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ABSTRACT

In this paper we investigate the concept of simple termination. A
term rewriting system is called simply terminating if its termination
can be proved by means of a simplification order. The basic ingredient
of a simplification order is the subterm property, but in the literature
two different definitions are given: one based on (strict) partial orders
and another one based on preorders (or quasi-orders). In the first part
of the paper we argue that there is no reason to choose the second
one, while the first one has certain advantages.

Simplification orders are known to be well-founded orders on terms
over a finite signature. This important result no longer holds if we
consider infinite signatures. Nevertheless, well-known simplification
orders like the recursive path order are also well-founded on terms
over infinite signatures, provided the underlying precedence is well-
founded. We propose a new definition of simplification order, which
coincides with the old one (based on partial orders) in case of finite
signatures, but which is also well-founded over infinite signatures and
covers orders like the recursive path order.

1. Introduction

One of the main problems in the theory of term rewriting is the detection of
termination: for a fixed system of rewrite rules, determine whether there exist



infinite reduction seqeunces or not. Huet and Lankford [8] showed that this prob-
lem is undecidable in general. However, there are several methods for deciding
termination that are successful for many special cases. A well-known method for
proving termination is the recursive path order (Dershowitz [2]). The basic idea
of such a path order is that, starting from a given order (the so-called precedence)
on the operation symbols, in a recursive way a well-founded order on terms is
defined. If every reduction step in a term rewriting system corresponds to a
decrease according this order, one can conclude that the system is terminating.
If the order is closed under contexts and substitutions then the decrease only has
to be checked for the rewrite rules instead of all reduction steps. The bottleneck
of this kind of method is how to prove that a relation defined recursively on
terms is indeed a well-founded order. Proving irreflexivity and transitivity often
turns out to be feasible, using some induction and case analysis. However, when
stating an arbitrary recursive definition of such an order, well-foundedness is
very hard to prove directly. Fortunately, the powerful Tree Theorem of Kruskal
implies that if the order satisfies some simplification property, well-foundedness
is obtained for free. An order satisfying this property is called a simplification
order. This notion of simplification comprises two ingredients:
¢ aterm decreases by removing parts of it, and
¢ a term decreases by replacing an operation symbol with a smaller (according
to the precedence) one.
If the signature is infinite, both of these ingredients are essential for the appli-
cability of Kruskal’s Tree Theorem. It is amazing, however, that in the term
rewriting literature the notion of simplification order is motivated by the ap-
plicability of Kruskal’s Tree Theorem but only covers the first ingredient. For
infinite signatures one easily defines non-well-founded orders that are simplifi-
cation orders according to that definition. Therefore, the usual definition of
simplification order is only helpful for proving termination of systems over fi-
nite signatures. Nevertheless, it is well-known that simplification orders like
the recursive path order are also well-founded on terms over infinite signatures
(provided the precedence on the signature is well-founded).

In this paper we propose a definition of a simplification order that matches
exactly the requirements of Kruskal’s Tree Theorem, since that is the basic mo-
tivation for the notion of simplification order. According to this new definition
all simplification orders are well-founded, both over finite and infinite signatures.
For finite signatures the new and the old notion of simplification order coincide.
A term rewriting system is called simply terminating if there is a simplification
order that orients the rewrite rules from left to right. It is immediate from the
definition that every recursive path order over a well-founded Pprecedence can
be extended to a simplification order, and hence it is well-founded. Even if one
is only interested in finite term rewriting systems this is of interest: semantic
labelling ([15]) often succeeds in proving termination of a finite but “difficult”
(non-simply terminating) system by transforming it into an infinite system over
an infinite signature to which the recursive path order readily applies.



In the literature simplification orders are sometimes based on preorders (or
quasi-orders) instead of (strict) partial orders. A main result of this paper is
that there are no compelling reasons for doing so. We prove (constructively) that
every term rewriting system which can be shown to be terminating by means of
a simplification order based on preorders, can be shown to terminating by means
of a simplification order (based on partial orders). Since basing the notion of
simplification order on preorders is more susceptive to mistakes and results in
- stronger proof obligations, simplification orders should be based on partial orders.
(As explained in Section 3 these remarks already apply to finite signatures.) As a
consequence, we prefer the partial order variant of well-quasi-orders, the so-called
partial well-orders, in case of infinite signatures. By choosing partial well-orders
instead of well-quasi-orders a great part of the theory is not affected, but another
part becomes cleaner. For instance, in Section 5 we prove a useful result stating
that a term rewriting system is simply terminating if and only if the union of
the system and a particular system that captures simplification is terminating.
Based on well-quasi-orders a similar result does not hold.

A useful notion of termination for term rewriting systems is total termination
(see [6, 14]). For finite signature one easily shows that total termination implies
simple termination. In Section 6 we show that for infinite signatures this does
not hold any more: we construct an infinite term rewriting system whose ter-
minating can be proved by a polynomial interpretation, but which is not simply
terminating.

2. Termination

In order to fix our notations and terminology, we start with a very brief introduc-
tion to term rewriting. Term rewriting is surveyed in Dershowitz and Jouannaud
[4] and Klop [9)].

A signature is a set F of function symbols. Associated with every f € F
is a natural number denoting its arity. Function symbols of arity 0 are called
constants. Let T(F,V) be the set of all terms built from F and a countably
infinite set V of variables, disjoint from F. The set of variables occurring in a
term ¢ is denoted by Var(t). A term t is called ground if Var(t) = @. The set of
all ground terms is denoted by 7(F).

We introduce a fresh constant symbol O, named hole. A contezt C is a
term in 7(F U {0}, V) containing precisely one hole. The designation term is
restricted to members of 7(F,V). If C is a context and t a term then C[t]
denotes the result of replacing the hole in C by t. A term s is a subterm of a
term ¢ if there exists a context C such that ¢ = C[s]. A subterm s of ¢ is proper if
s # t. We assume familiarity with the position formalism for describing subterm
occurrences. A substitution is a map o from V to T(F,V) with the property
that the set {z € V| o(z) # x} is finite. If o is a substitution and ¢ a term then
to denotes the result of applying o to t. We call to an instance of ¢t. A binary
relation R on terms is closed under contezts if C[s] R C[t] whenever s R t, for all



contexts C. A binary relation R on terms is closed under substitutions if so R to
whenever s R t, for all substitutions 0. A rewrite relation is a binary relation on
terms that is closed under contexts and substitutions.

A rewrite rule is a pair (I,r) of terms such that the left-hand side ! is not
a variable and variables which occur in the right-hand side r occur also in l
i.e, Var(r) C Var(l). Since we are interested in (simple) termination in this
paper, these two restrictions rule out only trivial cases. Rewrite rules (I,r) will
henceforth be written as [ — .

A term rewriting system (TRS for short) is a pair (F, R) consisting of a
signature F and a set R of rewrite rules between terms in T(F,V). We often
present a TRS as a set of rewrite rules, without making explicit its signature,
assuming that the signature consists of the function symbols occurring in the
rewrite rules. The smallest rewrite relation on 7(F, V) that contains R is denoted
by —r. So s —x tif there exists a rewrite rule [ — r in R, a substitution o, and
a context C' such that s = C[lo] and t = C[ro]. The subterm lo of s is called a
redez and we say that s rewrites to ¢ by contracting redex lo. We call s »¢ t a
rewrite or reduction step. The transitive closure of —5 is denoted by "*;-z and
—% denotes the transitive and reflexive closure of —r. If s =% t we say that s
reduces to t. The converse of —% is denoted by .

A TRS (F,R)is called terminating if there are no infinite reduction sequences
t1 »R 13 =R 3 =g +-- of terms in 7(F,V). In order to simplify matters, we
assume throughout this paper that the signature F contains a constant symbol.
Hence a TRS is terminating if and only if there do not exist infinite reduction
sequence involving only ground terms.

A (strict) partial order > is a transitive and irreflexive relation. The reflexive
closure of > is denoted by %. The converse of 3= is denoted by <. A partial
order > on a set A is well-founded if there are no infinite descending sequences
ay > ag > --- of elements of A. A partial order > on A is total if for all different
elements a,b € A either a > bor b > a. A preorder (or quasi-order) > is a
transitive and reflexive relation. The converse of & is denoted by <. The strict
part of a preorder X is the partial order > defined as Z\X. Every preorder >
induces an equivalence relation ~ defined as =Nx. It is easy to see that » = Z\~.
A preorder is said to be well-founded if its strict part is a well-founded partial
order.

A rewrite relation that is also a partial order is called a rewrite order. A well-
founded rewrite order is called a reduction order. We say that a TRS (F,R) and
a partial order > on 7(F,V) are compatible if R is contained in >, ie, I >r
for every rewrite rule [ — r of R. It is easy to show that a TRS is terminating
if and only if it is compatible with a reduction order.

DEFINITION 2.1. We say that a binary relation R on terms has the subterm
property if C[t] Rt for all contexts C # O and terms t.

DEFINITION 2.2. Let F be a signature. The TRS £mb (F) consists of all rewrite



rules

f(z1,...y20) — z;

with f € F a function symbol of arity n > 1 and 7 € {1,...,n}. Here z4,...,2,
are pairwise different variables. We abbreviate —->"5"mb ) to Demy and <—2.mb(}-)
to Jdems. The latter relation is called embedding.

The following easy result relates the subterm property to embedding.

LEMMA 2.3. A rewrite order > on T(F,V) has the subterm property if and only
if it is compatible with the TRS Emb(F). O

3. Simple Termination — Finite Signatures
Throughout this section we are dealing with finite signatures only.

DEFINITION 3.1. A simplification order is a rewrite order with the subterm prop-
erty. A TRS (F,R)is simply terminating if it is compatible with a simplification
order on 7(F,V).

Since we are only interested in signatures consisting of function symbols with
fixed arity, we have no need for the deletion property (cf. [2]). Dershowitz 1, 2]
showed that every simply terminating is terminating. The proof is based on the
beautiful Tree Theorem of Kruskal [10].

DEFINITION 3.2. An infinite sequence ty, 1y, t3, ... of terms in T(F,V)is self-
embedding if there exist 1 < ¢ < j such that ¢; Jems B,

THEOREM 3.3 (KRUSKAL’S TREE THEOREM—FINITE VERSION). Every infinite
sequence of ground terms is self-embedding. O

THEOREM 3.4. Every simply terminating TRS is terminating.
Proor. Easy consequence of Theorem 3.3 and Lemma 2.3. O

The following well-known result is especially useful for showing that a given
TRS is not simply terminating, see [14].

LemMa 3.5. A TRS(F,R) is simply terminating if and only if(F,RUEMb(F))
is terminating. O

In the term rewriting literature the notion of simplification order is some-
times based on preorders instead of partial orders. Dershowitz (2] obtained the
following result.

THEOREM 3.6. Let (F,R) be a TRS. Let > be a preorder on T(F,V) which is
closed under contexts and has the subterm property. If lo > ro for every rewrite
rule | — r € R and substitution o then (F,R) is terminating. O



A preorder that is closed under contexts and has the subterm property is
sometimes called a quasi-simplification order. Observe that we require lo > ro
for all substitutions o in Theorem 3.6. It should be stressed that this requirement
cannot be weakened to the compatibility of (F,R) and > (i.e., ! >  for all rules
I - r € R) if we additionally require that % is closed under substitutions, as
is incorrectly done in Dershowitz and Jouannaud [4]. For instance, the relation
— associated with the TRS

flg(z)) = f(f(z))
flg(z)) — g(g(z))
f(z) - =
9(z) - =z

R =

is a rewrite relation with the subterm property (because R contains £Emb ({f,9}).
Moreover, | —% r but not r —% I, for every rewrite rule ! — 7 € R. So R is
included in the strict part of —%. Nevertheless, R is not terminating:

f(9(9(2))) == f(f(9(2)) »= f(9(9(2))) »m -~

The point is that the strict part of —% is not closed under substitutions. Hence
to conclude termination from compatibility with > it is essential that both >
and - are closed under substitutions.

Dershowitz [2] writes that Theorem 3.6 generalizes Theorem 3.4. We have
the following result.

THEOREM 3.7. A TRS (F,R) is simply terminating if and only if there exists a
preorder X on T(F,V) that is closed under contexts, has the subterm property,
and satisfies lo > ro for every rewrite rule | — r € R and substitution o.

The proof is given in Section 5, where the above theorem is generalized to
TRSs over arbitrary, not necessarily finite, signatures.

So every TRS whose termination can be shown by means of Theorem 3.6 is
simply terminating, i.e., its termination can be shown by a simplification order.
Since it is easier to check [ > r for finitely many rewrite rules | — r than
lo 2 ro but not ro - lo for finitely many rewrite rules I — r and infinitely many
substitutions o, there is no reason to base the definition of simplification order
on preorders.

4. Partial Well-Orders

Theorem 3.4 does not hold if we allow infinite signatures. Consider for instance
the TRS (F,R) consisting of infinitely many constants a; and rewrite rules a; —
a;+1 forall i > 1. The rewrite order —»;g vacuously satisfies the subterm property,
but (F,R) is not terminating:

a) R A DR A3 —R -



So in case F is infinite, compatibility with £mb (F) does not ensure termination.
In the next section we will see that the results of the previous section can be
recovered by suitably extending the TRS £mb (F).

DEFINITION 4.1. Let > be a partial order on a signature F. The TRS Emb (F,>)
consists of all rewrite rules of £mb (F) together with all rewrite rules

f(zy,o2a) = g2, 240,)

with f an n-ary function symbol in F, g an m-ary function symbol in F, n >
m 20, f>g,and 1 <4y <+ <ip < n whenever m > 1. Here zy,...,2, are
*”

pairwise different variables. We abbreviate ._);mb(}' ) to >emp and % . (F>)
to Xems- The latter relation is called homeomorphic embedding.

Since Emb (F, @) = Emb(F), homeomorphic embedding generalizes embed-
ding. In the next section we show that all results of the previous section carry
over to infinite signatures if we require compatibility with Emb (F,>), provided
the partial order > satisfies a stronger property than well-foundedness. This
property is explained below.

DEFINITION 4.2. Let > be a partial order on a set A.

e An infinite sequence (a;)i»; over A is called good if there exist indices 1 <
t < 7 with a; < a;, otherwise it is called bad.

* An infinite sequence (a;)iy1 over A is called a chain if a; < a;;q for all i > 1.
We say that (a;)i»1 contains a chain if it has a subsequence that is a chain.

* An infinite sequence (a;);y1 over A is called an antichain if neither a; < a;
nor a; < a;, forall 1 ¢ < j.

LEMMA 4.3. Let > be a partial order on a set A. The following statements are
equivalent.

¢ Every partial order that extends > (including > itself) is well-founded.

e Every infinite sequence over A is good.

e Every infinite sequence over A contains a chain.

e The partial order > is well-founded and does not admit antichains.

Proor. Similar as done in [7] for well-quasi-orders. O

DEFINITION 4.4. A partial order > on aset A is called a partial well-order (PWO
for short) if it satisfies one of the four equivalent assertions of Lemma 4.3.

Using the terminology of PWOs, Theorem 3.3 can now be read as follows: if
F is a finite signature then > .mp is a PWO on T(F).

By definition every PWO is a well-founded order, but the reverse does not
hold. For instance, the empty relation on an infinite set is a well-founded order
but not a PWO. Clearly every total well-founded order (or well-order) is a PWO.
Any partial order extending a PWO is a PWO. The following lemma states how
new PWOs can be obtained by restricting existing PWOs.



LEMMA 4.5. Let > be a PWO on a set A and let 7 be a PWO on a set B. Let
¢: A — B be any function. The partial order >’ on A defined by a ' b if and
only if a > b and ¢(a) J ¢(b) is a PWO.

ProoF. Let (a;)ip1 be any infinite sequence over A. Since > is a PWO this
sequence admits a chain

Qg(1) X Bg(2) X Ag(3) X * .

Since Jis a PWO on B there exist 1 < < j with ®(ag(i)) C p(ag(j))- Transitiv-
ity of < yields ag(;) < ag4(;)- Hence ag(i) 5 ag(j), while ¢(i) < ¢(j). We conclude
that (a;)i»1 is a good sequence with respect to >/, so =/ is a PWO. O

COROLLARY 4.6. The intersection of two PWOs on a set A is a PWO on A.
Proor. Choose the function ¢ in Lemma 4.5 to be the identity on 4. O

THEOREM 4.7 (KRUSKAL'S TREE THEOREM—GENERAL VERSION). If > is a
PWO on a signature F then >.py is a PWO on T(F). O

PWOs are closely related to the more familiar concept of well-quasi-order.

DEFINITION 4.8. A well-quasi-order (WQO for short) is a preorder that contains
a PWO.

The above definition is equivalent to all other definitions of WQO found in
the literature. Kruskal’s Tree Theorem is usually presented in terms of WQOs.
This is not more powerful than the PWO version: notwithstanding the fact that
the strict part of a WQO is not necessarily a PWO, it is very easy to show that
the WQO version of Kruskal’s Tree Theorem is a corollary of Theorem 4.7, and
vice-versa.

Let > be a PWO on a signature 7. A natural question is whether we can
restrict >, while retaining the property of being a PWO on 7(F). In particu-
lar, do we really need all rewrite rules in £mb (F,>)? In case there is a uniform
bound on the arities of the function symbols in F, we can greatly reduce the
set £Emb(F,>). That is, suppose there exists an N > 0 such that all function
symbols in F have arity less than or equal to N. Now we can apply Lemma 4.5:
choose ¢ to be the function that assigns to every function symbol its arity and
take 1 to be the empty relation on {1,..., N}. Hence the partial order >’ on F
defined by f >’ g if and only if f and g have the same arity and f > gisa PWO.
The corresponding set Emb (F, >') consists, besides all rewrite rules of the form
f(z1,...,25) = 2, of all rewrite rules f(z;,...,z,) — g(z1,...,z,) with f and
g n-ary function symbols such that f > g. This construction does not work if
the arities of function symbols in F are not uniformly bounded. Consider for
instance a signature F consisting of a constant a and n-ary function symbols f,
for every n > 1 (and let > be any PWO on F). The sequence

fi(a), fo(a,a), fs(a,a,a), ...



is bad with respect to >/ ,. Finally, one may wonder whether the restriction

to all rewrite rules f(z1,...,2,) — g(2iy41,.. .y Tiym) With f an n-ary function
symbol, g an m-ary function symbol, n > m > 0, n —m > 1 > 0, and frgis
sufficient. This is also not the case, as can be seen by extending the previous
signature with a constant b and considering the sequence

fZ(ba b)y f3(b) aab)) f4(byaaa7b)7 e

Of course, if the signature F is finite then the rules of £mb(F) are sufficient
since the empty relation is a PWO on any finite set.

5. Simple Termination — Infinite Signatures

Kurihara and Ohuchi [11] were the first to use the terminology simple termi-
nation. They call a TRS (F,R) simply terminating if it is compatible with a
simplification order on 7(F,V). Since compatibility with a simplification order
doesn’t ensure the termination of TRSs over infinite signatures, see the example
at the beginning of the previous section, this definition of simple termination
is clearly not the right one. Ohlebusch [12] and others call a TRS (F,R) sim-
ply terminating if it is compatible with a well-founded simplification order on
T(F,V). This is a very artificial way to ensure that every simply terminating is
terminating, more precisely, termination of simply terminating TRSs has nothing
to do with Kruskal’s Tree Theorem; simply terminating TRSs are terminating
by definition. We propose instead to bring the definition of simple termination
in accordance with (the general version of) Kruskal’s Tree Theorem.

DEFINITION 5.1. A simplification order is a rewrite order on 7(F, V) that con-
tains >¢mp for some PWO > on F. A TRS (F,R) is simply terminating if it is
compatible with a simplification order on T(F, V).

Because the empty relation is a PWO on any finite set, this definition coin-
cides with the one in Section 3 in case of finite signatures.

THEOREM 5.2. Every simply terminating TRS is terminating.

PROOF. Let (F,R) be compatible with a simplification order 7 on 7(F, V). Let
> be any PWO such that >, is included in . Theorem 4.7 shows that the
restriction of >,.ns to ground terms is a PWO. Hence the extension 7 of > emb
is well-founded on ground terms. Therefore (F,R) is terminating. O

The following result extends the very useful Lemma 3.5 to arbitrary TRSs.

LEMMA 5.3. A TRS (F,R) is simply terminating if and only if the TRS (F,RU
Emb(F,>)) is terminating for some PWO > on F.



10

Proor.

= Let (F,R) be compatible with the simplification order =7 on T(F,V). By defi-
nition there exists a PWO > on F such that >,py C 3. Il — r € Emb (F,>)
then ! >, r and therefore [ 7 r. Hence Emb (F,>) is also compatible with
3. So (F,RU Emb(F,»)) is simply terminating. Theorem 5.2 shows that
(F,RUEmb(F,>)) is terminating.

< Suppose (F,R U Emb(F,>)) is terminating for some PWO > on F. Let
be the rewrite order associated with the TRS (F,R U Emb(F,>)). Clearly
>ems € 1. Hence T is a simplification order. Since (F,R) is compatible with
3, we conclude that it is simply terminating.

a

It should be stressed that there is no equivalent to the above lemma if we
base the definition of simplification order on WQOs. This is one of the reasons
why we favor PWOs.

In the remainder of this section we generalize Theorem 3.7 (and hence The-
orem 3.6) to arbitrary TRSs. Our proof is based on the elegant proof sketch of
Theorem 3.6 given by Plaisted [13]. The proof employs multiset extensions of
preorders. A multiset is a collection in which elements are allowed to occur more
than once. If A is a set then the set of all finite multisets over A is denoted by
M(A). The multiset extension of a partial order > on A is the partial order
>mul defined on M(A) defined as follows: My >y Ms if My = (M- X )WY
for some multisets X,Y € M(A) that satisfy & # X C M; and forall y € ¥
there exists an = € X such that z > y. Dershowitz and Manna [5] showed that
the multiset extension of a well-founded partial order is again well-founded.

DEFINITION 5.4. Let 2 be a preorder on a set A. For every a € A, let [a] denote
the equivalence class with respect to the equivalence relation ~ containing a.
Let A\~ = {[a] | @ € A} be the set of all equivalence classes of A. The preorder
Z on A induces a partial order > on A\~ as follows: [a] > [b] if and only if
a > b. (The latter > denotes the strict part of the preorder >.) For every
multiset M € M(A), let [M] € M(A\~) denote the multiset obtained from M
by replacing every element a by [a]. We now define the multiset extension >y
of the preorder » as follows: My . M, if and only if [My] ==, [M2] where
>mut denotes the reflexive closure of the multiset extension of the partial order
> on A\~.

It is easy to show that >, is a preorder on M(A). The associated equiva-
lence relation ~pu = > pu N Zmul can be characterized in the following simple
way: My ~my M3 if and only if [M;] = [M,)]. Likewise, its strict part Zmul has
the following simple characterization: M; zmul Mo if and only if [M7] >t [Ma].
Observe that we denote the strict part of Zmul BY Zmur in order to avoid confu-
sion with the multiset extension >, of the strict part > of >, which is a smaller
relation.

The above definition of multiset extension of a preorder can be shown to be
equivalent to the more operational ones in Dershowitz [3] and Gallier [7], but
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since we define the multiset extension of a preorder in terms of the well-known
multiset extension of a partial order, we get all desired properties basically for
free. In particular, using the fact that multiset extension preserves well-founded
partial orders, it is very easy to show that the multiset extension of a well-founded
preorder is well-founded.

DEFINITION 5.5. If t € T(F,V) then S(t) € M(T(F,V)) denotes the finite
multiset of all subterm occurrences in ¢t and F(t) € M(F) denotes the finite
multiset of all function symbol occurrences in t.

LEMMA 5.6. Let z be a preorder on T (F,V) with the subterm property. If s = ¢
then §(s) Zmu S(t).

Proor. We show that s > #' for all # € §(¢). This implies {s} %mu S(t) and
hence also §(s) Zmu S(t). If t = ¢ then s > ¢/ by assumption. Otherwise ¢ is a
proper subterm of ¢ and hence ¢ ; #' by the subterm property. Combining this
with s > ¢ yields s > t. O

LeEMMA 5.7. Let » be a preorder on T(F,V) which is closed under contexts.
Suppose s >t and let C be an arbitrary context.

o IfS(s) Zmu S(t) then §(C[s]) Zmu S(CH]).

o If§(s) Zmw S(t) then S(C[s]) Zmu S(C[t]).

ProorF. Let 1 = §(C[s]) — S(s) and 53 = §(C[t]) — S(2). For both statements
it suffices to prove that S; Zpmw S2. Let p € Pos(C[s]) be the position of the
displayed s in C[s]. There is a one-to-one correspondence between terms in Sy
(52) and positions in Pos(C) — {p}. Hence it suffices to show that s’ = ¢’ where
s' = C[s]}, and ' = C[t]), are the to position ¢ corresponding terms in Sy and
Sq, for all ¢ € Pos(C) — {p}. If p and q are disjoint positions then s’ = t'.
Otherwise ¢ < p and there exists a context C’ such that s’ = C’[s] and ¢’ = C'[t].
By assumption s 2 t. Closure under contexts yields s’ = #'. We conclude that
Sl ,>:,mul S‘Z- a

After these two preliminary results we are ready for the generalization of
Theorem 3.7 to arbitrary TRSs.

THEOREM 5.8. A TRS (F,R) is simply terminating if and only if there exists a
preorder > on T(F,V) that is closed under contexts, contains the relation J,m;
for some PWO 1 on F, and satisfies lo > ro for every rewrite rule ! — r € R
and substitution o. O

Proor. The “only if” direction is obvious since the reflexive closure 3= of the
simplification order > used to prove simple termination is a preorder with the de-
sired properties. For the “if” direction it suffices to show that (F, RUEmb (F, 7))
-is a terminating TRS, according to Theorem 5.3 First we show that either
S(8) Zmu S(t) or 5(8) ~muw S(t) and F(s) Jpmu F(t) whenever s — ¢ is a
reduction step in the TRS (F,R U Emb(F,7)). Solet s = C[lo] and t = C[ro]
with | — 7 € RU Emb (F, ). We distinguish three cases.
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e Ifl— r € R thenlo > ro by assumption and §(lo) Zmu S(ro) according to
Lemma 5.6. The first part of Lemma 5.7 yields S(s) Zmu S(2).

o Ifl'— r € Emb(F) then lo = f(ty,...,t,) and ro = t; for some i €
{1,...,n}. Therefore §(Io) >%mu S(ro) since S(t;) is properly contained
in §(f(t1,...,tn)). Clearly lo Jemp ro and thus also lo > ro. An application
of the first part of Lemma 5.7 yields §(s) Zmu S(2).

o Ifl—re&mb(F,2)-Emb(F)thenlo = f(t1,...,t,)and ro = g(t;,,...,4.)
with f2g,n2>2m>0,and 1 <4 < -+ < ¢, < 7 whenever m > 1. We have
of course lo Jemp ro and thus also lo z; ro. Since the multiset {t;,...,; }
is contained in the multiset {t;,...,%,}, we obtain S(lo) =pmw S(ro) and
F(lo) 3mu F(ro). The second part of Lemma 5.7 yields S(s) =pmu S(t). We
obtain F(s) Jmu F(t) from F(lo) mu F(ro). '

Kruskal’s Tree Theorem shows that J.ms is a PWO on 7(F). Hence » is a well-

founded preorder on 7(F). Since multiset extension preserves well-founded pre-

orders, Zmy is a well-founded preorder on M(7(F)). Because JJis a PWO on the

signature F it is a well-founded partial order. Hence its multiset extension T,y

is a well-founded partial order on M(F). We conclude that (F,RUEmb(F, 7))

is a terminating TRS. O

6. Other Notions of Termination

In this final section we investigate the relationship between simple termination
and other restricted kinds of termination as introduced in [14]. First we recall
some terminology. Let 7 be a signature. A monotone F-algebra (A4, >) consists
of a non-empty F-algebra A and a partial order > on the carrier A of A such
that every algebra operation is strictly monotone in all its coordinates, i.e., if
f € F has arity n then

falat, .. ai, .. a0) > fa(a,...,biy...,an)

for all ay,...,a,,b; € A with a; > b; (1 € {1,...,n}). We call a monotone F-
algebra (A, >) well-founded if > is well-founded. We define a partial order >4
on 7(F,V) as follows: s >4 t if [a](s) > [e](t) for all assignments oV — A.
Here [a] denotes the homomorphic extension of a. Finally, a TRS (F,R) is said
to be compatible with (A, >) if (F,R) and >4 are compatible.

It is not difficult to show that the relation > 4 is a rewrite order on 7(F, V),
for every monotone F-algebra.(A,>). If (A,>) is well-founded then >4 is a
reduction order. It is also straightforward to show that a TRS (F,R) is termi-
nating if and only if it is compatible with a well-founded monotone F-algebra.
Simple termination can be characterized semantically as follows.

DEFINITION 6.1. A monotone F-algebra is called simple if it is compatible with
the TRS £mb(F, ) for some partial well-order > on F.

It is straightforward to show that a TRS (F,R) is simply terminating if and
only if it is compatible with a simple monotone F-algebra.
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DEFINITION 6.2. A TRS (F,R) is called totally terminating if it is compatible
with a well-founded monotone F-algebra (A, >) such that > is a total order on
the carrier set of A. If the carrier set of A is the set of natural numbers and >
is the standard order then the TRS is called w-terminating. If in addition the
operation f4 is a polynomial for every f € F, the TRS is called polynomially
terminating.

Total termination has been extensively studied in [6]. Clearly every poly-
nomially terminating TRS is w-terminating and every w-terminating is totally
terminating. For both assertions the converse does not hold, as can be shown by
the counterexamples Ry = {f(g(h(=))) — g(f(h(g())))} and Ry = {f(g(z)) —
9(f(f(z)))} respectively. An easy observation ([14]) shows that every totally ter-
minating TRS over a finite signature is simply terminating. Again the converse
does not hold as is shown by the well-known example R3 = {f(a) — f(b), g(b) —
g9(a)}.

Somewhat surprisingly, for infinite signatures total termination does not im-
ply simple termination any more: we prove that the non-simply terminating TRS
(F,R4) is even polynomially terminating. Here F is the signature {f;, g; | i € N}
and R4 consists of all rewrite rules

filg;(2)) —  fi(gi(x))

where ¢,5 € N with ¢ < j. First we prove that (F, R4) is not simply terminating.
Let > be any PWO on F. Consider the infinite sequence (fi)iz1- Since every
infinite sequence is good, we have f; >~ f; for some i < j. Hence £mb(F,>)
contains the rewrite rule f;(z) — fi(z), yielding the infinite reduction sequence

fi(9i(2)) = fi(g;(z)) = filg;(z)) — -

in the TRS (F,R4U Emb(F,»)). Lemma 5.3 shows that (F, Ry) is not simply
terminating.

For proving polynomial termination of (F,R4), interpret the function sym-
bols as the following polynomials over N:

fia(z) =2® —iz® + %z and gi4(z) =z + 2

for alli,z € N. Let ¢ € N. The interpretation g; 4 of g; is clearly strictly monotone
in its single argument. The same holds for the interpretation of f; since

fialz+1)= fia(z) = (+1-9)2+222+2z4+¢ > 0

for all z € N. It remains to show that f; 4(g; 4()) > f; 4(gj 4(z)) forall i, j,z € N
with ¢ < j. Fix 1, 7, z and let y = g; ,(z) =  + 2j. Then

fia(954(2) = fi al954(2)) = fia¥) = fia(w) =v(G=)(y—5—4)>0

since j >t and y > 27 > j+ 1 > 0. We conclude that (F,Ry) is polynomially
terminating. ’
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FIGURE 1.

Summarizing the relationship between the various kinds of termination we
obtain Figure 1; for Rs and Rg we simply take the union of R4 with R; and Ra
respectively. Uwe Waldmann (personal communication) was the first to prove
total termination of a non-simply terminating system similar to Ry, using a much
more complicated total well-founded order.

The class of simply terminating TRSs is properly included in the class of all
TRSs that are compatible with a well-founded rewrite order having the subterm
property. Nevertheless, it’s quite big. For instance, it includes all TRSs whose
termination can be shown by means of the recursive path order (Dershowitz [2])
and its variants. This can be seen as follows. It is known that >rpo 15 @ Trewrite
order on 7 (F,V) with the subterm property (cf. [2]). It is not difficult to show
that >y, extends > .ms, for any precedence > on the signature F. Hence >rpo 1S
a simplification order whenever the precedence > is a PWO. In particular, if the
signature is finite then every >,,, is a simplification order. If > is a well-founded
precedence on an arbitrary signature then >rpo is included in a simplification
order (and hence well-founded). This follows from the incrementality of the
recursive path order (i.e., if > C 3 then >rpo C Trpo) and the well-known fact
that every well-founded partial order can be extended to a total well-founded
partial order. Hence every TRS (F,R) that is compatible with >, for some
well-founded precedence >~ on F is simply terminating.
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