Leftmost Outside-In
Conditional Narrowing
for
Functional-logic Programming
Languages

Tetsuo Ida t ¥ | Koichi Nakahara t and Makoto Hamana
March, 1994
ISE-TR-94-108

Abstract

We present a new method of conditional narrowing called LOI (Leftmost Outside-In)
conditional narrowing for orthogonal conditional term rewriting systems with strict equality.
We show that LOI conditional narrowing is complete. Furthermore we present a calculus
that realizes LOI conditional narrowing. The calculus shows that LOI conditional narrow-
ing can be realized by several inference rules that perform basic operations of narrowing.
Those inference rules are easy to implement. The calculus has been used to implement a
new functional-logic programming language based on applicative conditional term rewriting
systems with extra variables. The language has a feature of higher-order programming.

tInst. of Information Sciences and Electronics, Univ. of Tsukuba, Tsukuba, Ibaraki 305, Japan
tida@is.tsukuba.ac. jp

tkoh@softlab.is.tsukuba.ac.jp

Hhamana@softlab.is.tsukuba.ac. jp



1 Introduction

Narrowing has become an important computing mechanism for functional-logic program-
ming languages. It comprises reduction of functional programming and term unification of
logic programming. A conditional term rewriting system with narrowing is a2 natural com-
putation model for functional-logic programming languages. To design efficient conditional
narrowing that enjoys the property of completeness is, therefore, a research not only of theo-
retical interest but also of practical importance. In this paper we propose leftmost outside-in
(LOI in short) conditional narrowing. The conditional LOI narrowing is defined for orthog-
onal conditional term rewriting systems. Orthogonal systems are appropriate models for
functional-logic programming languages since most of proposed functional-logic program-
ming languages can be viewed as a syntactically sugared version of orthogonal conditional
term rewriting systems.

Various methods of narrowing have been proposed and their completeness has been
studied. Among them innermost narrowingf4}, outer narrowing(17], LSE narrowing [2] and
basic narrowing [9, 13, 16] have been well studied. These methods are originally presented
for (unconditional) term rewriting systems. In a separate paper we proposed LOI narrowing
for (unconditional) term rewriting systems and showed its completeness[10]. LOI narrowing
is based on the notion of leftmost outside-in reduction that was presented by Huet and
Lévy[8]. In this paper we extend LOI narrowing for conditional term rewriting systems and
show its application to the design and implementation of a functional-logic programming
language based on applicative term rewriting.

The organization of the paper is as follows. In Section 2 we summarize basic notations
that are used in this paper. We assume readers’ familiarity with the basics of term rewriting
systems. We introduce conditional term rewriting systems in Section 3, and relate them by
example to functional-logic programs. In Section 4 we formally define conditional narrowing.
In Section 5 we introduce conditional narrowing and discuss the correspondence between
narrowing and reduction derivations. In Section 6 we define LOI conditional narrowing,
and in Section 7 we introduce a calculus LNC that performs LOI narrowing. In Section 8
we give a new functional-logic language based on applicative rewriting systems. Programs
of this language are evaluated by LOI narrowing. The completeness of the evaluation is
guaranteed by the completeness result given in Section 7.

2 Preliminaries

Let F be a set of function symbols, and V a set of variables, satisfying F NV = §. Terms
are defined as usual over a set of alphabet FUV. The set of terms is denoted by 7(F,V),
or simply by 7. A set F is divided into disjoint sets ¢ and Fp; F¢ is a set of constructors
and Fp is a set of defined function symbols. When there is no danger of confusion we call
a constructor symbol simply a constructor and a defined function symbol simply a function
symbol. A term whose root symbol is a constructor is called a constructor term, and a term
in 7(F¢,V) is called a data term.

V(A) denotes a set of variables occurring in a syntactic object A. O(t) denotes a set of



positions of a term t. A subterm of ¢ at position u is denoted by ¢|,. A position u in O(t)
is called a non-variable position if ¢|, is not a variable. The set of non-variable positions of
t is denoted by O(t). A term obtained from ¢ by replacing t|,, where u € O(t), by a term
s is denoted by t[s]y. An equation s = ¢, where s =t € T, is a special term whose root
symbol is = (used as an infix operator, and allowed only at the root position).

A substitution is a mapping from V to 7. The domain of a substitution 8 is defined as
D = {z | 6z # z,z € V}, and the codomain of § as Cod 0 = {fz | x € DG}. We identify
a substitution 6 with the set {z — 0z | z € D8}. An empty substitution is defined as the
empty set @. A substitution is extended to an endomorphism over 7 as usual. Let V C V.
The restriction of 8 to V is denoted by 6 [y. We write 8, = 85[V] when 8, [v= 8 ]y holds.
The composition of 8, and 8y, (first apply 6;, then 8,) is denoted by 626;. When o, = 6,
for some substitution o, we write 8; < 6. When o6, = 62[V] holds for some substitution
o, we write 8; < 6,[V]. A set of substitutions is denoted by ©.

3 Functional-logic program and conditional term rewrit-
ing system

A conditional term rewriting system (CTRS in short, hereafter) is a set of rewrite rules
{i > ri & Qi |iecI}, wherel;,r; € T and Q; is a sequences of equations. Q; is called a
condition of a rewrite rule R; £ l; - r; < Q;. A term s =1 is called a strict equation. An
infix function symbol = defines a strict equality, i.e., s = ¢ is true iff s and ¢ are reduced
to the same ground data term. A CTRS R is called an s-CTRS if all the conditions of
the rewrite rules in R are sequences of strict equations. We denote by R= the CTRS R
extended with rewrite rules for strict equations.

Most proposed functional-logic programming languages[5, 7, 12, 14] are modeled as a
CTRS. For example, the following program R, which we use throughout this paper, is a
functional-logic program that is regarded as a CTRS R.

Example 3.1 Appending two lists if they consists of natural numbers.
append([ ],ys) — ys < nats(ys) = tt,
append(x : xs,ys) — x : append(xs, ys) < nat(x) = tt,
nat(0) — tt,
nat(s(x)) — nat(x),
nats([]) — tt,
nats(x : xs) — nats(xs) <= nat(x) = tt.
where
e x, xs and ys are variables, and

e []is an empty list and : is an infix operator of cons.

The above functional-logic program is regarded also as an s-CTRS.
ACTRS R 2 {l; » r; « Q; | i € I} is called orthogonal if U(R) £ {l; = r; |i € I} is
orthogonal. An orthogonal CTRS is abbreviated as OCTRS, hereafter. If R is orthogonal,



R= is also made orthogonal as we will see in the next section. A CTRS R is called 1-CTRS
if V(1) 2 V(i) U V(Qs) for every i € I, and 2-CTRS if V(L) 2 V(r;) for every i € I[13].

In the case of 2-CTRS, let Ext(R;) £ V(Q;) — V(). A variable in Ext(R;) is called an
extra variable. A 1s-CTRS is 1-CTRS and s-CTRS, and likewise for 2s-CTRS. The program
R in Example 3.1 defines a 1s-OCTRS.

4 Conditional narrowing

Given a functional-logic program R the evaluator of functional-logic programs solves a se-
quence of strict equations, called goal, by conditional narrowing. The goal is condition-
ally narrowed repeatedly until it eventually becomes a sequence of true’s. Take a goal
append([s(0)]1,w) = y:[0] for example, assuming that a program R of Example 3.1 is
given. Let R= = R UR, where

[1=[]— true,
Re =< (u1:u2)=(v1:v3)— true <= uy S vy, ug = v,
tt = tt — true.

The goal is conditionally narrowed for the R=, and a solution {w +— [0],y — s(0)} is ob-
tained.

For theoretical treatment we define a goal either an empty sequence, denoted by O, or a
sequence consisting of strict equations and true’s. We then define conditional narrowing as
follows. Let G[e := S] denote a goal G with the strict equation e in G replaced by a goal S.

Definition 4.1 Let R be a CTRS. The single-step conditional narrowing ~ over goals is
defined as follows. Suppose G and G’ are goals. G ~ G' if there exist a strict equation e in
G, a position u € O(e), a new variant | — r <= @ of a rewrite rule in R=, and a substitution
o such that

o oely =l

e G' =0Gle := Q,e[r]u}.

We may also write G ~+¢ G', where 0 is the substitution which is formed in the single-step
narrowing! and whose domain is restricted to V(G). A multiple-step narrowing is written
G~+-g G'. The substitution 6 is a composition of substitutions formed in the ~» steps,
and whose domain is restricted to V(G). A symbol T generically represents a sequence of
zero or more true’s.

The evaluation process of a goal Gy can be described by a narrowing derivation

Go ~6, G1 =+ 9, Gn.

n

The narrowing derivation ending with T is said to be successful. The goal Gy is solvable
if there exists a successful narrowing derivation starting from Go. A successful narrowing

1Hereafter, we omit the word ‘conditional’ in conditional narrowing since narrowing is always conditional.
When we want to emphasize ‘conditional’, we write conditional narrowing explicitly, however.



derivation starting from Gy gives a solution 8 = (On---01)] V(Go) of the goal Gy, and we
write Gg~»~y T.

The process of solving the goal append([s(0)],w) = y : [0] is describe by the following
narrowing derivation. '

append([s(0)], w) =y : [0]
e 951} nat(s(0)) = tt, s(0) : append([s(0)], w) = y : [0]
g true, s(0) : append(f],ys) =y : [0]
~ (ysy = yog} nat(ysz) = tt,s(0) : ys2 = y : [0]
~ {ysp = zp: a5y} tTUE, Mat(Z2) = tt,nat(zsy) = tt,s(0) : (z2: zs2) =y : [0]
1k, 0,205 - []} PTUE, true, true,s(0) : (0: []) =y : [0]
Y = o(0)}
Hence, we obtain a solution {w > [0],y — s(0)} as expected.
The use of strict equations is advocated by several researchers in functional-logic programming([s,
14]. We also adopt strict equations in the condition of rewrite rules and goals for the fol-
lowing reasons.

o We need strict equality in actual programming. We want to compare two terms to see
if they are reduced to the same data term.

o The strict equations together with orthogonality condition of CTRSs guarantee the
data term solutions, i.e, the solution whose codomain is a set of data terms.

In order to make conditional narrowing practical for the computing mechanism of functional-
logic programs, we need to design a specific narrowing where we can locate narrowable
subterms efficiently. We are interested in the narrowing that performs lazy narrowing, and
still enjoys the completeness of narrowing with respect to data term solutions. A (specific)
narrowing is said to be complete for a certain class of a solution ¢ if for a given goal G,
every substitution ¢ in that class such that G — T can be found by that narrowing. The
leftmost outside-in conditional narrowing is the one that meets our requirements. To define
the leftmost outside-in conditional narrowing, we first discuss the correspondence between
narrowing and reduction derivations.

5 Intermediate reduction

Intuitively, narrowing is a combination of two operations; first instantiate a term to be
narrowed by a most general substitution and then reduce the term by a rewrite rule whose
left-hand side matches with the term. It is clear from this view that narrowing and re-
duction derivations are made to correspond each other by a suitable substitution. The
correspondence is used to analyze the properties of narrowing derivations.



5.1 Correspondence between narrowing and reduction derivations

Let R F G denote the statement that the reduction G g T holds. The reduction relation
induced by a CTRS R is defined via the notion of level reduction.

Ro=@
Rpyr ={ol—or|l—or&QeR,o €0O,suchthat R, FoQ}

These TRSs R, induce reduction relation —% Relation —% is defined as U, —x,. We
call the reduction s — t n-level if s —»¢, t. A CTRS R is level-confluent if each Ry, is
confluent.

The reduction derivation with respect to the reduction relation —% does not correspond
to narrowing derivation since rewriting of the goals originating in the conditions of the
rewrite rules used during the reduction derivation is not recorded in the derivation.

In order to make the reduction derivation correspond to the narrowing derivation, we
need a notion of intermediate reduction. The notion is originally due to Bockmayr(3].2

Definition 5.1 Let R be an s-CTRS. The single-step intermediate reduction — over goals
is defined as follows. Suppose G and G’ are goals. G — G’ if there exist a strict equation
e in S, a position u € O(e), a new variant [ — r < Q of a rewrite rule in Rz, and a
substitution o such that

o el =0l
o G'=Gle :=0Q,e[or]y],
[ ] RE }"UQ.

Intermediate reduction is abbreviated as i-reduction hereafter.
We can now have a correspondence between the narrowing derivation

Go ~¢, Gy~ o+~ Gpoy ~e, Ga

and the i-reduction derivation
a’oGo — 0101 laaad a'n—lGn—l — Gy
where 0; =0, -+ 041 for i=0,...,n -1,

in which the same rewrite rules are employed at the same positions of corresponding goals
in each step of the derivations.

2Bockmayr called the intermediate reduction Reduktionssrelation ohne Auswertung der
Primisse (reduction relation without evaluating conditions).



5.2 Lifting of derivations

From an i-reduction derivation §G — G’ we can obtain a corresponding narrowing G~+~,G’
derivation by lifting lemmas. The lifting lemmas which we give in the following are crucial
to the proof of completeness. The normalization conditions on the substitution # in the
lernmas below are essential to make the i-reduction derivation correspond to the narrowing
derivation.

In the case of 2-CTRSs, a problematic situation occurs when extra variables get in-
stantiated with a term that is level-normalized at the time of instantiation, but it becomes
reducible when later i-reductions are performed at a higher level. We have to exclude
such possibilities. The sufficient normalization condition and the notion of the restricted
i-reduction are provided for that purpose. Refer to [13] for further details.

Lemma 5.1 (Lifting lemma for 1-CTRSs [3]) Let R be a 1-CTRS. Suppose we have
goals S and T, a normalized substitution 6 such that D§ C V(S) and T £ 4S. For an
i-reduction derivation T » T there exist a goal S’, substitutions 8’ and o such that

o S, S,

e 0'S' = T',
0'c = 8[V(S)],

e @' is a normalized substitution.

The narrowing derivation S~+~,S’ and the i-reduction derivation T" »» T" employ the same
rewrite rules at the same positions in the corresponding goals.

The lifting lemma for 2-CTRSs is more complicated because of the presence of extra variable.
We define a restricted i-reduction o> over solvable goals as follows.

Definition 5.2 Let R be an arbitrary s-CTRS, and S and T be solvable goals.

1. >Oe>= 0,

1 . . - .
2. S o5 T if there exist an equation e in S, a position u € O(e), a new variant R £ —
r < @ of a rewrite rule in R, and a substitution ¢ such that

o ¢}y =0l

o T=Se:=0Q,elor]]
)

¢ 0 [Ext(R) is =R, -normalized,

n + 1 does not exceed the level of e.

o> is defined as Un>o ve». The notion of the restricted i-reduction is due to Middeldorp
and Hamoen[13)]. A restricted i-reduction derivation can be lifted to a narrowing derivation,
as shown below.

Definition 5.3 A solution o of a goal G is called sufficiently normalized (normalizable) if
o [v(e) is Ra-normalized (Ry-normalizable) where n is the level of oe, for every equation e

in G.



Lemma 5.2 (Lifting lemma for 2-CTRSs[13]) Let R be alevel-confluent 2-CTRS. Sup-
pose we have goals S and T, a sufficiently normalized solution 8 such that D8 C V(S) and
T 2 9S. For a restricted i-reduction derivation T' »e+T” there exist a goal S’, substitutions
¢’ and o such that

o S, 5,

¢ §'S'=T,

o 0o =08[V(5)],

o # is a sufficiently normalized solution of S’.

The narrowing derivation S~»,S’ and the i-reduction derivation T' »eT” employ the same
rewrite rules at the same positions in the corresponding goals.

6 Leftmost outside-in conditional narrowing

Having established the correspondence between conditional narrowing derivations and i-
reduction derivations, we are ready to define a leftmost outside-in narrowing derivation via
a leftmost outside-in reduction derivation. First we observe the following.

From an i-reduction derivation of a goal we can extract a sequence of (strict) equations
that form a reduction derivation.

Example 6.1 We use Example 3.1. We have the following i-reduction derivation starting
from a goal nat([0]) = tt.

nats([0]) = tt »» nat(0) = tt,nats([]) = tt »» tt = tt,nats([]) = tt »>
true, nats([ ]) = tt »» true,tt = tt, »» true, true.

From the above i-reduction derivation, we can extract the following two reduction deriva-
tions.
o nats([0]) = tt — {1} nats([]) = tt, —p nats([]) = tt —¢ nats([]) = tt
—{1} tt = tt —¢ true,
e nat(0) = tt — () tt = tt —g true —y true —y true —y true,

where s U {us,tn)}) t denotes (multiple-step) reduction from s to t by contracting

redexes at the pairwise disjoint positions uy,...,u,,n > 0, using rewrite rules in U(R).
Note that we consider OCTRSs, and hence the term t is uniquely determined.

We call these reduction derivations the traces of the i-reduction derivation. Since the i-
reduction derivation of R consists of the reduction derivation of /(R ), the notions developed
for orthogonal TRSs are applicable to the i-reduction derivation. In particular, Huet and
Lévy’s notion of a leftmost outside-in reduction derivation for orthogonal TRSs is applicable
to the i-reduction derivation. Hence, we have the following definition of leftmost outside-in
i-reduction and narrowing derivations.

Definition 6.1



e An i-reduction derivation is leftmost outside-in (LOI in short) if each trace of the
i-reduction derivation is LOI.

¢ A narrowing derivation is LOI if the corresponding i-reduction derivation is LOI.

Example 6.2 An example of LOI narrowing derivation is the following.

ones — s(0) : ones,
hd(z : zs) — z < nat(z) = tt.

hd(ones) = w ~p hd(s(0) : ones) = w ~ s(0) = w  (w > s(0)} true.

By the application of the standardization theorem of Huet and Lévy (8], we have the
following lemma.

Lemma 6.1 Let R be an s-OCTRS and G be a goal. If there exists a successful i-reduction
derivation G » T, then there exists an LOI i-reduction derivation.

Now the completeness result for 1s-CTRS is straightforward to obtain.

Theorem 6.1 LOI conditional narrowing is complete with respect to normalizable solu-
tions for 1s-OCTRSs.

Proof: Let R be a 1ssOCTRS. Suppose we have a normalizable solution ¢ of a goal G,
i.e., oG —»x T. By the confluence of —z, 6G —»g T, where ¢ is a normalized substitution
obtained by reducing all the terms in Cod ¢. By Lemma 6.1 there exists an LOI i-reduction
derivation 6G »» » T. By the lifting lemma 5.1 for 1s-CTRS there exists an LOI narrowing
derivation G~+, T such that 7 < &[V(G)]. Hence 7 <z o[V(G)]. 1

The completeness proof of LOI conditional narrowing for 2s-OCTRSs is more involved.
Definition 6.2 Let R be an arbitrary CTRS, and S, be associated TRSs that are induc-
tively defined as follows:

SO RO!
Sp1 {(clyor) | R:l->r«<Q€R, SptoQ
and ¢ [gye(r) is —s, -normalized, o € ©}.

As in —x, we define the reduction relation —s associated with TRSs S, as U, —g,,. _
A CTRS R is called level-normal if -z =—g, for all n > 0. In level-normal 2-CTRSs,
it can be easily shown that G —»z T iff there exists a restricted i-reduction G g T.

Theorem 6.2 [13] Conditional narrowing is complete with respect to sufficiently normal-
izable solutions for level-confluent and level-normal 2s-CTRSs.

Since 2s-OCTRSs are level-confluent [6, 1] and level-normal [11], we obtain the com-
pleteness result for 2s-OCTRSs.

Corollary 6.1 Conditional narrowing is complete with respect to sufficiently normalizable
solutions for 2s-OCTRSs.



Finally, we have the following completeness result for 2s-OCTRSs. The proof is similar
to the proof of Theorem 6.1.

Theorem 6.3 LOI conditional narrowing is complete with respect to sufficiently normal-
izable solutions for orthogonal 2s-CTRSs.

Corollary 6.1 guarantees that we can obtain all data term solutions by conditional nar-
rowing.

7 Calculus LNC

In this section we consider the realization of LOI narrowing. In a separate paper [10]
we proposed a calculus that realizes LOI narrowing for orthogonal TRSs. That calculus
is extended straightforwardly to handle conditional narrowing. Note that all rewritings
in conditional narrowing and i-reduction derivations are performed actually using U(R=).
Hence except that new goals in the condition of rewrite rules are added to each goal being
solved, basic computing mechanism for narrowing remains unchanged even in the conditional
case.

In the following calculus, which we call LNC, narrowing is decomposed into more prim-
itive operations. We give LNC as an inference system that operates on goals. Since each
step is finer than single-step narrowing, intermediate forms of goals will appear in each
inference steps. In the following calculus, a goal is a sequence of equations (not restricted
to strict equations).

Definition 7.1 Let R be an s-OCTRS. A calculus LNC for R is a pair (G,Z), where
e G is a set of goals,

e 7 is a set of inference rules defined as follows.

— [on] outermost narrowing

f(sl,...,s,,) ‘—"'t,S
S1 311,...,3,, '—‘ln,Q,T:t,S
if there exists a new variant f(ly,...,ln) = r < Q of a rewrite rule in R.

tgV

— [d] decomposition

f(sl,.. .,Sn) = f(tl,...,t,,),S
81 =t1,...,s,, :tn,S
~ [v] variable elimination
* [v1]

t==z,5
oS, where o={z  t}

10



* [v2)

z=t5
oS, where o={z — t}
— [ons] outermost narrowing for strict equations

tgy

f(s1,...,82) =t,S or s= f(ty,...,ta), S
§1 =Ily~°')sn =1n1erEt)S 131 =Il"°'1tn =In)QaSE T',S
if there exist a new variant f(ly,...,1,) — r < Q of a rewrite rule in R.

— [ds] decomposition for strict equations

e(s1y-.y8n) =c(ty, ..., ), S

81 Etl,---’Sn Etn,S
where ¢ € F¢.
— [ims] imitation for strict equations
c(s1y..-,82) =Y, S or y=c(ty,...,ta), S
0(3153/1,---,37:5%,5) o(yIEtla-"vynEtn:S)

where ¢ € F¢ and 8 = {y — c(y1,..-,¥)}-
— [ts] elimination of trivial strict equations

z=y,S
oS
_f {z—y} ifz#y
where o = { 0 otherwise.

Note:

e There exists indeterminacy between the choice of [on] and [d], and between the choice
of two rules of [ons].

e We do not need an inference rule

t=f(s1,---y5n),S
si=l,...,sp =, @t=rS

since a narrowable term is never generated on the right-hand side of the equations of

a goal.

o It is easy to see that for a goal 57 =t1,...,8 =1;,...,8, =15,

V({Sl,tl, .. .,Si_l,ig_l,s,'}) n V(ti) =0.

Hence, we have z ¢ V(t) in [v1] and [v2]. The so-called occur check, i.e., the check of
z ¢ V(t), is unnecessary in applying the inference rules [v1] and [v2].

3Consider strict equation p = ¢ as p = ¢ = true.

11



An equation of the form t = z is always processed by the inference rule [v1]. In other
words, narrowing on the term t is not performed if the right-hand side of the equation is
a variable. In our calculus, this is the meaning of lazy narrowing. In the implementation
of LNC, substitutions are maintained separately, and terms are essentially represented in
directed acyclic graphs (dag). The inference rule [v1] coupled with the dag representation
of terms is also regarded as the essence of lazy narrowing.

In LOI narrowing, arguments of a function term is narrowed first if necessary to the
extent that the function term as a whole becomes narrowable. This is realized by the
inference rules [on] and [ons]. The inference rule [ims] is used to narrow the subterms of a
constructor term.

We have two kinds of equations, i.e., ordinary equations and strict equations. Initially a
goal consisting of strict equations is given. By the inference rule [ons], ordinary equations are
generated from strict equations. Ordinary equations are used to equate actual parameters
of a function term and formal parameters of a rewrite rule.

The set 7 is a union of B £ {[on], [d], [v]} of the basic inference rules and S £ {[ons}, [ds], [ims], [ts]}
of the inference rule for strict equations. To guarantee the completeness, B is sufficient if we
use R=. S is provided for efficiency sake, and in practice necessary to make the evaluator
of the functional-logic programs viable.

We will see this in the following example.

Example 7.1
append([s(0)], w) =y : (0]

=~ append([s(0)],w) = w1 : uz,y : [0] = vy : vp, Uy = vy, up = vy, true = true
5 [s(0)] = zy : sy, w = ys,nat(z;) = tt,z : append(zsy, 252) = u; : uz,

y: [0] = vy : v, uy = vy, up = vg, true = true
A 5(0) : append([], w) = uy : ug,y : [0] = vy : v, u; = vy, up = v, true = true
& s(0) = y, append([], w) = [0], true = true
2 o

{y — s(0), w— [0]}

append([s(0)], w) = y : [0]

[5(0)] = = : zs1, w = ys1,nat(z;) = tt,z; : append(zsy,ys;) =y : [0]
5(0) : append(f], w) =y : [0]

(m}

{y = 5(0), w ~ [0]}

o
=3
73

fngn g

We showed in [10] that LNC is a complete realization of LOI narrowing for orthogonal
TRSs. The proof given in [10] can be extended to the LOI conditional narrowing.
The completeness theorem for LNC is obtained from the following proposition.

Proposition 7.1 Let R be an s-OCTRS and G be a goal consisting of strict equations.

If there exists a narrowing derivation G~~~y T, then there exists an LNC-derivation

G {'ﬁg, O such that ¢ < 6.

12



Theorem 7.1 LNC is complete with respect to sufficiently normalizable solutions for 2s-
OCTRSs.

Example 7.2 We use Example 6.2. The following example shows that LN C performs the
lazy evaluation.

hd(ones) = w
oy ones = z : zs, nat(z) =tt, s = w
3 l:ones==z:zs nat(z) =tt, z=w
4 1= z,ones = zs, nat(z) = tt, z = w
S ones = rs, nat(l) =tt, 1= w
v

nat(l)=tt, 1= w

s(0) = s(z), nat(z) = tt, s(0) = w
4 0 = z, nat(z) =tt, s(0) = w

2 e 0} nat(0) = tt, s(0) = w

1
“Yxs — ones}
ons
~

~ 0=0, tt=tt, s(0) = w
34, tt = tt, s(0) = w

%5 s(0)=w

ims 0=

i;};w — s(v)} =V

“Pv — 0} o

8 Applicative CTRS

Based on the completeness result of LOI conditional narrowing, we have designed and
implemented a functional-logic programming language called Ev([15). The language is based
on an applicative 2s-OCTRS. Note that applicative 2s-OCTRSs are also 2s-OCTRSs. An
applicative TRS (and CTRS) is a rewrite system that has only one defined function symbol
Ap. In the applicative rewrite systems, terms are either variables or constants or applicative
terms Ap(2, s), where ¢ and s are terms. For example, Ap(Ap(map, f), z)) is an applicative
term. Assuming terms are associated to left, we can omit Ap and unnecessary parentheses,
as in A-terms of the lambda calculus. For example we write the above applicative term as
map f x. The rewrite rules in the applicative rewrite system that correspond to the first
two rewrite rules in Example 3.1 are written as follows.

append [] ys — y <= nats ys = tt,
append (x : xs) ys — x : append xs ys < nat x = tt.

In the applicative CTRS we can write a rewrite rule that will take a function (regarded as
constant) as an argument. Thus we can write a program dealing with higher-order functions,
which one would expect from functional programming. For example, the map function is
written as

{mapf[]—'[],

map f (x : xs) — £ x : map £ xs.

13



It is easy to adapt LNC to deal with applicative CTRSs. In the applicative systems,
we can give a goal whose solution contains higher-order terms. For example, we can obtain
a solution {f — s} for a goal map f [0] = [s 0]. When the program is large, it is in practise
infeasible to obtain a function as a solution. Therefore in Ev, we prohibit by type-checking
the use of function-typed variables in conditions and goals. ‘

9 Concluding remarks

We have presented LOI conditional narrowing for s-OCTRSs. LOI conditional narrowing
enjoys the completeness. Furthermore we have shown the calculus that realizes LOI con-
ditional narrowing. The calculus shows that LOI conditional narrowing can be realized by
several inference rules that perform basic operations of narrowing. Those inference rules
are easy to implement. As an application, the calculus has been used to implement a new
functional-logic programming language based on applicative 2s-OCTRSs.

References

[1] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and termination.
Journal of Computer and System Sciences, 32(3):323-362, 1986.

[2] A.Bockmayr,S. Krischer, and A. Werner. Narrowing strategies for arbitrary canonical
rewrite systems. Technical report, Universitat Karlsruhe, 1993.

[3] A. M. Bockmayr. Beitrige zur Theorie des logisch-funktionalen Programmierens. PhD
thesis, Universitat Karlsruhe, 1990.

[4] L. Friborg. SLOG: a logic programming language interpreter based on clausal super-
position and rewriting. In Proceddings of the 2nd IEEE Symposium on Logic Program-
ming, Boston, pages 172-184, 1985.

[5] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A logic plus
functional language. Journal of Computer and System Sciences, 42(2):139-185, 1991.

[6] E. Giovannetti and C. Moiso. A completeness result for E-unification algorithms based
on conditional narrowing. In Proceedings of the Workshop on Foundations of Logic
and Functional Programming, Lecture Notes in -Computer Science 306, pages 157-167,
1986.

[7) Michael Hanus. Efficient Implementation of Narrowing and Rewriting. In Proc. Int.
Workshop on Processing Declarative Knowledge, 1991. LNAT 567.

[8] G. Huet and J. Lévy. Computations in orthogonal rewriting systems, I. In J.-L. Lassez
and G. Plotkin, editors, Computational logic: essays in honor of Alan Robinson, pages
395-414. The MIT Press, 1991.

[9] J. Hullot. Canonical forms and unification. In Proceedings of the 5th Conference on
Automated Deduction, Lecture Notes in Computer Science 87, pages 318-334, 1980.

14



[10] T. Ida and K. Nakahara. Leftmost outside-in narrowing calculi. 1994. submitted for
publication.

[11] T. Ida and S. Okui. Outside-in conditional narrowing. IEICE Transactions on Infor-
mation and Systems, 1994. to appear.

(12] H. C.R. Lock. The Implementation of Functional Logic Programming Languages. PhD
thesis, Universitat Karlsruhe, 1992. Published as GMD-Bericht Nr. 208, by R. Olden-
bourg Verlag, 1993.

[13] A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing, 1994. To appear.

[14] J. J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with functions
and predicates: The language BABEL. Journal of Logic Programming, 12:191-223,
1992.

[15] Tomoyuki Nishioka. A functional-logic language based on combinatory term rewrit-

ing system. In 10th Conference Proceedings Japan Society for Software Science and
Technology, pages 333-336, 1993. in Japanese.

[16] W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic
Compulation, 7:295-317, 1989.

[17] J.-H. You. Enumerating outer narrowing derivations for constructor-based term rewrit-
ing systems. Journal of Symbolic Computation, 7:319-341, 1989.

15



