Simple Termination is Difficult

Aart Middeldorp f

Bernhard Gramlich ¥
March, 1994
ISE-TR-94-110

tnst. of Information Sciences and Electronics, Univ. of Tsukuba, Tsukuba, Ibaraki 305, Japan
e-mail: ami@softlab.is.tsukuba.ac. jp

!Fachbereich Informatik, Universitit Kaiserslautern, Postfach 3049, D-67653 kaiserslautern, Germany
e-mail: gramlich@informatik.uni-k1.de

Simple Termination is Difficult”

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305, Japan
ami@softlab.is.tsukuba.ac.jp

Bernhard Gramlich

Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany
gramlichQ@informatik.uni-kl.de

January 26, 1994

ABSTRACT

A terminating term rewriting system is called simply terminating if its termination

can be shown by means of a simplification ordering, an ordering with the property
that a term is always bigger than its proper subterms. Almost all methods for prov-

ing termination yield, when applicable, simple termination. We show that simple

termination is an undecidable property, even for one-rule systems. This contradicts

a result by Jouannaud and Kirchner. The proof is based on the ingenious construc-

tion of Dauchet who showed the undecidability of termination for one-rule systems.

Our results may be summarized as follows: being simply terminating, (non-)self-

embedding, and (non-)looping are undecidable properties of orthogonal, variable

preserving, one-rule constructor systems.

1. Introduction

It is well-known that termination is an undecidable property of term rewriting systems. This
result was obtained by Huet and Lankford [9] in 1978. They showed that every Turing machine
can be coded as a string rewriting system—a term rewriting system with only unary function
symbols—such that termination of the resulting string rewriting system is equivalent to the
uniform halting problem for the originating Turing machine. The number of rules in their con-
struction depends on the number of Turing machine instructions. Later, Dershowitz [3] showed
that every Turing machine can be simulated by means of a two-rule term rewriting system. This
result was improved by Dauchet [2], who showed that termination remains undecidable even if
we restrict our attention to one-rule term rewriting systems that are orthogonal and variable
preserving. His skillful construction will be explained in detail later in this paper. On the other

* A preliminary version of this paper appeared in the Proceedings of the Sth International Conference on Rewriting
Techniques and Applications, Montreal, Lecture Notes in Computer Science 690, pp. 228-242, 1993.

hand, Caron [1] recently showed that termination is an undecidable property of length-preserving
string rewriting systems—systems in which the left-hand side and the right-hand side of each
rule have the same length—by a reduction to the uniform halting problem for linear bounded
automata—a restricted kind of Turing machines. .

From this last result one easily obtains the undecidability of simple termination for the
same class of term rewriting systems. Simple termination is a stronger notion than termina-
tion. A term rewriting system is simply terminating if the addition of all rewrite rules of the
form f(zi1,...,Z,) — z; Tesults in a terminating system. Virtually all methods for proving
termination yield, when applicable, simple termination. Simple termination is closely related
to the non-self-embedding property, since every simply terminating term rewriting system is
non-self-embedding. Plaisted [16] showed that the non-self-embedding property is undecidable.
From this result we cannot infer the undecidability of simple termination, however. As a matter
of fact, it is known that negative results for the class of non-self-embedding systems do not
always carry over to the class of simply terminating systems, see [7]. In this paper we show
the undecidability of simple termination for one-rule term rewriting systems. This contradicts
a result of Jouannaud and Kirchner [10]. The undecidability proof is based on the ingenious
construction of Dauchet. He showed in [2] that with every Turing machine M one can associate
a term rewriting system Rps consisting of a single rewrite rule such that

M halts for all configurations
—
R is terminating.

From this we cannot immediately infer the undecidability of simple termination for one-rule
systems, since the implication “Rps is terminating => Rps is simply terminating” does not
hold for every Turing machine M. However, we will show that if we start the construction of
Dauchet from a linear bounded automaton M instead of a Turing machine, termination and
simple termination of Rjs coincide.

The paper is organized as follows. The next section contains a brief introduction to term
rewriting, including a discussion of the property simple termination. In Section 3 we define
linear bounded automata. Section 4 describes Dauchet’s construction. Actually, we present a
somewhat simpler construction. We show that the equivalence

M halts for all configurations
—
R is terminating

is easily obtained for all linear bounded automata M by using a recent result of Zantema [18]
on type removal. In Section 5 we prove the equivalence

Ras is terminating
—
R is simply terminating

for all linear bounded automata M by using the powerful distribution elimination technique of
Zantema [19].
2. Simple Termination

We start with a brief introduction to term rewriting. Term rewriting is surveyed in Dershowitz
and Jouannaud [5] and Klop [11].

A signature is a set F of function symbols. Associated with every f € F is a natural number
denoting its arity. Function symbols of arity 0 are called constants. Let T(F,V) be the set of
all terms built from F and a countably infinite set V of variables, disjoint from F. If ¢ is a term
then Var(t) denotes the set of variables occurring in ¢. A term ¢ is called ground if Var(t) = 2.
The set of all ground terms is denoted by T(F). A term ¢ is called linear if it does not contain
multiple occurrences of the same variable. The root symbol of a term ¢ is defined as follows:
root(t) = t if ¢ is a variable and root(t) = f if t = f(t1,...,t,). The size |t| of a term ¢ is the
number of variables and function symbols occurring in ¢. ,

We introduce a fresh constant symbol O, named hole. A context C is a term in 7(Fu {0}, V).
The designation term is restricted to members of 7(F,V). A context may contain zero, one or
more holes. If C is a context with n holes and 4,...,?, are terms then C[t1,...,1,] denotes
the result of replacing from left to right the holes in C by ¢,...,t,. A term s is a subterm of
a term ¢ if there exists a context C such that t = C[s]. A subterm s of ¢ is proper, denoted by
t bs,if s#t. A substitution is a map o from V to T(F, V). If ¢ is a substitution and ¢ a term
then to denotes the result of applying o to t. We call to an instance of t. A binary relation >
on terms is a rewrite relation if it is closed under contexts and substitutions, i.e. if s > ¢ then
C[so] > C[to] for all contexts C (with precisely one hole) and substitutions o.

A rewrite rule is a pair ({,r) of terms such that the left-hand side / is not a variable and
variables which occur in the right-hand side r occur alsoin [, i.e. Var(r) C Var(l). Rewrite rules
(I, 7) will henceforth be written as I — r. A rewrite rule is collapsing if its right-hand side is a
single variable. A rewrite rule is duplicating if its right-hand side contains more occurrences of
some variable than its left-hand side. A rewrite rule is left-linear (right-linear) if its left-hand
(right-hand) side is a linear term,

A term rewriting system (TRS for short) is a pair (F,R) consisting of a signature F and a
set R of rewrite rules between terms in 7(F,V). We often present a TRS as a set of rewrite
rules, without making explicit its signature, assuming that the signature consists of the function
symbols occurring in the rewrite rules.

If (F,R) is a TRS then —% denotes the smallest rewrite relation on 7(F,V) containing
R. So s —x t if there exists a rewrite rule / — r in R, a substitution ¢ and a context C such
that s = C[lo] and ¢ = C[ro]. The subterm lo of s is called a redez and we say that s rewrites
to t by contracting redex lo. We call s —»r t a rewrite or reduction step. If C = O then we
speak of a root reduction. The transitive closure of —x is denoted by —»E and —% denotes the
transitive-reflexive closure of R. If s —% t we say that s reduces to t. A TRS (F,R) is called
terminating if there are no infinite reduction sequences t; —g t; —x 3 = -+ of terms in
T(F,V).

A rewrite relation that is also a (strict) partial order is called a rewrite order. A TRS (F,R)
is compatible with a rewrite order > on 7(F,V) if l > r for every rewrite rule [l — r of R. It
is easy to show that a TRS is terminating if and only if it is compatible with a well-founded
rewrite order. ‘

DEFINITION 2.1.
o A simplification order is a rewrite order > with the subterm property, i.e. C[t] > t for all

contexts C # O (with precisely one hole) and terms t.
e A TRS is called simplifying if it is compatible with a simplification order.
e A TRS is called simply terminating if it is compatible with a well-founded simplification

order.

Clearly every simply terminating TRS is both simplifying and terminating. A simplifying
TRS (F,R) with F or R finite is simply terminating, as a consequence of Kruskal’s Tree Theo-

rem. There exists (infinite) simplifying and terminating TRSs that are not simply terminating,
see Ohlebusch [15]. This does not concern us too much as we will deal with decidability issues in
the sequel, in which one considers only finite (both with respect to signature and set of rewrite
rules) TRSs. Next we present a useful characterization of simple termination.

DEFINITION 2.2. Let F be a signature. The TRS Emb (F) consists of all rewrite rules

flz1,..,20) — T

with f € F a function symbol of arity n > 1 and i € {1,...,n}. We write s < ¢ for terms
s,t e T(F,V)ift -3 ,) The relation < is called (homeomorphic) embedding.

LEMMA 2.3. Let (F,R) be a TRS. The following statements are equivalent.
e The TRS (F,R) is simply terminating.

o The TRS (F,R)U Emb(F) is simply terminating.

e The TRS (F,R)U Emb(F) is terminating.

O

The proof is not difficult. This lemma appeared for the first time in Zantema [19], although
it is implicit in many earlier works on termination, see Dershowitz [3] for a survey. Kurihara and
Ohuchi [12, 13] proved the related equivalence “a TRS (F,R) is simplifying <=> the transitive
closure of the rewrite relation associated to the TRS (F,R)U Emb (F) is irreflexive”.

The above lemma facilitates an easy proof of the undecidability of simple termination. For
that matter we need some background on string rewriting systems. A string rewriting system
(SRS) is a TRS (F,R) whose signature F contains only unary function symbols. A SRS (F,R)
is called non-length-increasing if every rewrite rule I — r of R satisfies |I| > |r|. We call R length-
preserving if |I| = |r| for every rewrite rule/ — r € R. In the introduction we already mentioned
that Caron [1] showed the undecidability of termination for length-preserving SRSs. Combining
this result with Lemma 2.3 yields the undecidability of simple termination for the same class
of TRSs since it is very easy to show that a length-preserving SRS (F,R) is terminating if and
only if the non-length-increasing SRS (F,R)U {f(z) — z | f € F} is terminating.

In the following sections we show that simple termination is an undecidable property of
one-rule TRSs. This contradicts a result by Jouannaud and Kirchner [10]. They claimed that a
one-rule TRS {! — r} is simply terminating if and only if ! does not unify with any non-variable
term embedded in r. This decision procedure is wrong as can be seen from the one-rule TRS
R = {f(a,b,z) — f(z,z,z)}. The only non-variable term embedded in the right-hand side
f(z,z,z) is f(z,z,z) itself, which clearly does not unify with the left-hand side f(a,b,z). On
the other hand, the term f(a,b, f(a,b,b)) has an infinite reduction with respect to the TRS

f(a,b,z) — f(z,z,z)
f(z,9,2) — =
f(z,y,2) — y
f(z,9,2) — =z

and hence R is not simply terminating, as a consequence of Lemma 2.3. The mistake in [10] is
in Lemma 15 which states that if so < to then so = t'c for some term ¢’ with ¢’ < t. (Take
s = f(a,b,z),t = f(z,z,2),and o = {z — f(a,b,b)}.)

We would like to conclude this section with mentioning a (famous) open problem: the
decidability of termination for one-rule SRSs. Partial results were obtained by Kurth [14].
He showed that termination is decidable in case the number of function symbols in the right-
hand side of the single rewrite rule does not exceed six. Deciding the termination of one-rule

4

non-length-increasing SRSs is much easier: a non-length-increasing SRS {/ — r} is terminating
if and only if I # r. Another open problem is whether termination is decidable for TRSs having
only one left and right-linear rewrite rule (problem 21 in [6]).

3. Linear Bounded Automata

In this section we introduce linear bounded automata. Before presenting formal definitions, we
give an intuitive description.

A linear bounded automaton consists of a tape which is divided into cells, a tape head that
scans one cell at a time, and a finite control, see Figure 1(i). Each cell of the tape contains

[lefalefo] [8lcfe]a]®]
| T

!

q q
(i) (i)

FiGuRrE 1.

one symbol of a finite alphabet. A linear bounded automaton operates as follows. Depending
on the state of the finite control and the symbol scanned by the tape head, a linear bounded
automaton

o changes state,

o replaces the symbol scanned by the tape head by another symbol, and

e moves the tape head one cell to the left or to the right.

It is not required that the new state or the new tape symbol differ from the previous ones. On
certain combinations of state and tape symbol, the linear bounded automaton stops operating.
Moves to the left are not allowed if the tape head is positioned at the leftmost cell of the tape.
Likewise, a right-move is forbidden if the tape head points to the rightmost cell of the tape. So
a linear bounded automaton is like a Turing machine operating on a finite tape.

DEFINITION 3.1.

o A (deterministic) linear bounded automaton (LBA for short) is a triple M = (@, T, §) consist-
ing of a finite set @ of states, a finite set I' of tape symbols, disjoint from @), and a transition
function 6, which is a partial mapping from @ x T to @ x I x {L, R}.

o Let M =(Q,T,6) be an LBA. A configuration is an element of I*QI'™, i.e. a string wyqw,
with ¢ a state, w; a string of tape symbols and w; a non-empty string of tape symbols.
The idea is that the LBA scans the leftmost symbol of w,. If w; = € then the tape head is
positioned at the leftmost cell of the tape. The transition function § determines a relation
Far on configurations as follows:

transition step I provided

wyqabw; ky wid'g’bw; | 6(g,a) = (¢, ¢/, R)
wibgawy Far wig’ba’w, | 6(g,a) = (¢',a', L)
Here q,¢' € Q, a,d’,b,b' € T and wy, w, € I'*. Observe that for every configuration o there

is at most one configuration 8 such that & Fas 8. In other words, the transition relation Fps
is deterministic.

The situation of Figure 1(i) can be described by the configuration begaab. If §(q,a) = (¢, ¢, L)
then bcgaab - bg'ccab, i.e. the situation of Figure 1(ii) is obtained.

DEFINITION 3.2.

e Let M be an LBA and « a configuration of M. We say that M halts for « if there is no
infinite sequence a by o' Far @ Fpr - - '

e The halting problem is the following decision problem: given an LBA M and a configuration
a of M, does M halt for a? The uniform halting problem is the problem to decide whether
a given LBA M halts for all its configurations.

Observe that the halting problem is decidable, since for any configuration a of an LBA M
there are only finitely many different configurations o' reachable from a (i.e. a 3, a’). Hence
halting can be decided by enumerating the (unique) sequence a bFpr @' bpr @ Fpp oo If M
does not halt for o then at some stage we will reach a configuration that occurred earlier in the
sequence. The uniform halting problem is undecidable though.

THEOREM 3.3. Let M be an arbitrary LBA. It is undecidable whether M halts for all its
configurations. O

A proof of this statement can be found in Caron [1], where a reduction to Post’s Corre-
spondence Problem is given. Caron ascribes the above result to Hooper (8], but she obtained it
independently. Moreover, [8] is very hard to read—there is for instance no notion of LBA—and
it is not clear at all whether we may assume the simple definition of LBA given above (in order
to conclude the undecidability of the uniform halting problem). By coding every LBA as a
length-preserving SRS, similar to the construction described in Huet and Lankford [9], Caron
reduced the undecidability of termination for length-preserving SRSs to the uniform halting
problem for LBAs.

We conclude this section with a concrete example of an LBA, which will be used to illustrate
subsequent developments.

ExAMPLE 3.4. Consider the LBA M = (Q,T,§) with Q = {p,¢}, I = {a,b} and § defined by
the following table:

| a b
p|(bR) (g,a,L)
q (p,a,R)

The LBA M halts for configuration pab since pab Fps bpb Fas gba Far apa and there is no
transition step possible from configuration apa since abp is not a configuration.

4. Dauchet’s Construction

In this section we associate with every LBA M a one-rule TRS Rjs such that M halts for all
its configurations if and only if Rps is terminating. In the next section we show that simple
termination of Rjps coincides with termination. Our construction is somewhat simpler than
the one by Dauchet [2]—we use for instance only five variables as opposed to the six used by
Dauchet—but the essence is the same.

DEFINITION 4.1. Let M = (Q,T,6) be an arbitrary LBA. Suppose @ = {q1,...,qm}, I =
{a1,...,an} and the number of pairs in @ x I for which é is defined equals p. (So M contains
p instructions.) The signature Fps of Ry consists of the following symbols:

¢ constants ¢q1,...,¢n and aq,...,ay,,

¢ a binary function symbol ¢ and two constants § and NiL,

e a function symbol L of arity m + n + 3 and a function symbol R of arity p.

The use of the same characters for function symbols on the one hand, and states and tape
symbols on the other hand, will cause no confusion. Next we define the single rewrite lpy — 7
of the TRS Rps. The left-hand side {ps is the term

L(c(z1,72),%3,C(Tay T5), @1y« -+ s Gmy A1y« - 5 An)-

Here z1,...,z5 are (pairwise different) variables. The right-hand side rps is the term
R(r1,...,7p)

with 7 (1 < k < p) defined as follows:
re = L(c(d,c(z1,22)), ¢, 25, Q1 - -+, Qrmy A1y ey An)

if the k-th instruction of M is a right-moving instruction 6(¢;, a;) = (¢’,a’, R), and
e = L(za,q',c(z1,¢(d,25)), Q1y- -+, Qmy A1y -+ o, Ar)

if the k-th instruction of M is a left-moving instruction 6(g;,a;) = (¢',a’,L). Here the terms
Q1,...,Qm,A1,...,A, are defined by

zz ifi=1,
Q=1¢" "
q ifi#l

for 1 <!l < m and

A= ™ ?fjizl’
a ifj#l

for 1<l n.

Let us try to explain the construction. The idea is that every configuration corresponds to
an instance of the left-hand side. The first argument will contain the contents of the tape to the
left of the tape head, the second argument will contain the state of the configuration, and the
third argument will contain the contents of the tape cell scanned by the tape head as well as the
contents of the tape to the right of the tape head. Tape parts are represented as terms by using
the constructors ¢ and NiL. For instance, aab will correspond to the term c(a, c(a, c(b,N1L))).
However, the contents of the tape to the left of the tape head should be represented in reverse
order since the rightmost symbol will be accessed first. So the instance of the left-hand side
representing configuration abgab would have c¢(b,c(a,nNiL)), ¢ and c(a,c(b,NIL))) as first three
arguments. There is only one problem with this approach: if the tape head is positioned at
the leftmost tape cell then the term representing the empty tape part to its left would simply
be NIiL which is not an instance of ¢(z1,z2), the first argument of the left-hand side. For that
reason we introduced the special constant §, the trick being to represent a configuration like
abgab by the three terms c(b, c(a,c(§,niL))), ¢ and c(a, c(b,N1L))). So the configuration ga will
be represented by c(§,N1L), ¢ and c(a,NiL). Observe that there is no need to add the symbol §
to the third term since the string w, in a configuration w;qw, is always non-empty. After this
informal discussion, the following definition is easy.

DEFINITION 4.2. Let M = (@Q,T,) be an LBA. We define two translations ¢; and ¢, from I'*
to T7(T U {c,§,N1L}) as follows:

c(f, NiL ifw=e,
gi(w)={ b Hw=e
c(a,d1(w")) ifw=uw'a
and
NIL ifw=e,
$alw) = { o(a,ba(w")) if w = aw.
These mappings are used to define a mapping ¢ from configurations of M to instances of the

left-hand side of the single rewrite rule of Rps by means of the equation

¢(w1qw2) = L(¢1('ll)1), q, ¢’2('LU2), 1y 3 qm, Q15+, an)-

We still have to explain the remaining m + n arguments of the L-terms occurring in the
single rewrite rule, which really is the ingenious part of Dauchet’s construction. This can best
be done by means of a concrete example.

ExAMPLE 4.3. Consider the LBA M of Example 3.4. Its associated TRS Rjs has the rewrite
rule

L(C(il?], 1'2)7 T3, 0(341 335),?’ q,a, b)

L(C(ba C(xh 3:2))7 p,%5,23,4,%4, b)
- R L(l‘g, q,C(iEl,C(a,l's)), 33,41,0,%)
L(C(a'1 C(xlv 532)),]7, Ts,P, T3, 4, 34)
We have pab Fpr bpb. How is this transition step reflected at the rewrite level? In Rjs we have
the rewrite step

L(c(§,~N1), p, c(a, c(b,N1L)), P, ¢, @, b)

L(C(bac(uaNIL))apy C(baNlL))p7 Q7aab)
— R | L(nu,q,c(}, c(a,c(b,niL))), p, g, 0,0)
L(c(a, o(}, n10)), p, (b, N1L), p, p, 0,)
starting from ¢(pab). The first argument

t1 = L(c(b, c(§, N1L)), p, c(b, N1L), P, ¢, @, b)
of the resulting term corresponds to performing the instruction §(p,a) = (p,b,R). This step
is allowed since in configuration pab the state is p and the tape cell scanned by the tape head
contains the symbol a. Notice that t; = ¢(bpb). The second argument

ty = L(n1, ¢, o(f, c(a, c(b,N1L))), p, ¢, @, @)
corresponds to performing the instruction 6(p,b) = (g,a, L). This step is of course not allowed
as the symbol scanned by the tape head in configuration pab is a, not b. Observe that ¢, is no
longer reducible since its last argument is an @ instead of a b. In addition, ?; is not reducible
because its first argument is NIL instead of an instance of c¢(z1, z3), signaling the fact than an
illegal left-move has been attempted. Finally, the third argument

t3 = L(c(a,c(f,NiL)), p,c(b,NIL), p, D, @, @)
is not reducible since its last four arguments are p, p, a, a instead of p, g, a,b. This means that an
instruction of the form “6(g,b) = ...” has been attempted where “§(p,a) = ...” was required.

The easy implication in the desired equivalence “an LBA M halts for all configurations if
and only if the TRS Rps is terminating” is stated in the following lemma.

LEMMA 4.4. Let M be a LBA. If M does not ha]t for configuration « then Rys has an infinite
reduction starting from the term ¢(a).

PROOF. By construction, every transition step a s 8 translates to ¢(a) = Ipo — raro with
one of the arguments of the resulting term rpro equal to ¢(B8). Thus ¢(a) —r,, C[é(B)] for
some context C. Hence an infinite transition sequence a Fps o' Fpr ” Fyr -« - corresponds to
an infinite rewrite sequence ¢(a) —x,, Cl¢p(e)] =R, CIC'[¢(a")]] =Ry -+ O

The validity of the implication “M halts for all configurations => Rjs is terminating”
remains to be shown. This is less easy since there are many reducible terms in Ry that do
not correspond to a configuration. However, since R s contains no collapsing rules, we can use
a recent result of Zantema. In [18] he showed that the termination behaviour of a TRS is not
affected if we restrict our attention to well-typed terms according to some many-sorted type
discipline, provided the system contains not both collapsing and duplicating rules. (See [18] for
a precise formulation.) For Rys we take the following type discipline:

symbol sort declaration
¢ (1<igm), 3 SQ
a;i (1<i<n), f, 21,24 | Sp
NIL, T2, Z5s Sus'r
& Sp X Spist = Sust
L Spist X Sg X Spist X 5§ X S — S
R S?P—> 5

Observe that both the left-hand side and right-hand side of the rewrite rules of Rr type-check
and have the same sort S. Clearly only terms of sort S are reducible and hence the theorem
of Zantema amounts to the equivalence of “Rjs is terminating” and “Rps is terminating for
all terms of sort S”. It is not difficult to show that this last statement can be strengthened to
“Ra is terminating for all ground redezes of sort §”. So the problem remains how to extract
an infinite transition sequence a; kFas a2 bFas a3 bFps -+ from an infinite rewrite sequence
1y =Ry t2 Ry 13 =Ry, + - - of ground terms of sort § with #; a redex.

DEFINITION 4.5. Let M = (Q,T,6) be an LBA. Let Ty = T' U {§}. We define two translations
¥ and ¥ from the set of ground terms of sort Spjgr to I'y as follows:

£ if t = NI,
’l,[)l(tg) tl ift= C(tl,tg)

(1) = {
and
€ if t = NiL,
tl'l,bg(tg) ift= C(t1,t2).

Observe that t,(t) is simply the reverse of 1;(¢). These mappings induce a mapping % from
ground redexes of sort S to elements of FEQI‘&" by means of the equation

1Jb(L(tla 12,83, q1y -+ -y qmy Q15+ - o5 an)) = ')bl(tl) t2¢2(t3)‘

Po(t) = {

Because of the presence of §, elements of IyQT ;‘ are not configurations in the sense of
Definition 3.1. The transition relation ks however easily extends to elements of I;QT é" by
relaxing b € T' and w;,w; € T in Definition 3.1 to b € Ty and wy,w; € Iy. In the proof
of Lemma 4.7 below, we will extract an infinite Fps-sequence of elements of I‘E‘Ql‘;' from a
presupposed infinite reduction sequence (of ground terms of sort §) in Rps. In order to obtain
an infinite Fjr-sequence of configurations, we have to get rid of the §’s. The next definition
provides an easy solution.

DEFINITION 4.6. We define a mapping x from Iy to I'™ inductively as follows:

£ ifw=e,
x(w) =< ax(w') if w=aw' witha €T,
x(w') ifw={w'.
This mapping is extended to elements of I‘i‘QI‘&" by putting

x(w1qwz) = x(wr1)gx(w2).

Observe that x(wjqws) is not necessarily a configuration, since x(wz) may be the empty
string. However, it is not difficult to see that if ay Fpr @y Fpr a3 with a3, 00,03 € F;QI‘;’,
then x(a;) and x(a2) are configurations such that x(a;1) Far x(e2). This implies that an
infinite Fjr-sequence of elements of I‘ﬂ’“QI‘,}i~ is transformed by x into an infinite kps-sequence of
configurations.

LEMMA 4.7. Let M be a LBA. If Rys is not terminating then M does not halt for all configu-
rations.

PrROOF. Suppose Rjs is not terminating. From the preceding discussion we know that there
exists an infinite reduction sequence t; —gr,, t2 —r,, t3 =xr,, '+ of ground terms of sort §
with ¢; a redex. Consider the first step #; —r,, t2. Because M is deterministic, at most one
of the arguments of ¢, is a ground redex (of sort S). From the reducibility of ¢, we infer that
precisely one of its arguments is reducible. Let us call this argument t5. We have (1) Far ¥(t5)
by construction of Rps. Let C be the context such that t; = C[t5]. There exist terms ¢! for i > 3
such that t; = C[t}] (¢ > 3) and ty —xr,, t3 —r,, - - is an infinite reduction sequence of ground
terms of sort S with t/, being a redex. Repeating the above argument yields an infinite sequence
¥(t1) Far Y(25) Far ¥(t5) Far -« - of elements of I‘H*QI‘;. Applying the transformation x to this
sequence yields an infinite sequence of configurations x(1¥(t1)) Far x(¥(t5)) Far x(¥(t5)) bar -+ -.
Hence M does not halt for all configurations. O

5. Simple Termination is Undecidable for One-Rule Systems

Our main result follows if we can show that for the one-rule TRSs R s introduced in the previous
section, termination and simple termination coincide. It suffices to show that every terminating
Ras is simply terminating. It is possible to construct a rather complicated well-founded order on
T (Far) which extends the rewrite relation associated to the TRS RyrU&Emb (Far). This implies
that Ryr U Emb(Far) terminates for all ground terms, which in turn implies the termination
of Rar U Emb(Fpr) (since every infinite reduction sequence can be transformed into an infinite
reduction sequence involving only ground terms by simply substituting some constant for all
variables). According to Lemma 2.3 this is equivalent to the simple termination of Rys. Here

10

we show that the powerful distribution elimination technique of Zantema [19] gives rise to a
much simpler proof.

We start with a brief description of Zantema’s technique, specialized to the present situation.
Let (F,R) be a TRS and f € F a function symbol of arity n > 1 that does not occur in the
left-hand sides of the rewrite rules in R. We inductively define a mapping F; that assigns to
every term ¢ € T(F,V) a subset of T(F\{f},V) as follows:

{t} iftey,
Es(t)y =< |JEst) ift = f(t1,...,tn),
=1

{g(ut, e um) | Vius € Eg(t)} it = g(tn,...,tm) and f # g.

The set of rewrite rules {{ - u |/ — r € R and u € Ef(r)} is denoted by E4(R).

THEOREM 5.1 (Zantema [19]). If E¢(R) is simply terminating and right-linear then R is simply
terminating. O

We would like to stress that Theorem 5.1 is only a very special case of the results in [19].
The idea is now to apply Theorem 5.1 to the TRS Rjs with respect to the function symbol R,
which only occurs in the right-hand side of the single rewrite rule of Rps. If R happens to be a
constant, i.e. if the LBA M contains no instructions, then Rps is immediately seen to be simply
terminating. So we may assume that R is not a constant. Recall that the single rewrite rule of

R has the form Iy — R(rq,...,7p). One easily verifies that
Iy = mn
Er(Rm) =
IM - Tp

Before we can apply Theorem 5.1 we have to check that Er(Rps) is right-linear and simply
terminating. Right-linearity is obvious. Simple termination follows from the termination of
Rar. First we show that Eg(Rps) is terminating.

LEMMA 5.2. The TRS Er(Ryr) is terminating.

ProOOF. We use again the result of Zantema [18] on type removal. This is allowed since Er(Rps)
lacks collapsing rules. Consider the type discipline of Section 4. If Er(Ras) is not terminating
then there exists an infinite reduction sequence in which all terms have sort S. This implies that
such an infinite reduction sequence contains only root reductions. However, if s —»gy(r,,) t is
a root reduction then there exists a context C such that s —x,, C[t], and hence any infinite
ERr(Rar)-reduction sequence containing only root reductions can trivially be embedded into an-
infinite Rps-reduction sequence. This contradicts the termination of Rps. O

LEMMA 5.3. The TRS Er(Rpr) is simply terminating.

PRrooOF. One easily verifies that |s| = [t| whenever s — g, (r,,) . Since clearly |s| > [t| whenever
8 —emb (Far\{R)) 1> termination of Er(Rp) U Emb(Fa\{R}) follows from the termination of
Er(Rar) (Lemma 5.2). Lemma 2.3 yields the simple termination of Er(Rar). O

The above lemma does not hold if M is an arbitrary Turing machine instead of an LBA.
Actually this is the only place where we use a property of R which does not hold for the single
rewrite rule of Dauchet. Theorem 5.1 now yields the desired result.

11

THEOREM 5.4. Let M be an LBA. The TRS Ry is terminating if and only if Ry is simply
terminating. O

COROLLARY 5.5. Simple termination is an undecidable property of one-rule TRSs. O

Since every TRS Ry is orthogonal (left-linear and no critical pairs), variable preserving
(Var(lyr) = Var(ruy)) and a constructor system (proper subterms of Iyr do not contain the
symbol root(Ipr)), we can state that simple termination is an undecidable property of orthogonal,
variable preserving, one-rule constructor systems.

We conclude this paper by showing that the related (non-)self-embedding and (non-)looping
properties satisfy the same undecidability result.

DEFINITION 5.6. A TRS (F,R) is self-embedding if there exist terms s,t € 7(F,V) such that
s —} tand s <t. A TRS (F,R) is looping if there exist a term t € 7(F,V), a context C, and
a substitution such that t =} C[ta].

In the literature various different definitions of the property of TRSs (or rewrite sequences)
to be (non-)looping are given (cf. e.g. [16], [17], [4]). The one given above is the most general.
One easily shows that (1) every finite non-self-embedding TRS is terminating, (2) every looping
TRS is non-terminating, and (3) every simply terminating TRS is non-self-embedding. The
reverse implications do not hold in general. However, we will show that for the TRSs Rps the
properties of being (simply) terminating, non-self-embedding, and non-looping coincide.

PRrOPOSITION 5.7. Let M be an LBA. The TRS Ry is simply terminating if and only if it is
non-self-embedding.

Proor. It suffices to show that every non-self-embedding Rps is simply terminating. Suppose
R is non-self-embedding. According to (1) above, Rjps is terminating. Theorem 5.4 shows
that Rps is simply terminating. O

ProPOSITION 5.8. Let M be an LBA. The TRS Rys is terminating if and only if it is non-
looping.

Proor. It suffices to show that every non-terminating Rps is looping, the other implication be-
ing trivial. If Rps is not terminating then, according to Lemma 4.7 and (the proof of) Lemma 4.4,
there exists an infinite rewrite sequence ¢(a1) —r,, Ci[¢(a2)] ==y Ci[Ca(d(as)]] »ry -+
Here a, (n > 1) are configurations of the LBA M such that a; Far @z bas ag bar - -+ is an infi-
nite transition sequence. This is only possible if this transition sequence contains a repetition,
say o; Fi; aj = a; for some 1 < ¢ < j. Hence ¢(a;) —»EM Cil...Cj-1[d(ai)]..], i.e., Ry is
looping (take t = ¢(a;), C = Ci[...Cj-1 ..., and o the empty substitution in Definition 5.6). D

COROLLARY 5.9. Being simply terminating, (non-)self-embedding, and (non-)looping are unde-
cidable properties of orthogonal, variable preserving, one-rule constructor systems. O

Plaisted [16] obtained the undecidability of the (non-)self-embedding property for finite
TRSs. He also showed that cyclicity is an undecidable property of finite TRSs. A TRS (F,R)1is
said to be cyclic if it admits a reduction sequence of the form ¢ —1 ¢. (Plaisted [16] called this
property ‘looping’.) It is unclear whether this result can be strengthened to one-rule systems;
observe that no one-rule TRS R s is cyclic.

12

References

1.

10.

11.

12.

13.

14.

15.

16.

A.-C. Caron, Linear Bounded Automata and Rewrite Systems: Influence of Initial Con-
figuration on Decision Properties, Proceedings of the Colloquium on Trees in Algebra and
Programming, Brighton, Lecture Notes in Computer Science 493, pp. 74-89, 1991.

M. Dauchet, Simulation of Turing Machines by a Regular Rewrite Rule, Theoretical Com-
puter Science 103, pp. 409-420, 1992. Previous version in the Proceedings of the 3rd Inter-
national Conference on Rewriting Techniques and Applications, Chapel Hill, Lecture Notes
in Computer Science 355, pp. 109-120, 1989.

N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation 3(1), pp. 69—
116, 1987.

N. Dershowitz, Corrigendum: Termination of Rewriting, JSC (1987) 3, 69-116, Journal of
Symbolic Computation 4, pp. 409-410, 1987.

N. Dershowitz and J.-P. Jouannaud, Rewrite Systems, in: Handbook of Theoretical Com-
puter Science, Vol. B (ed. J. van Leeuwen), North-Holland, pp. 243-320, 1990.

N. Dershowitz, J.-P. Jouannaud, and J.W. Klop, Open Problems in Rewriting, Proceedings
of the 4th International Conference on Rewriting Techniques and Applications, Como,
Lecture Notes in Computer Science 488, pp. 445-456, 1991.

B. Gramlich, Generalized Sufficient Conditions for Modular Termination of Rewriting, Ap-
plicable Algebra in Engineering, Communication and Computing, 1994. To appear.

P.K. Hooper, The Undecidability of the Turing Machine Immortality Problem, Journal of
Symbolic Logic 31(2), pp. 219-234, 1966. '

G. Huet and D. Lankford, On the Uniform Halting Problem for Term Rewriting Systems,
report 283, INRIA, 1978.

J.-P. Jouannaud and H. Kirchner, Construction d’un Plus Petit Ordre de Simplification,
RAIRO Informatique Théorique 18(3), pp. 191-207, 1984 (in French).

J.W. Klop, Term Rewriting Systems, in: Handbook of Logic in Computer Science, Vol. II
(eds. S. Abramsky, D. Gabbay and T. Maibaum), Oxford University Press, pp. 1-116, 1992.

M. Kurihara and A. Ohuchi, Modularity of Simple Termination of Term Rewriting Systems,
Journal of the Information Processing Society Japan 31(5), pp. 633-642, 1990.

M.‘Kurihara. and A. Ohuchi, Modularity of Simple Termination of Term Rewriting Systems
with Shared Constructors, Theoretical Computer Science 103, pp. 273-282, 1992.

W. Kurth, Termination und Konfluenz von Semi-Thue-Systems mit nur einer Regel, Ph.D.
thesis, Technische Universitat Clausthal, 1990 (in German).

E. Ohlebusch, A Note on Simple Termination of Infinite Term Rewriting Systems, report
nr. 7, Universitit Bielefeld, 1992.

D.A. Plaisted, The Undecidability of Self-Embedding for Term Rewriting Systems, Infor-
mation Processing Letters 20, pp. 61-64, 1985.

13

17.

18.

19.

P.W. Purdom Jr., Detecting Looping Simplifications, Proceedings of the 2nd International
Conference on Rewriting Techniques and Applications, Bordeaux, Lecture Notes in Com-
puter Science 256, pp. 54-61, 1987.

H. Zantema, Type Removal in Term Rewriting, Proceedings of the 3rd International Work-
shop on Conditional Term Rewriting Systems, Pont-a-Mousson, Lecture Notes in Computer
Science 656, pp. 148-154, 1993.

H. Zantema, Termination of Term Rewriting by Interpretation, Proceedings of the 3rd
International Workshop on Conditional Term Rewriting Systems, Pont-a-Mousson, Lecture
Notes in Computer Science 656, pp. 155-167, 1993.

14

