved in the join cluster C; and its descendants are performed before

any other join or embed.

The LPT of Fig. 7 is a DFE-LPT for the query graph of Fig. 6. For example, once R; ¢ R3
is performed, R3 X R4 and R3 X Rj are performed before any other join or embed. The above
condition is satisfied for any embed included in the query graph.

Our optimization algorithm considers only DFE-LPTs to find a cost optimal LPT. In Section
5, we prove that there always exist a cost optimal DFE-LPT. Therefore, it is sufficient to consider
DFE-LPTs as candidates of the cost optimal LPT.

Let us consider embed R; € R;, where R; and R; are included in join clusters C; and Cj,
respectively. Let REL(C;) and OP(C}) be sets of relations and (join and embed) operations,
respectively, included in the join cluster C; and its descendants, and let Q(Cj;) be a query
(sub)graph consisting of REL(C;) and OP(C}). Note that OP(C;) does not include the embed
R; € R; itself. Then, in a DFE-LPT P, all the operations in OP(C}) come just above the embed
R; € R; as shown in Fig. 8. In Fig. 8, the triangle represents the embed R; & R;. (Note that
this embed is actually executed as R €[S] R; for the intermediate relation R in the context of
P.) Therefore, in the linear notation, P can be specified as P = TR;R;j1 -+ RjmU, where T
and U are sequences of relations outside REL(C};), and Rj1 - - Rjn, is a sequence of relations in
REL(Cj) — {R;} giving the execution sequence of operations in OP(Cj).

From the definition, P; = RjR;1 - Rjm is also a valid DEF-LPT for the query graph Q(C}).
Let its cost be Cost(P;). Then, the cost contribution of operations specified by Rj1 - Rjm
in P is given by SE;; * 7(R, S) * Cost(P;), where R and S are given above. The reason is as
follows. Let R’ be the result relation of LPT T = TR;, and let S; be the embedded attribute
in embedding R;. Then, from our assumptions, the cost contribution of Rj; - - - Rjm is obviously
proportional to y(R', S;) and the processing cost per Sj-(sub)tuple is given by Cost(P;)/v(R;).
Therefore,

7(R',S;) * Cost(F;)/v(R;) = SEij*v(R,S)x(R;)* Cost(F;)/v(R;)

16



= SE;; xv(R,S) * Cost(F;).

Since the cost of the embed R ¢[S] R; itself is given by (R, S) * 7(R;), the subtotal cost

contribution of operations specified by R;jR;1 - Rjn, is given by
v(R, S) * (y(R;) + SEs; * Cost(Pj)).

Then, from the above discussion, the subsequence R;R;; - Rj» is equivalent to joining a
dummy relation R(C;) with the following unit cost and the join selectivity as far as the execution

cost is concerned:

CIR(C)) = A(R;)+SEy*Cost(P),

8J = 1/v(R(Cj))-

Furthermore, from the basic property of embed, we can say that ordering of operations in
OP(C;) represented by R;R;; -+ Rjm contributes the total processing cost only through the
above derived cost factor Cost(P;) and does not affect processing costs of operations outside
OP(Cj). In other words, the subsequence R;Rjj--- Rjy that makes P cost optimal can be
determined locally in the context of OP(C;) and REL(C}).

Based on the above consideration, we propose an algorithm to derive a cost optimal LPT
for a given query graph. The meat of our algorithm is a procedure SUBOPT. The procedure
SUBOPT is applied recursively to each join cluster C; to find a cost optimal execution sequence
of operations in OP(C;). Assume that SUBOPT is applied to join cluster C;. If this join cluster
has any child join clusters, we apply SUBOPT recursively to each child C; to get the cost
optimal subsequence Rjle -+ Rjpm of operations in OP(Cj). Then, we replace the sequence
RjRj1 - Rjm as a single join with R(C}) as mentioned above. At this point, the problem we
have to solve is to obtain a cost optimal sequence of joins which are either originally involved in
C; or introduced in the above procedure. This problem can be solved by direct application of

the KBZ method explained in Subsection 4.1.

4.3 Optimization Algorithm

Our optimization algorithm OPT is based on the above-mentioned consideration. O PT is shown

in Fig. 9. OPT calls procedures SUBOPT (Fig. 10) and KBZ (Fig. 11). The optimization
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Figure 8: DFE-LPT

algorithm is basically recursive, and a cost optimal subsequence is derived in a bottom-up manner
for the given query graph. OPT applies the procedure SUBOPT to each child join cluster C; of
the root join cluster Cg. Each invocation of SUBOPT(C}, R;) returns a cost optimal LPT P;
for the subgraph Q(C;) under the restriction that the left bottom relation of P; is R;. Once the
cost optimal subsequence P; is obtained, we can regard it as a join with R(C;) as mentioned in
Subsection 4.2. Then, the remaining problem of finding a cost optimal join sequence is solved by
the KBZ method. The procedure K BZ(Q', Ry) returns a cost optimal LPT under the restriction
that the given relation Ry comes at the left bottom of the LPT. Since every relation in the root
may come at the left bottom in our problem, KBZ is éalled from OPT for each relation in the
root join cluster. The final step is to find a cost optimal join sequence P and to substitute P;
for R(C}) to get the complete LPT for Q.

Subprocedure SUBOPT is very similar to OPT. The difference comes from the restriction
that the left bottom relation of target cost optimal LPTs for Q(C) be R given as an argument
at the invocation of SUBOPT. SUBOPT also calls KBZ internally.

4.4 Example

We show application of OPT to the query graph @ of Fig. 6. When OPT is applied to
Q, it invokes SUBOPT(C9, R3) and SUBOPT(C3,Rs). Since Cz has no child join clusters,
SUBOPT(Cs, R3) finds a cost optimal join sequence for the subquery @1 of Fig. 12 (a) under

the restriction that left bottom relation is R3. This problem can be solved by invocation of

18



Algorithm OPT
Input: Query Graph @
Output: Cost Optimal LPT P for Q
begin
CpR + the root join cluster of Q;
Q' — a query graph consisting of all the relations and joins in Cg;
for (each child join cluster C; of Cg) /* Assume Cg and C; are connected
by an embed edge from R; to R; */
begin
P; — SUBOPT(Cj, R;);
Add the relation R(C;) and a join edge from R; to R(Cj) to Q'
assuming the following cost parameters:
CJI(R(Cy)) = v(R;) + SEyj * Cost(F;)
ST = 1/4(R(Cy);
end
for (each relation Ry in Cg)
Pry, « KBZ(Q', Ry);
P « the minimum cost Pgy;
for (each R(Cj))
Replace R(C}) with P; in P;
Return P;

end

Figure 9: OPT
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Procedure SUBOPT
Input: Join Cluster C in Q
Relation R in C'
Output: LPT P for Q(C)
begin
Q' — a query graph consisting of all the relations and joins in C;
for (each child join cluster C; of C) /* Assume C and C; are connected
with an embed edge from R; to R; */
begin
P; «— SUBOPT(Cj, Rj);
Add the relation R(C;) and a join edge from R; to R(Cj) to @’
assuming the following cost parameters:
CI(R(Cy)) = 7(Ry) + SEij x Cost(P})
SJ =1/v(R(Cj));
end
P — KBZ(Q',R);
for (each R(C}j))
Replace R(C;) with P; in P;
Return P;

end

Figure 10: SUBOPT
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Procedure KBZ
Input: Query Graph @ (Consisting of a Join Cluster)
Relation R in Q

Output: LPT P for @
begin

for (each relation R;(# R) in Q)

Calculate the rank (y(R;) * JS; — 1)/CJ(R;);
P «— an LPT constructed by the K BZ; procedure representing a cost optimal
join sequence for @ under the restriction that the left bottom relation is R;
Return P;

end

Figure 11: KBZ

KBZ(Q1,R3). Let us assume that SUBOPT(Co, R3) returns R3R4R5. Since C3 has a child
join cluster Cy, SUBOPT(C3, Rg) recursively invokes SUBOPT(Cy, Rg). SUBOPT(C4, Rg)
obviously returns Rg. Then, SUBOPT(C3, Rg) finds an optimal join sequence for the subquery
Q2 of Fig. 12 (b) in a similar manner. Assume that SUBOPT(C3, Rg) returns RgR7R(Cy).
Then, a cost optimal subsequence for subquery Q(Cs3) is derived as RgR7Rg. Finally, OPT
finds a cost optimal join sequence for subquery Q3 of Fig. 12 (c). Since either R; or Rz may
come at the left bottom of the final LPT, OPT calls KBZ(Q3, R1) and KBZ(Q3,R2). Assume
that the LPT Ry R(C2)RzR(C3) returned by KBZ(Qs3, R1) be cheaper than that returned by
KBZ(Q3,R2). Then, we get the LPT RjR3R4R5RoRsR7Rg as a cost optimal solution for the

given query Q.

5 Discussion

In this section, we show that the optimization algorithm OPT in Subsection 4.3 really gives
a cost optimal LPT under the assumptions in Subsection 3.2. We also show that the time

complexity of the algorithm is O(N?) when N relations are involved in a given query graph.
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Figure 12: Subqueries

5.1 Cost Optimality

Before we prove the cost optimality of the algorithm OPT, we prove four lemmas. The first

three lemmas show basic properties of join and embed regarding the processing cost.

Lemma 1 Given a query graph in Fig. 18, let P13 and P132 be LPT's such that Pi23 = R1RoR3
and Piss = R1R3Ry. Then, COSt(P123) = Cost(Pi32).

(Proof) Since y(R; €[S12] Ra,S13) = v(R1,513) and y(Ry €[S13] R, S12) = v(R1,S12), the

lemma obviously holds. ®

................

......
.......
.................
..................
.........
!

.................

J o

, N

.....
..............

Figure 13: Case of Lemma 1

Lemma 2 Given query graphs in Fig. 14 (a)(b), let Pio34 = RiRaR3R4, Pi3as = R1RgRoRy,
and Pj349 = RiR3R4Ro. Then, Cost(Pia34) = Cost(Pi3o4) = Cost(P1342).

(Proof) Proved similarly to Lemma 1 based on basic properties of join and embed. B
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Figure 14: Cases of Lemma 2

Lemma 3 Given query graphs in Fig. 15 (a)(b), let Pia3s = RiRoR3R4, Pi324 = R1R3RoRy,
and Pj349 = R1R3R4Ro. Then, their costs always satisfy the following condition:

Cost(Pi234) < Cost(Pyi324) < Cost(Pr3a2)
or

Cost(Pjags) > Cost(Pi324) > Cost(P1342).

In other words, Pi324 cannot become a unique cost optimal LPT among the three.

(Proof) See Appendix A.

The following Lemma 4 is essential in proving the cost optimality of our algorithm.

Lemma 4 There always exists a DFE-LPT which is cost optimal for a given guery graph.

(Proof) See Appendix B.
Theorem: The algorithm OPT gives a cost optimal LPT for a given query graph.

(Proof) From the discussion in Subsection 4.2, it is proved that the algorithm OPT derives
a cost minimum DFE-LPT among all the valid DFE-LPTs. From Lemma 4, we can conclude

that the DFE-LPT is a cost optimal LPT for a given query graph. B
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Figure 15: Cases of Lemma 3

5.2 Time Complexity

Let us assume that the query graph includes N relations and that the root join cluster includes
Np, relations and has N, child join clusters. In the algorithm OPT, SUBOPT(C}, R;) is called
for each child join cluster Cj;. In the invocation of SUBOPT, SUBOPT is recursively called
for each child join cluster of C; and then K BZ is executed for C;. As mentioned in Subsection
4.1, the time complexity of KBZ is known to be O(N log N) when N relations are involved.
Therefore, the time complexity of the invocation of SUBOPT(C}, R;) from OPT is bounded by
O(N, log N;), where N; represents the number of relations included in the REL(C}). Therefore,
the total time required to invoke SUBOPT from OPT is given by O((N — Ng)log(N — Ng)).
In OPT, KBZ is performed Np times. This process essentially requires the time to perform the
whole KBZ method for a query involving N + N, relations, namely O((Ng+ N.)?). Therefore,
the overall complexity of the algorithm OPT is O(N?).

6 Conclusion

We have proposed an optimization algorithm for join-type queries in nested relational databases.
We have focussed two operations: join and embed. Our algorithm gives a cost optimal LPT for
a query graph including joins and embeds under the assumptions in Subsection 3.2. We have

also shown that the time complexity of the algorithm is O(N?2) when N relations are involved
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in the query graph. The O(N?) time complexity makes our algorithm very promising for the
query optimizer in NRDBMSs.

Although we assumed the nested-loop join and embed algorithms in our discussion, the basic
framework can be applied to other join and embed algorithms as long as their processing costs

can be formulated in the following forms:

Cost(R; X[Sk] R;) = ~(Ri,Sk)* CJ(R;)

Cost(R; e[St Ry) = 7(Ri,Si) * CE(Ry).

For example, the hash-based algorithm can be discussed by setting CJ(R;) and CE(R;) to the
average collision chain length, if we regard the navigation in the chain as the major cost factor.
Similarly, we can incorporate the index-based algorithm, if we take log,,(v(R;)) representing
the height of the index tree for CJ(R;) and CE(R;). However, these cost expressions are all
memory-based in that page structures are ignored. Extension of our cost model to the disk
resident model is a remaining research issue. Other future research issues include evaluation of
our method in more practical situations where some of our assumptions are not satisfied in a strict
sense, extension to queries including other types of operations, and design of a query optimizer

incorporating our method. Research results on these issues will be reported in forthcoming

papers.
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Appendix A: Proof of Lemma 3
Let us consider the case of Fig. 15 (a). According to the cost model in Subsection 3.3, we

get the following formulas:

Cost(Pia3a) = 7(Ri1,S12) * CJ(Rg) + v(Ri2, S13) * CE(R3)
+ v(R123, S34) * CJ(Ra),

Cost(Pi32a) = 7(Ri,S13) * CE(R3) +v(Ris, S12) * CJ(Rp)
+ v(R132,934) * CJ(R4),

Cost(Pi3s2) = 7(R1,813) *x CE(R3) + v(Ri3,S534) ¥ CJ(R4)

+ y(R134, S12) * CJ(Ra).

(Case 1: Si3 is identical with Syo or its descendant)

From the discussion in Subsection 3.3.2, we get the following equations:

v(R1,512) = 7(Rus,512),
v(R123,S34) = v(Ri32,534),
v(R12,813) = SJ1a*v(Ri,S13) *v(Ra),
v(Ri3, S12) = v(Rize,S12),

v(R132, S34)

By substitution, we can get

Cost(P1234) — Cost(P1324) =

Cost(P1324) — Cost(Pi342) =

Therefore, if SJ19 * v(Rs) < 1,

= SJ12 % v(R13,S34) * 7(R2).

v(Ri1,813) * CE(R3) * (SJ12 * v(R2) — 1),

v(R13,S34) ¥ CJ(Ry) * (SJ12 x v(Rg) — 1).

Cost(P1234) < Cost(Pi324) < Cost(P1342),

otherwise

COSt(P1234) > COSt(P1324) > COSt(P1342).

(Case 2: Otherwise)
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From similar discussion, we get
Cost(Pi34) = Cost(Pi3pa) = Cost(Pr3a2).

Therefore, we have proved Lemma 3 for the case of Fig. 15 (a). Lemma 3 is proved for the

case of Fig. 15 (b) in a similar way. B
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Appendix B: Proof of Lemma 4
Let us assume that P is an LPT but not a DEF-LPT. Then, P can be specified in the linear

form P =TR1UV RaW, where

(1) R; is a relation in some join cluster C'1, and the embed edge from Ry in the join cluster

Co to Ry exists in the query graph @Q,
(2) U is (possibly null) sequence of relations in REL(C1),
(3) V is (non-null) sequence of relations in REL(Cy) — REL(Ch),
(4) R» is a relation in REL(Cy) and belongs to the join cluster Co,

(5) T is a (non-null) sequence of relations outside REL(C1) and T locally satisfies the condition
of DFE-LPT, and

(6) W is a (possibly null) sequence of relations.

Fig. 16 illustratively shows the situation. There are two cases that Rs is joined with or embedded
into the intermediate result. Let us consider the former case, and let the intermediate relation
resulted from T be R4. Note that the subsequence R3U specifies an execution sequence of joins
and embeds, and let its result be Rp. Then, the execution of TRU is equivalent both in its

result and cost to embedding the relation Rp into R4 with the following cost parameters:
CEg(Rg) = CEFi(Ry)+ SEg * Cost(R1U)
SEsgp = SEo.

Let its result be R4p. As mentioned above, V is a sequence of relations in REL(Cy)— REL(C1).
In analogy to the above discussion for the sequence U, we can construct a sequence V' equivalent
to V consisting of an optional leading join and zero or more embeds directly applied to R4p.
(Case 1: V' starts with a join.)
Let us assume that V' consists of a join Rap X[Syj] Rys and embeds Rap ¢[SvE,] RvE,,
-+« ,Rap €[Svg,,] RvE,,, namely V' = RyjRyg, --- RvE,,. Then, R4RgV’'Ry is an LPT for
a query graph in Fig. 17. (In Fig. 17, edge labels are omitted for simplicity). From the basic
properties of join and embed,
Cost(RaRpV'Ry) = Cost(RaRpRyjRvE, - RvE,, R2)
= Cost(R4RpRvjRyRvE, - Ryp,,)-

28



By Lemma 3,
Cost(RARgV'Ry) > Cost(RasRpRoRyjRvE, -+ RvE,)
= Cost(RaARpRyV')
or
Cost(RaRgV'Rs) > Cost(RaRy;ReRaRvE, - RvE, ).
By Lemmas 1 and 2,
Cost(RyRyjRpRyRyE, - RyE,,) = Cost(RgRy jRyE, '+ Ryg,, RpRo)
= Cost(RAV'RpR>).
Therefore,
Cost(RARgV'Rs) > Cost(RaRpRoV')
or
Cost(RaRgV'Re) > Cost(R4V'Rp Ro).
This implies
Cost(RAR5V'RoW) > Cost(RaRpRaV'W)
or
Cost(RoRpV'ReW) > Cost(RaV'RpRaW).
(Case 2: V' does not include a join.)
Let us assume that V' consists only of embeds Rap €[SvE,] RvE,, s Rap €[SvE.] RVE,,

Then, by Lemmas 1 and 2,

Cost(R4RpV'Ry) = Cost(RyRpRyV') = Cost(R4V'RgRy).
Therefore,
Cost(RARgV'RoW) = Cost(R4RpRoV'W) = Cost(RaV'RpRoW).
Thus, both in Cases 1 and 2, we get
Cost(TR1UV RoW) > Cost(TR1U R VW)
or
Cost(TR\UV RyW) > Cost(TV R\ U RyW).
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The above expression also holds even if Ro is embedded into the intermediate relation. It
means that replacing TRiUV ReW with TRiUR2VW or TV RjU RoW eliminates the assumed
violation of the DFE-LPT condition without inducing a new violation nor increasing the total

processing cost. This implies that we can find a cost optimal LPT in the set of DFE-LPTs. m

Figure 17: Query Graph for R4RgV' Ry
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