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Abstract

We present narrowing calculi that are used for implementing functional-logic programming languages.
The narrowing calculi are based on the notion of the leftmost outside-in reduction of Huet and Lévy.
We note the correspondence between the narrowing and reduction derivations, and define the leftmost
outside-in narrowing derivation. We then give a narrowing calculus OINC that generates the leftmost
outside-in narrowing derivations. It consists of several inference rules that perform the leftmost outside-
in narrowing. We prove the completeness of OINC using an ordering defined over a narrowing derivation
space. In order to use the calculus OINC as a model of computation of functional-logic programming we
extend OINC to incorporate strict equality. The extension results in a new narrowing calculus s-OINC.
We show also that s-OINC enjoys the same completeness property as OINC.
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1 Introduction

Recently narrowing has received considerable research interest in declarative programming com-
munity as it was found to be an important computing mechanism of functional-logic program-
ming languages[2, 5, 6, 7, 11, 14, 16]. In this paper we present narrowing calculi that are used
for implementing functional-logic programming languages. Our narrowing calculi are based
on the notion of the outside-in reduction of Huet and Lévy[9] for orthogonal term rewriting
systems. Huet and Lévy showed that for a given reduction derivation of a term s to its normal
form (if it exists) there exists a leftmost outside-in reduction derivation from s to its normal
form. This derivation is also called standard due to this property.

To generate a standard reduction derivation from a term s to its normal form is impossible
in general without look-ahead. Practical implications of the standard derivation lie in the
following facts. First, for a sub-class of orthogonal term rewriting systems called strongly
sequential systems, there exists a strategy, i.e., effective means to locate redexes that should be
reduced next without look-ahead, by which we generate a standard reduction derivation. This
strategy is often called a call-by-need strategy since it selects a redex only when its contraction
is definitely needed in each reduction. Secondly, it provides a theoretical basis of the lazy
evaluation in the framework of (first-order) functional programming.

By the correspondence of reduction and narrowing, in particular by the use of a so-called
lifting lemma, we can obtain a narrowing derivation that corresponds to the standard reduction
derivation. This narrowing derivation, which we call a leftmost outside-in narrowing derivation,
deserves a special investigation, as the leftmost outside-in reduction derivation does in reduc-
tion. Let a method of narrowing that generates the leftmost outside-in narrowing derivation
be called leftmost outside-in narrowing. The leftmost outside-in narrowing behaves very much
like the leftmost outside-in reduction. It narrows the subterms at the same positions that are
contracted by the reduction using the same rewrite rules. It performs ‘lazy narrowing’. Further-
more to process narrowable expressions in outside-in manner is amenable to implementation of
narrowing.

There exists an important difference between reduction and narrowing derivations, however.
A narrowable term is not stable under contextual narrowing. That is, descendants of a narrow-
able term may become non-narrowable after its superterm is narrowed, whereas in an orthogonal
system descendants of a redex remain to be a redex by the reduction of its superterm. Hence
for a given standard reduction derivation its lifted narrowing derivation is not necessarily the
one in which only ‘needed’ narrowable terms are contracted. This phenomenon was observed
by several researchers and lead them to discover new methods of narrowing. You presented
an outer narrowing for constructor-based orthogonal systems[18] and Antoy et al. presented
needed narrowing strategy for strongly sequential constructor-based systems(1]. Darlington and
Guo noted the similarity between reduction and narrowing derivations, and developed a nar-
rowing algorithm for constructor-based orthogonal term rewriting systems [4]. Their algorithm



is essentially the same as our leftmost outside-in narrowing restricted to constructor-based
systems.

The leftmost outside-in narrowing is similar in its behaviour to Antoy’s needed narrowing,
but it differs in that we consider ‘needed-ness’ of a narrowable term with respect to previous
context in which its ancestors are defined. Furthermore we present the leftmost outside-in
narrowing as a computation of a calculus consisting of several inference rules that altogether
perform the leftmost outside-in narrowing. Our narrowing calculi are more general than the
needed narrowing or the outer narrowing in that they are defined for arbitrary orthogonal term
rewriting systems. For constructor-based systems our calculi generate the same narrowing
derivations as the ones by outer and needed narrowing.

The organization of the paper is as follows. We first explain narrowing as a computation of
an inference system NC that stands for Narrowing Calculus. From the calculus NC we develop
another narrowing calculi that perform leftmost outside-in narrowing. In Section 4 we give the
inductive definitions of a leftmost outside-in narrowing derivation. In Section 5 we present a
calculus called OINC that generates a leftmost outside-in derivation. The calculus OINC enjoys
the soundness and completeness. In Section 6 we prove the completeness of OINC, employing
a lifting argument in which we relate a standard reduction derivation and a leftmost outside-in
narrowing derivation. In Section 7 we incorporate strict equality into OINC. We show that
this extended calculus, to be called s-OINC, is a natural and efficient model of computation for
functional-logic programming, and further that s-OINC is complete.

Because of the lack of space all proofs of the propositions are omitted.

2 Preliminaries

Let F be a set of function symbols, and V a set of variables, satisfying NV = §. Terms
are defined as usual over a set of alphabet 7 U V. The set of terms is denoted by 7(F,V), or
simply by 7. A term t is called linear when no variable occurs in ¢ more than once. A set F
is divided into disjoints sets F¢ and Fp; Fc¢ is a set of constructors and Fp is a set of defined
function symbols. When there is no danger of confusion we call a constructor symbol simply
a constructor and a defined function symbol simply a function symbol. A term whose root
symbol is a constructor is called a constructor term, and a term in 7(F¢,V) is called a data
term.

V(.A) denotes a set of variables occurring in a syntactic object .A. The set O(t) of positions
of a term t is a set of sequences of positive integers that address subterms of . An empty
sequence is denoted by €. A position u in O(t) addresses a subterm t|,, where t|, is defined as
follows. Let t £ f(t1,...,t,). Then, t|, 2t if u = ¢ and |, £ ¢;] if w = i.u’. A position u in
O(t) is called a non-variable position if t|, is not a variable. The set of non-variable positions
of t is denoted by O(t). A term obtained from ¢ by replacing t|,, where u € O(t), by a term s
is denoted by #[s],. An equation s =t, where s =t € T, is a special term whose root symbol



is = (used as an infix operator, and allowed only at the root position).

A substitution is a mapping from V to 7. The domain of a substitution § is defined as
DY = {z | 6z # =,z € V}, and the codomain of  as Cod 6 = {0z | z € DF}. We identify a
substitution 8 with the set {z — 0z | z € D}. An empty substitution is defined as the empty
set 0. A substitution is extended to an endomorphism over 7 as usual. Let V C V. The
restriction of # to V is denoted by 8 [v. We write 6; = 65[V] when 6; [v= 63 |v holds. The
composition of 8, and 6y, (first apply 6;, then 6;) is denoted by 6;6;. When 06, = 6, for some
substitution o, we write §; < 2. When o6, = 62[V] holds for some substitution o, we write
61 % 62[V].

3 Calculus NC

Narrowing is a combination of instantiating an equation s = ¢ by applying a most general
substitution @ and of subsequent rewriting of the equation s = 6t by a rewrite rule to form a
new equation s; = t;. Narrowing is successively applied, to obtain an equation s, = t, both
sides of which are unifiable. The whole process of rewriting an equation s = (£ s = o) to
Sp = tn is also called narrowing.

3.1 NC over equations

For our purpose, narrowing is best presented in the form of a calculus (G, £), where G is a set
of objects manipulated in this calculus, and £ is a set of inference rules that operate on G. We
first present a calculus that operates equations.

Definition 3.1 (INC over equations) Let R be an arbitrary term rewriting system. A calculus
NC for R is a pair (G, NC), where G and NC are following.
e G is a set of equations and a special term ‘true’.
e NC consists of the following inference rules.
— [n] narrowing
s=1 t=s
0s[or], = 0t or 6t = Gs[or],
if there exist
% a new variant [ — r of a rewrite rule in R,
x u € O(s),
* a substitution § U o such that
- DO C V(slu),
- (08)]u = al,



- 0 is a most general substitution that satisfies the above conditions.
— [f] reflection
s=1t
true

if s = 0t for a most general unifier 6.

The inference rule [n] states explicitly the involved manipulation of equations; a most general
substitution is applied to s, and then the subterm at u, i.e., (fs)|y is identified such that the
left-hand side of the rule ! — r is matched against (6s)|, using the substitution o. D8 contains
only variables in the equation to be narrowed.

In the above we say that the equation s = #(t = s) is narrowed at the position 1.u(2.u).
A term s|, is called narrowable expression (narex in short). A term is called narrowable if it
has a narex as a subterm. A term that has no narex is called non-narrowable. Furthermore, a
substitution # is called non-narrowable if Cod 6 does not contain narrowable terms.

Let e and ¢’ be equations. We write e ~4 ¢’ if €’ is obtained from e by a single application
of the inference rule [n], and likewise for e L9 €. The substitution 6 in both cases are those
formed in the inference step and whose domain is restricted to the set of the variables occurring
in the equation e. We also write e ~~ ¢ €’ if ¢ is obtained from e by zero or more applications
of the inference rule [n]. The substitution 6 is a composition of the substitutions formed in
the ~> steps, and whose domain is restricted to V(e). Abusing the notation, we also let
NC = {[n],[f]}, and write e NSy ¢ when € is obtained from e by single application of the
inference rule in NC and likewise for e ngg e'. A sequence eg 3—»51 €1 e ]\iggnen is called an

NC-derivation. The NC-derivation whose last step of the derivation is ~f~+, ie.,
n n n f
€9 ~8y €1 ~> - v.)enen wan-fl true

is said to be successful. A successful NC-derivation starting from e gives a solution (6p416, - - - 6;) V(eo)

of the equation eg, and we write eg &9 true.

Example 3.1 Let R be a TRS given by:

_ ) fw)—w,
R= { g(1) - 1.

Given an equation f(g(z)) = f(y), there are 13 successful NC-derivations. We give below the
following two successful NC-derivations.

F(9(2)) = F(0) Sy 1 g(z)yir0es (1)
£(9(2)) = F(¥) Do 9(2) = F(¥) Bz 131 = F(4) Dol =y Spy s 1) true. (2)
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The NC-derivations. (1) and (2) yield solutions {y — g(z)} and {z — 1,y ~— 1}, respec-
tively. The former solution contains a term that is still narrowable, whereas the latter solution
contains only normal forms. From the viewpoint of equation solving, the former solution would
be satisfactory, but from the viewpoint of programming the latter solution {z — 1,y — 1} is
desirable. We will take the view point of programming languages and consider the latter so-
lution as our solution. In order to guarantee that solutions are normal forms, we will later
introduce strict equality together with certain syntactic restrictions on TRSs.

3.2 Correspondence between narrowing and reduction derivations

By the construction of narrowing, we have a correspondence between the NC-derivation
n n n n
€0 ~3g; €1 V¥t P €] Vg, €y
and the reduction derivation
00€p R 01€1 PR On—-1€n-1 —R €n
where 0; =6, -+ 0;4y for i =0,...,n -1,

in which the same rewrite rules are employed at the same positions in each step of both deriva-
tions.

The last step L, of a successful NC-derivation corresponds to the reduction in which a
rewrite rule z = £ — true is used. Let R, denote a TRS extended with the rewrite rule z '=
& — true. Then, the whole successful NC-derivation eg ~~ 4 true can be made to correspond
to the reduction derivation feg %, true. Whenever we say an NC-derivation corresponds to
a reduction derivation (and vice versa), we implicitly assume that the same rewrite rules are
employed at the same positions in each step of both derivations.

3.3 NC over goals

We next extend NC to deal with sequences of equations. A (possibly empty) sequence of
equations and true’s is called a goal. An empty sequence is denoted by 0. Goals are objects
that are manipulated by the calculus NC (over goals). In this paper we are primarily interested
in the narrowing that can be a computing mechanism of functional-logic programs. By this we
mean the following;: : ‘

1. We restrict ourselves to orthogonal term rewriting systems (abbreviated as OTRS, here-
after).

2. We regard data terms as an answer of the evaluation of functional-logic programs.



The first restriction would be justified since most of (first-order) functional programs are
regarded as an OTRS. The second restriction seems natural since data terms are objects which
we represent our data with. The first point affects almost all of our discussion in this paper,
whereas the second point does not until Section 7 where we discuss strict equality.

Definition 3.2 (NC over goals) Let R be an OTRS. A calculus NC for R is a pair (G, NC),
where G and NC are following,.

e G is a set of goals.

e NC is a set of inference rules defined as follows:

— [n] narrowing
E,s=tFE E,t=s,F
TE,T8[r)y = 7t,TE’ TE, 1t = 78[r]y, TE'
if there exist
* a new variant ! — r of a rewrite rule in R,

* u€ O(s),

* a most general unifier 7 such that (7s), = 7l.

— [f] reflection
Es=tFE

9F troe OF if s and ¢ are unifiable with a most general unifier 6.

Notations:

o The same symbol NC is used for the narrowing calculus over goals, and from now on NC
is a calculus over goals.

e The symbol T is used to represent generically a sequence of zero or more true’s.

In Definition 3.1 we gave the substitutions 6 and o in defining the inference rule [n]. We let

7 £ §U 0. Then it is clear that the narrowing rule [n] can be stated as in the above. The

relations over a set of goals ]\L?, HS.,’ 3, L, etc. are defined similarly to the corresponding

ones over a set of equations. Let A be an NC-derivation A: G NS, G'. The goal G is called an
initial goal of the NC-derivation A. If X, is empty in the above NC-derivation, the derivation
is empty. The empty NC-derivation is denoted by 0. _

The correspondence between narrowing and reduction derivations can be extended in an
obvious way to the derivations over goals. We should note, however, that the induced reduction
relation — is with respect to R4 not to R.

4 Leftmost outside-in narrowing

The calculus NC is too general as a computation model in that it does not incorporate a method
by which we can locate a narex. Selection of a narex could be specified by a computation rule



which is often called a strategy. A computation rule could specify, for example, that the
outermost-leftmost narexes be processed first among the narexes. In this paper we are aiming
at a calculus in which this kind of a computation rule is built in. Towards that goal, we first
define a special class of successful NC-derivations called leftmost outside-in derivations.

4.1 A space of successful NC-derivations

Huet and Lévy defined the leftmost outside-in reduction derivation inductively on the length of
derivations using a set of external positions. The set of external positions are determined with
respect to the derivations. In this paper we give an alternative (but equivalent) definition of the
leftmost outside-in reduction and narrowing derivations inductively on the complexity measure
of derivations. We first define a space of successful derivations over which total ordering of
derivations is defined.

Let (D, <) be an ordered set, where D is a set of successful NC-derivations and « is a (total)
ordering over the set D defined as follows.

Definition 4.1 Let G be a goal of NC and A : G %%yT € D. The complexity |A] of A4 is
defined as a triple (#n, D, #G), where

e #n is the number of applications of the inference rule [n] in the derivation A,

e #G is the number of occurrences of variables and function symbols in G excluding the
symbols = and true.

Definition 4.2

e The ordering < on complexities of a successful NC-derivation is the lexicographic ordering
of < on natural numbers, (proper) set inclusion C, and the ordering < on natural numbers.

¢ The ordering < on D is defined as follows:
Let A,A' e D. A’ q Aif |[A'|<]A].

Note that the ordering « is well-founded, and hence (D, <) is a well-founded set.

Suppose that we are given a successful NC-derivation A : G ~N~r€»9 T. We try to find another
successful NC-derivation starting from some goal G’ that yields the solution 8’ such that 6’ < 6
and A’ @ A. If such a derivation A’ exists, and we know a method of transforming A to A,
we then reason about A’ instead of A. Since (D, <) is a well-founded set, this process will
terminate. Indeed, there are special pairs of successful NC-derivations related by the relations
that are subsets of <. The following lemmas (Lemmas 4.1, 4.2, 4.4 and 4.5) enable us to
enumerate those pairs of successful NC-derivations.

The leftmost outside-in NC-derivation is defined inductively on the relation «.



Lemma 4.1 Let
A:T,s=z,FE ”f"n(={a: — sy TonE 2o, where z ¢ V(s)
be an NC-derivation and
A':nE ﬁg»gT
be the NC-derivation taken from the sub-derivation T,nFE H*\Cﬂg T. Then A" « A.

Proof: Since z ¢ V(nE), we have z ¢ Df, and hence D§ C D(fn). From this A’ g A
follows g

1 I .
We write A’ 4 A, if A and A’ are NC-derivations given above.

Lemma 4.2 Let

A:T,z=tFE “{‘n(={93 — thTHnE DT, where z ¢ V(1)
be an NC-derivation and

A :nE 1!&01'

be the NC-derivation taken from the sub-derivation T,nE N2 T. Then A’ « A.
Proof: Similarly to Lemma 4.1.5

We write A’ 9 A, if A and A’ are NC-derivations given above.

In the following lemmas (Lemmas 4.4 and 4.5) a preference is given to the left-hand sides
of the equations. This is made possible because of the syntactic restrictions on the goals that
we will impose in Section 4.2. The following definition of descendant is used in the following
lemmas.

Definition 4.3 Let G(2 ey, ...,e,) "SG'(& €l,...,eh) be an NC-derivation.
e The term €},i € {1,...,n} is called an immediate descendant, written as e; — e!.
o A term €’ is a descendant of e if e —* ¢/, where —* is the reflexive and transitive closure
of —.
To prove Lemmas 4.4 and 4.5, we need the following lemma.
Lemma 4.3 Let R be a TRS and G be a goal 83 = t1,...,8, = t, such that V(s;)NV(¢;) = 0

for any ¢,5 € {1,...,n} and V(t;) N V(t;) = @ for any ¢ # j. If there exists a successful
NC-derivation

G B G o, (3)
then there exists a successful NC-derivation

G-2Le... 2Lic,, AT, (4)
such that



. L-steps on each equation are moved as leftward as possible in the derivation (4), and
e in each corresponding <-steps the same rewrite rules are employed at the same positions.

Proof: By repeated applications of Switching Lemma A.1 given in the appendix.
We call derivation (4) the 1, -eager derivation of derivation (3).

Lemma 4.4 Let R be a TRS and G be a goal T, f(s1,...,8,) = f(t1,...,%s), F such that
V(f(s1y-.-580)) N V(f(t1,...,t0)) = 0, and f(t1,...,t,) is linear. If there exists an NC-
derivation

' £
A:G 91T’f(3’1’°°'?5:;) = f(tl,...,tn),elE -r92T,0201E (5)
NC
v~w~>93T, (6)
where the descendants of f(s1,...,8n) = f(t1,...,tn) are not narrowed at position 1 then there
exists an NC-derivation
NC
A 18y =1, 80 = tn, E o, T,nE (7)
NC
such that
o the derivation s = ty,...,8, = i, e 2T extracted from the subderivation (7) is the

i»-eager derivation of 81 = ty,...,8p =ty v 8§ = tg,...,8, =1, ST, and
e in each step of the subderivation (8), the same rewrite rules are employed at the same
position of the same equation in each goal of both subderivations (6) and (8).

Furthermore, we have A’ < A.
Proof: Note that 7 = 6,6, modulo renaming [V(G)] by Lemma 4.3. From the NC-derivation

A, we can construct an NC-derivation
n ' f NC
A" 181 =11, S =t E v g 87 = t1,...,s; =1p, 1 E v, 0201 E ~5op, T.

By the assumption on the goal G' and by the repeated applications of Lemma 4.3, we have the
correspondence between the deivations A and A’. It is straightfoward to show A’ < A. y

d
We write A’ g A, if A and A" are NC-derivations given above.
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Lemma 4.5 If there exists an NC-derivation
A:(GE)T,f(s1y.0180) =6, E v o T, f(s4,...,80) =1,0,E (9)
SHeT,0r=t,00E Hg»g? T, (10)

in which the descendant of f(si,...,8,) =t is narrowed for the first time at the position 1, in
some step in A using a rewrite rule f(l1,...,l,) — r, then there exists an NC-derivation

Aisy=l,....,sp =ly,r=1t,E H&,,T,nr =t,0'0,E, (11)

NC

""M%T’ (12)
“such that

¢ the derivation s = l1,...,8, = I, Ne, 2T extracted from the subderivation (11) is the

«Q-eager derivation of 81 = lp,..., 85, = Iy~ 8| = 1,,...,8, =1, ST, and
e in each step of the subderivation (12), the same rewrite rules are employed at the same
position of the same equation in each goal of both subderivations (10) and (12).

Furthermore, we have 4’ q A.
Proof: The existence of the derivation A’ is assured by Lemma 4.3. The number of -steps

in A’ is one less than that in A. Hence, A' < A4

. . . . . oI v1 2 d
We write A’ G A, if Aand A’ are NC-derivations given above. Let < =quduqu 0<I11, and

oI . ‘s oI .

4" denote the reflexive and transitive closure of <. Using the above lemmas we can transform
. oI

Ato A’ that is A’ 4 A.

4.2 Initial NC-derivation

V\ge next discuss what class of successful NC-derivations we will transform with the relation
<. Since we are interested in narrowing that can be used in functional-logic programming, we

restrict ourselves to a class of NC-derivations, to be called initial NC-derivations. We first give
necessary definitions.
Definition 4.4 A goal G is called right-normal if

¢ Gis O, or

o (G is a sequence consisting only of equations and the right-hand side of all the equations
in G is a ground normal form.

11



The restriction of right-normality on goals is slightly more general than what we actually
need in functional-logic programming. We are interested in solving a strict equation s = ¢ =
true. The idea of using a strict equation in functional-logic programming languages originates
in a logic plus functional language K-LEAF[6] and has been exploited by several researchers(15,
12, 3, 1]. Solving a strict equation s =t = true is to find a normalized substitution 6 such that
s and 6t have a common reduct that is a data term. To cope with the strict equations, a TRS
R is extended with rewrite rules for strict equality

R. = {c = ¢ — true} if the arity of cis 0
¢ 7 {c(z1yeeyTn) = (Y15 Yn) 2 TIE YA AT, =y} if the arity of cis n > 0,

together with the rewrite rule true Az — z. Let RS = R U xr, Rc U {true Az — z}.
Furthermore, we abbreviate s = t = true as s =t in a goal.
The choice of right-normal initial goals as our objects of narrowing leads to a class of goals

called proper goals.

Definition 4.5
o A successful NC-derivation G 5T is called initial if G is right-normal.
e Let Do(C D) be a set of initial NC-derivations, and

Go = {G | G is an initial goal of A’ such that A’ °4" A, A C Do}.

An element of Gp is called a proper goal.
A proper goal has the following properties.

Definition 4.6 Let G be a goal E,s = t, E’, and Left(G,t) = {E, s}.
e The equation s =t in G is left-independent if V(Left(G,t)) N V(t) = 0.
o A goal G is called left-independent if all the equations in G are left-independent.

By the definition of proper goals, we can easily see that the following proposition holds.

Proposition 4.1 Let R be an OTRS. A proper goal G satisfies the following properties.
(G1) G is left-independent.

(G2) The right-hand side of every equation in G is linear and non-narrowable.

The following lemma on the solutions of initial NC-derivations will be used later.

Lemma 4.6 Let R be an OTRS, and G be a right-normal goal. If G mo T then the solution
6 is non-narrowable.

12



4.3 Leftmost outside-in NC-derivations

We are now ready to define a leftmost outside-in NC-derivation of a proper goal.

Definition 4.7 Let R be an OTRS, and G be a proper goal. An leftmost outside-in (abbre-

viated as LOI, hereafter) NC-derivation G NC.T is defined inductively (with respect to <) as
follows.

e An empty NC-derivation 0 is LOL
e A:T,s=x,E NS,T is LOLif
— Ais written as T,s =2, F ~f~»91(={m — sy T, E ﬁang, and
— A, such that A’ 4 4, is LOL
o A:T,z=tE X%,T where t ¢ V is LOL if
— Ais writtenas T,z =t, F L9l(={fv ) T201E &ezT and
— A, such that A’ S 4, is LOL
At T, f(S15-r80) = f(t1,n o tn), E 5T is LOT if

— A is written as
T, f(s15..-98n) = f(t1y..stn), E
Bos gy (e s 8h) = f(B1yeeertn), 01 E g, 6,61 E D55 T and
— A’, such that A’ & 4, is LOL
AT, f(s1,+..,80) =1, E X%y T, where t ¢ V, is LOL if
~ A is written as
T, f(s15.00y80) =1, E
~rws g f(8Yyeees8h) =t,60E w5, T,or = t,00,E ]Xgoz T, and

— A’, such that A’ 4 A, is LOL

We next define an LOI reduction derivation via an LOI NC-narrowing derivation. A reduc-
tion derivation

s(£ s9) — s1 — 8(£ sy), where § is a normal form of a term s, (13)

is LOI if the corresponding NC-derivation A constructed in the following way is LOI. Let
{z1,...,2k} = V(8), c1,...,c be distinct fresh constants, and o = {z1 — ¢1,...,2% — c;}.

A:aso=a.§3-»q,o'sl=0.§~3-@0‘sn=a.§~f~»¢T. (14)

13



The reduction derivation (13) is called LOI if the NC-derivation (14) is LOL
The LOI reduction derivation starting from a term s is very important for the following
reasons.

(i) It represents the class of the reduction derivations starting from s.

(ii) The LOI reduction derivation from s to its normal form is optimal in the sense that it
contracts only the redexes that are needed to get to the normal form.

For this reason Huet and Lévy called an LOI reduction derivation standard [9]. The clause (i)
in the above is formally stated as follows.

Theorem 4.1 (Standardization theorem [9]) Let R be an OTRS. Every reduction deriva-
tion class contains a unique standard reduction derivation.

The following lemma is a corollary of Theorem 4.1.

Lemma 4.7 Let R be an OTRS, and G be a right-normal goal. If there exists a reduction
derivation G —»g, T then there exists a standard reduction derivation G -, T.

By the following lemma known as a (kind of) lifting lemma in the theories of TRSs and
logic programming, we can obtain a version of a standardization theorem for narrowing. Let
rths(G) denote a set of terms that are the right-hand sides of all the equations in the goal G.

Lemma 4.8 (Lifting Lemma) Let R be an OTRS. Suppose we have a proper goal G, and
a non-narrowable substitution 8 such that (D8 U V(Cod 8)) N V(rhs(G)) = 0. If there exists a
successful LOI NC-derivation

A:0G Hrc;,, T
then there exists a successful LOI NC-derivation
¢ Y%, T,
such that o <X n0[V(G))].
Proof: The proof is given in Appendix C.

Theorem 4.2 (Standardization theorem for NC-derivations) Let R be an OTRS and
G be a right-normal goal. If there exists a successful NC-derivation G y»g-»gT, then there exists

an LOI NC-derivation G &UT such that o < 6.

Proof: By the correspondence of narrowing and reduction derivations, there exists a re-
duction derivation 6G —-x, T. By Lemma 4.7 there exists a standard reduction derivation
0G -, T. By Lemma 4.6 the substitution 6 is non-narrowable. By Lifting Lemma 4.8 there

exists a successful LOI NC-derivation G ]XS-»,,T, where ¢ < 64
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Example 4.1 Let R be an OTRS

{ f(g(d),w) = a,
g(c) = g(d).

The following NC-derivation
F(9(2),9(¥)) = a Bz s ¢} £(9(d), 9(¥)) = a Sy s ¢} flg(d),g(d)) = @
330 a=a -5»0 T (15)

yields a solution 8 = {z — ¢,y — c}.
The derivation (15) is not LOI since the NC-derivation

Tag(y) =w,a=a "I’l"{yl—éc} T’g(d)=w7a= a ""g""{w.—) d} T

is not LOL
The LOI NC-derivation that yields a solution o = {z > ¢} < 6 is following.
F(5(2),90)) = @ Bz ¢ o) g() =0 Bga=a 2T (16)

The derivation (16) is not the only LOI NC-derivation.

flo(@), ) =a g, ga=a=eT, (17)

that yields a solution {z + d} is also LOL

These are two solutions of the goal f(g(z),9(y)) = a. In order to obtain a solution {z ~ c},
narrowing of g(z) is needed. However, to obtain a solution {z — d}, narrowing of g(z) is not
needed. So the needed-ness of a term to be narrowed depends on the rewrite rule to be applied.
The notion of needed-ness defined for reduction does not well fit in narrowing.

4.4 Completeness of LOI NC

We now show that LOI narrowing is complete with respect to normalizable solutions for OTRSs.
The completeness of narrowing is formally stated as follows.

Definition 4.8 Let R be an OTRS and G a goal.

e Narrowing is complete if for every substitution o such that g —»z, T, there exists a
narrowing derivation G ~Z T such that 7 Xz o[V(G)]. Here, <z is defined as follows:
let 8; and 02 be substitutions. 67 =g 6, if 612 =g 022 for all z € V, and 6; 2 6, if
pf1 =r 6, for some substitution p.

15



o In particular, LOI narrowing is complete if for every substitution o such that ¢G —»x, T,
there exists an LOI NC-derivation G %%, T such that 7 <z o[V(G)].

Using the following well-known completeness theorem of narrowing for confluent TRSs, we
can obtain the completeness result of LOI narrrowing.

Theorem 4.3 (completeness of NC) Let R be a confluent TRS and G(£ s = t) be an
(arbitrary) goal. For any normalizable solution 6 such that fs =z 6t, there exists a successful

NC-derivation G ~N~>g~»,T such that o <z 6.

Theorem 4.3 is an easy consequence of the lifting lemma (due to Hullot [10]) for a conflu-
ent TRS. The theorem, together with a rigorous proof of Hullot’s lifting lemma, is given by
Middeldorp and Hamoen [13].

Theorem 4.4 (Completeness of LOI NC) LOI narrowing is complete with respect to nor-
malizable solutions of right-normal goals for OTRSs.

Proof: For every normalizable solution @ of a goal G, there exists an NC-derivation G m,T
such that o <% 6 by Theorem 4.3. By Theorem 4.2 there exists an LOI NC-derivation G ES-»,:T
such that o/ < 0. g

5 Calculus OINC

In this section we present a calculus OINC that generates LOI NC-derivations. In the calcu-
lus OINC the inference rules [n] and [f] of NC are decomposed into several more primitive
inference rules. Furthermore, a computation rule by which to locate narexes is built in OINC.
Standardization Theorem 4.2 for NC-derivations allows us to deal only with LOI NC-derivations
for the completeness result of OINC. Hence in OINC, all the goals are proper and the equa-
tions of the goals are processed from left to right. As in NC, we give the calculus OINC in
the form of an inference system.

Definition 5.1 (OINC) Let R be an OTRS. A calculus OINC for R is a pair (G,0INC),
where

e G is a set of proper goals,

e OINC is a set of inference rules defined as follows.

— [on] outermost narrowing
f(s1,...y82) =t E
8§ = ll,...,sn = ln,T= t,E
if there exists a new variant f(l;,...,l,) — r of a rewrite rule in R.

tgy
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— [d] decomposition
f(317 oo asn) = f(th cee ,tn)vE
S$1 = t1,...,sn = tn,E
— [v] variable elimination
* [v1]

t=z,F
o E,where o={z — t}

* [v2]

z=t,F
o E,where o={z — t}

tgy

Note:
o There exists indeterminacy between the choice of [on] and [d].

¢ We do not need an inference rule

t= f(s1,..y80), E
s1i=lh,...,spn=l,t=1,F

if there exists a new variant f(l;,...,l,) — r of a rewrite rule in R,

since a narrowable term is never generated on the right-hand side of the equations of a
goal.

e The term true is never generated in the inference steps of OINC. Hence, unless true’s are
in an initial goal, true’s are never in the goals. Since true’s are superfluous in the calculus
OINC, we remove the true’s in the initial goals and assume that all goals (including initial
goals) of OINC do not contain true’s.

e By Proposition 4.1 we have z ¢ V(t) in [v1] and [v2]. Hence, the so-called occur check,
i.e., the check of z &€ V(t), is unnecessary in applying the inference rules [v1] and [v2].

An equation of the form ¢ = z is always processed by the inference rule [v1]. In our context,
this is the meaning of lazy narrowing. In some implementation of OINC, substitutions are
maintained separately, and terms are essentially represented in directed acyclic graphs (dag).
The inference rule [v1] coupled with the dag representation of terms may also be regarded the
essence of the lazy narrowing.

. d 1 v2 OINC . . oy
Relations over goals <3, <, %5, %3, “%5" and their reflexive and transitive closures are de-

fined as in the calculus NC. We should note the correspondence between 3, %, 3, 3, and &°
d vl v2 oI : . .
and 0<r1l,<l,v<l,v< and 4, respectively. By the definitions of the inference rules of OINC and

1v2 d e s :
the relations <, <, < and 4, it is clear that if G is proper and G OCer , then G’ is proper.

17



Example 5.1 We use the OTRS in Example 4.1. The following are OINC-derivations that
yield solutions {z — ¢} and {z — d}.

flg(z),9(y))=a = 9(z) = g(d),9(y) = w,a =a
< z = c,g(d) = g(d),g(y) = w,a=a
Bee o 9(d) = g(d),9(y) =w,a=a
i d’:d’g(y):waa:a
d
= J(y)=w,a=a
:{w —g(y)y 454
~~ a.
flg(z),9(y)) =a =3 9(z) = 9(d),9(y) = w,a=a
d
~ z=dg(y)=w,a=a
v2
r—d} g(y)=w,a=a
vl
:{w - g(y)y 2T¢
~p a.

Before we proceed further with OINC, we check that OINC computes a correct solution.

Definition 5.2 Let R be an OTRS and G be a proper goal of OINC.
OINC

e A substitution 6 is a solution of G (with respect to OINC) if G "~~~y O. Note that
DO C V(G) by the definition of a substitution formed in the derivation.

o A solution of G is correct if 0G -, T.
The following proposition shows that the calculus OINC indeed computes a correct solution.

Proposition 5.1 (Soundness of OINC) Let R be an OTRS, and G be a proper goal. If
there exists an OINC-derivation G OLN»C@ O, then there exists a reduction derivation G -,

T.
Proof: The proof is given in Appendix B.y

6 Completeness of OINC

The calculus OINC is a complete implementation of NC. The completeness of OINC states
that given a right-normal G, for any successful NC-derivation G maT there exists an OINC-
derivation

G O&CU 0, such that o < 6.
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The solution # is non-narrowable (hence normalized) by Lemma 4.6.
The completeness proof proceeds as follows.

1. We have already seen that for any successful NC-derivation there exists an LOI NC-
derivation.

2. We transform a successful LOI NC-derivation A to another successful NC-derivation A’
that is less complex than A.

3. We connect A and A’ by the inference steps of OINC.
4. By an inductive argument, we show that A is replaced by an OINC-derivation.

This proof method was employed by Holldobler in proving the completeness of an inference
system TRANS [8].

Proposition 6.1 Let R be an OTRS, and G be a proper goal of NC. If there exists an LOI

NC-derivation G ¥%,T, then there exists an OINC-derivation G %, O, where G is a goal

obtained from G by removing true’s in G.

Proof: By the transfinite induction on «. Obviously the result holds for the base case.
Let A: G Y%T and G be a proper goal T,s = t,E. Assume that the result holds for any
NC-derivation A’ such that A’ < A. We distinguish the following four cases.

(1) tis a variable z.
The term s is not a variable z by the property (G1). Hence, by assumption, A is written
as follows.

A:T,s=z,F 3*0;(:{:[ . 8})T,01E m(bT

By Lemma, 4.1, there exists an NC-derivation A’ : 6, FE mg,z T such that A’ ‘g A. Since A
is LOI, A" is LOI. By the inference rule [v1] of OINC, we have

— 1 —
s=z,F X-+9101E.

Therefore, by the induction hypothesis, we have an OINC-derivation

- =5 OINC
S = x,E X&glolE ) 92D,

(2) tis a non-variable term.

(2-1) sis a variable z.
Since t is not narrowable by the property (G2) and ¢ # z, by the property (G1) the
LOI NC-derivation A is written as follows.

f
A:Te=t,E Sy p )T 0E Mo, T.
The rest of the proof is the same as that of the case (1) using Lemma 4.2.
(2-2) sis aterm f(s1,...,8,). We further distinguish the following two cases.
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(2-2a) The LOI NC-derivation A is written as follows.
A:T,f(s15...980) =t E ~N~S~>9T,
where a new variant f(ly,...,l,) — r of a rewrite rule in R is used to narrow the
descendant of f(s1,...,5,) =t. By Lemma 4.5, there exists an NC-derivation
A:isi=l,....sp=ly,r=t,F ~N~»€->9T
such that A’ G A. Since A4 is LOI, A’ is LOL By the induction hypothesis there
exists an OINC-derivation
= - OINC
f(sl,...,sn) = t,E gi}.‘51 = 11,...,8n = ln,’l‘ = t,E s gD.
(2-2b) The LOI NC-derivation A is written as follows.
NC
A:T,f(815..982) = f(t1, o ytn), B ST,
where the descendants of f(s1,...,8,) = f(t1,...,tn) is never narrowed at the
position 1.
By Lemma 4.4, there exists an NC-derivation
A isy=11,...,8, =ty E Lv*gng

such that A’ 3 A. Since A is LOI, A’ is LOL

Hence, we have an OINC-derivation

- d - OINC
f(sla"'asn)=f(tl""’tn)vE 8] =,y 8y = ln, B g O

by the induction hypothesis. g

Theorem 6.1 (Completeness of OINC) Let R be an OTRS and G be a right-normal goal.

If there exists an NC-derivation G «A»rg»g T, then there exists an OINC-derivation G OJ*]Y»C, O

such that o < 6.

Proof: By Theorem 4.2 there exists an LOI NC-derivation A : G LV&,T such that o < 6.

By Proposition 6.1 there exists an OINC-derivation G O&Ca Oy

7 Calculus s-OINC

We next extend OINC in order to handle strict equations efficiently. To motivate the extension
let us take an example.

Example 7.1 With respect to R= in Example 3.1, we solve a goal f(g(z)) = f(y) in OINC.
flg(=)) = f(y) = flg(=)) =1, f(y) = 1,true = true
3 g(z) = wy, w1 =1, f(y) = 1,true = true

!l{wl — g(;p)} g(x) = 1*) f(y) = l,true = true OVI*IYHC a. (18)
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This OINC-derivation seems to be very redundant. With some insight we can think of an
inference step that can bypass some of the above steps. Let us try to apply a kind of S-step
on the strict equation directly.

f(g()) = f(y) ~ 9(z) = w,w = f(y).

We denote this step by %5. Then we can obtain a new derivation.
flg(=)) = f(v) % 9(z) = wi,01 = f(5) By, s g(a)y 92) = F(V)

O&C{mr—) 1.} 1= f(y) Fy=wy,1=wp~--r 0O (19)

We see that in the derivation (19) the equation g(z) = w, is generated in one step, whereas in
the derivation (18) it is generated in two -steps.

The problem with OINC in handling the strict equations is not only the number of redun-
dant steps, but the difficulty of choosing an adequate rewrite rule for strict equations when
there are many constructor symbols ¢ € F¢. In the above example, in the derivation (18)
we select the rewrite rule 1 = 1 — true immediately in the first step of the derivation. In
practice, this is impossible without try-and-backtracks. We will circumvent these difficulties in
the following way. The basic idea for taking the shortcut that we saw above is to narrow the
left- and right-hands of the strict equations independently. Suppose that a goal s = is given.
We narrow s and ¢ independently until s and ¢ become constructor terms, say ¢(s’) and c(t'),
respectively (if ¢ becomes ¢/(#') where ¢ # ¢/, this derivation will never become successful).
Then we repeat this process with s’ and t'.

We are now ready to give the inference rules for strict equations.

7.1 Inference-rules for strict equations

o [ons] outermost narrowing for strict equations

f(sl’.--,Sn)Et,E or sEf(tl,n.--,tn),.E
81 =;ll’“"s" = ln,TEt,E 31 =11,...,tn =In,s = T,E

if there exist a new variant f(lj,...,ln) — r of a rewrite rule in R.
o [ds] decomposition for strict equations
c(81y---18n) = c(t1,..,tn), E
81 = t1,...480 = tn,E
where ¢ € F¢.

e [ims) imitation for strict equations

c(81y..v80) =Y, E or y=c(try... tn), E
9(315y1;---,3n5yn,E) a(ylEtlv'“aynEtn:E)

where ¢ € Fe and 8 = {y — ¢(y1,...,¥n)}-
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o [ts] elimination of trivial strict equations
z=y,F
oE

{z—y} ifz#y

where o = { 0 otherwise.

Since the strict equations are symmetrical in narrowing, we need two rules in the inference
rules [ons] and [ims]. Note also that thanks to the inference rules for the strict equations we no
longer need rewrite rules for the strict equations.

Except for the inference rule [ims], the new inference rules are easy to understand. The
inference rule [ims] is used to narrow the subterms of a constructor term. Let us take an

example.
Example 7.2 Let F¢ = {1,c1}, where ¢; is a constructor symbol of arity one. We use a TRS
R of Example 3.1, and solve a goal G £ ¢;(f(z)) = y. A successful derivation is as follows.
. 3 v 3
G ’Bls{y — c1(31)} f@)=n Be=w,w=y Do )2 =11 Sz o )0
The solution obtained in this derivation is {y — ¢1(%1),2 — w1}

Let s-OINC = {[ons],[ds),[ims], [ts]} U OINC. We define a new calculus s-OINC =
(G,s-OINC), where § is a set of proper goals as in OINC. The initial goal is a sequence of a
right-normal equations, some of which may be a strict equation.

7.2 Completeness of s-OINC

We do not iterate the soundness theorem for s-OINC. The completeness theorem for s-OINC
is obtained from the following proposition.

Proposition 7.1 Let R be an OTRS, and G be a proper goal. If there exists an OINC-
derivation with respect to R=

G Ol& 00 0
then there exists an s-OINC derivation with respect to R
G ”9&’00 O,such that o < 6.
Proof: The proof is given in Appendix D.y
Our final result is the following completeness theorem for s-OINC.
Theorem 7.1 (Completeness of s-OINC) Let R be an OTRS and G be a right-normal

goal. If there exists an NC-derivation G mg T, then there exists an s-OINC-derivation

G *UNC o such that o < 6.

22



8 Conclusion

We have presented a leftmost outside-in narrowing and shown the narrowing calculus OINC
based on the leftmost outside-in narrowing. The calculus OINC realizes lazy evaluation in
narrowing in that it delays narrowing on narrowable terms that are to be bound to variables.
Furthermore it enjoys the property of completeness for orthogonal TRSs with respect to nor-
malized solutions.

In order to use the calculus OINC as a model of computation of functional-logic pro-
gramming we extended OINC to incorporate strict equality. The extension results in a new
narrowing calculus s-OINC. It has been also shown that the calculus s-OINC enjoys the same
completeness property as OINC.

Finally, we would like to mention the implementation of the calculi that we discussed. An
interpreter of s-OINC is straightforward to implement. Furthermore, a compiler for s-OINC
(for constructor-based TRSs) targeted at modified WAM has been implemented [17].
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A Proof of Switching Lemma

Lemma A.1 (Switching Lemma) Let R be a TRS, and G £ s; = 13,52 = 3 be a goal such
that V(s;) N V(t;) = 0 for i,5 € {1,2} and V(t1) N V(t2) = 0. If there exists an NC-derivation

f
A:G -&baﬁv(sl) 0131 [T]u = t1,0132 =1, ~ 0, 029131 [T]u = tz,true,

where in the first step 51/ is narrowed using a new variant [ — r of a rewrite rule in R and a
most general unifier 6; of si|u and [, then there exists an NC-derivation

f n
A" G ~gy 0181 = By, tTUE oy, 020181r]s = t2, true,
where o3 is a most general unifier of (o8;)|u and [,
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such that 626, = 0201 modulo renaming,

Proof: Since 8;s3 and ty(= 61t3) are unifiable, s; and t; are unifiable by a most general
unifier 0;. Hence we obtain the first step of the derivation A’. We next show (03s1)|, is
narrowable by the same rewrite rule [ — r. By assumption, we have 6;(s1].) = 61/ and
620152 = Ota. Since Db N V(t3) = 0, we have 620,52 = 6,8,t;. Since o7 is a most general
unifier of s, and %3, there exists a substitution 7 such that

noy = 0291. (20)
On the other hand, we have

7’]0’1(81|u) = 0291(81|u) = 92011 = 170‘1l = 771.

Hence 01(s1]s) is narrowable by ! — r. There exist a most general unifier o5 of o1(s1]4) and [,
and a substitution 7’ such that

n=10s. (21)

Hence, we obtain the second step of NC-derivation A’
From (20) and (21), we obtain

n'os0; = 020;. (22)
Similarly, we can prove
{0201 = 0201 (23)

for some substitution £. From (22) and (23), we see 628, = 0301 modulo renaming.

B Proof of the soundness of OINC

Proposition B.1 (Soundness of OINC) Let R be an OTRS, and G be a proper goal. If

there exists an OINC-derivation G O~I~£~V~CoD then there exists a reduction derivation G —r, T.

Proof: By the induction on the length of the OINC-derivation. The result obviously holds
for the base case. Let A : G O1NC g OINS
G’ OINC(,/ 0. We distinguish the following cases dependmg on the first step of the derivation.

~ g1 0, and suppose the result holds for the derivation

Case [v1]: Let the OINC-derivation A be s = z,E ¥ ”"a(={a: — )9 E OIS, 0. We have 6 =
0'c = 6’ U{z — 0's}. Since 6(s = z,E) = 6's = ¢'s,0F by the left-independence of the
goal, we have the following reduction

0's = 0's,0E -, true, 0E —»r, T.

The first reduction is by the use of 2 = 2 — true, and the second by the induction
hypothesis.
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Case [v2]: Similarly to the case [v1].
Case [on]: Let the OINC-derivation A be

F(s1yenr8n) =1, E By =l1,...,8n = loyr =1, E %0 0,

where in the first step a rewrite rule f(ly,...,l;) — 7 is used. We have 8 = ¢'[V(G)].
By the induction hypothesis, there exists a reduction derivation

0s; = 0'ly,...,08, =0'l,,0'r = 6t,0F Ry T,0'r = 0t,6F Ry T. (24)
Since we have s; = 6l »x, true for every i € {1,...,n}, there exists a reduction
derivation

fs; = 0'l; »g, si=l; o, true, where s} = I. (25)

By the non-ambiguity, /; is a normal form. Hence, I} = 7l;, where T is such that
0’z —»r tz for all z € V(I;).
From (25), we have 6's; »g 7l;, and hence
0f(s1y---,5n) = 06,0 g f(th,...,7ly) = 0t,0E -, 7r = 0t,0F.
By (24) and the confluence of R, we have 8(f(s1,...,80) =t,E) »r, T.
Case [d]: Let the OINC-derivation A be

d
f(sh""sn)=f(tla"',tn)7E e 31=tla'°-,3’n=tn7E

OINCo o.

By the induction hypothesis, 8s; = 0t1,...,0s, = 0t,,0E -z, T. Hence,fori =1,...,n,
we have fs; = 0; »r, true. This implies that there exists a terms r; such that 8s; »x r;
and 0t; - ;. Hence, there exists a reduction derivation

0(f(s1y--++8n) = f(t1,..sta), E) —ry  f(r1,-..,mn) = f(r1,..,m0),0F
-, true,0F
>Ry 1.1

C Proof of Lifting Lemma

Lemma C.1 (Lifting Lemma) Let R be an OTRS. Suppose we have a proper goal G, and a
non-narrowable substitution 8 such that (D U V(Cod 6)) N V(ths(G)) = 0. If there exists a
successful LOI NC-derivation

A:0G 5%, T
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then there exists a successful LOI NC-derivation

G ¥, T such that o < 78[V(G)).

ce . or . .
Proof: By the transfinite induction on <. Obviously the result holds in the base case.

Assume that the result holds for any NC-derivation A’ such that A’ 21] A.
We distinguish the following three cases.

(1)

(2)

G£T,s=z,FE
By assumption we have

: f NC

A: (GG é)T,03 =z,0F wm(:{fl? N os})T,ThoE o T
with n = nam[V(6G)).
Let A’ be ;0E Y%, T. We have A’ 4 A, and hence A’ is LOL
On the other hand, we have

T,s=z,F ~f~>al(={z — s)T,01E.
We know that 7,0 = 8oy by assumption.
By the induction hypothesis, there exists an LOI NC-derivation o1 E dg»,zT such that
02 =X m20[V(01 E)]. We have o201 X 126001 = 1om6[V(G)).
Therefore, we have an LOI NC-derivation

T,s=z,F Lv*g»,,T
such that ¢ < n0[V(G)].

G2T,r=t,E wheret ¢V and 6z = s
By assumption we have

yn NC
A:(0GE)T,s=1,0E ~%,T.

Since s and t are non-narrowable, they should be unifiable with a most general unifier 7;.
The substitution 7; is obviously non-narrowable.

The LOI NC-derivation A can be written as
T,s = 4,0 S, T,m0E X5, 7, and 5 = nam[V(6G)]. (26)

10
Let A’ be m0F ]~V+€+,,2T. We have A’ O<1 A, and hence A’ is LOIL. On the other hand, we
have

T = t,E “g‘)al(:{x — t})O’]E.
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We define a substitution 7 as follows.

_ ) mz ifze V(1)
7%= m6z otherwise.

Then, using the assumption on 8, we have
mo = 10;. (27)

Since 7y and @ are non-narrowable, the substitution 7 is non-narrowable and satisfies that
(DT U V(Cod 7)) N V(rhs(o1E)) = 0. By the induction hypothesis there exists an LOI
NC-derivation

o B Qﬁg»,,zT
such that o9 < mo7[V(01E)]. Therefore, we have an LOI NC-derivation
T,e=t,E 5, T,00E X%, T.
Since 0 = 0201 ly(g) and o3 X 77[V(G)] because of z ¢ Doz, we have
o X pro1[V(G)]. (28)
From (27) and (28), we have o < mm6[V(G)], and hence ¢ < 76[V(G)] from (26).
(3) GAT, f(s1,...,8n) =t, E where t ¢V
By assumption, A is
A:(8G 2)T, f(8s1,...,08,) = 1,0E & T,
By the definition of LOI, we have the following two cases.
(3-2) A':0sy=1,...,08, = ln,r = t,0E Y5, T such that A’ G A
Since 8(sy = l1,...,8n = ln,7 =1, E) d»g»,,T, there exists an LOI NC-derivation
(G'&)sy =1ly,...,8, = lp,r = t,E NS, T (29)
such that o/ < 78[V(G")]. From (29) we can construct an LOI NC-derivation as shown

in Lemma 4.5.
T,f(s1,.-y82) =1, E HS»GT such that o < n8[V(G)].

(3b) £ & f(t1,. . tn), and A’ 0y = ty,...,08, = tn, 08 250, T such that A4’ S 4
The rest of the proof is similar to the case (3-a). 1

D Completeness proof of s-OINC

Let |A| denote the length of the OINC-derivation A.
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Lemma D.1 Let R be an OTRS. If there exists an OINC-derivation with respect to R=
A:(si=tiA...Asp =t,) = true 0&090 (n>1)
then there exists an OINC-derivation with respect to R=

Ais1=t,...,8, =1y o&co O,and |A'| < |A].

Proof: Induction on n. If n = 1, the result holds trivially. Suppose the result holds for n — 1.

The derivation A is written as follows.

(G£) (s1=tiA...A8y=1,) = true
on

o s1=t,(s2=taA...Asp =1y,) =2,z = true
OL]X»CUI o1(s2=taA...Asy =1,) = 2,2 = true

33(,2 o1(s2=ta A ... Asy =t,) = true
OINC
et a,.

g3
By the induction hypothesis, there exists an OINC-derivation

OINC
0'1(32 Etz),...,d’l(sn Etn M ga a.

Thus we have
Aisi=t,...,8, =1, 0&00101(32 =13),...,01(8n =ty O&Cas a.

We can easily check that 030201 [y(g)= 0301 and that [A’| < |A]. g

Lemma D.2 Let R be an OTRS. If there exists an OINC-derivation with respect to R=
A:(G2)f(s1,...,8:) =, E°HE, 0

then there exists an OINC-derivation with respect to R=
Aisy=l, ... sy =1, r=tE %N, 0, such that = 0'[V(G)] and |4’| < |A].

Proof: The derivation A is written as follows.

f(81y...y8,)=t, E

on

on

OINC

o TP =e(T1y ey Zm ), TE= Y1y ey Um ), (Z1 E VA o ATy = Yp) = true, 7E
OINC

e, o
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. OINC
Since 81 = l1,...,8, = In ~I—r1y~».,.E11, we have

A,:Sl = 11,...,87,, = ln,’l‘Et,E
O«/-MINC,. rr=71t,TE
on

B rmr=c@,..Tm), Tt =Yy Um ) (T =ENA AT = Ym) = true,7E
OINC
INE . o

We can easily check that |A’| < |A]. g

Note that we assume m > 0 in the first step of the derivation (30). The case m = 0 is
similarly proved.

Lemma D.3 Let R be an OTRS. If there exists an OINC-derivation with respect to R=

OINC
A:c(s1y...y80) = ety ytn), E ~'g O

then there exists an OINC-derivation with respect to R=
A:isi=ty,...,8n=ty, E OLIY»C(; 0, such that |A'| < |A].

Proof: We first consider the case n > 0.
The derivation A is written as follows.

(G2)  e(s1y-++58n) Ec(tryeestn), E

B o(S1yener8n) = &(T1ye s Tn)yC(tsnvstn) = (Y155 Yn)s (T E YA L AT = yn) = true
OINC

g (s1=tiA...Asy=t,) =true, E
OINC O
aaadl .

By Lemma D.1, we have

A s Etl,...,snEtn,Eow{vI&»Cg2 a.

We can easily check that 8(2 6,6;) = 6,[V(G)] and that |A’| < |A].
The case n = 0 is similarly provedg
Lemma D.4 Let R be an OTRS. If there exists an OINC-derivation with respect to R=

A:(GAE)c(s1,.-180) =Y, E OIS,

then there exists an OINC-derivation with respect to R=

OINC
A i 0(s1 = Y1yenvs8n = Yny B) ', O where 0 = {y = ¢(y1,-.-,¥n)}
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such that 6 = 7o[V(G)] and |4'| < |A].
Proof: We first consider the case n > 0.
The derivation A is written as follows.

c(s1,..y8) =y E
on -
=5 (815 38n) = c(Z1y. oy Ta )y Y = ¢(Y1y e )y (Z1 = VI A ... ATy = yn) = true, E

OINC

o Y=Yy Yn) (SIS A LA S, Ey,) = true, E
Y2, o(s1 =Y A...ASp =yp) = true,cE

OINC

oAy a

By Lemma D.1, we have

OINC
A :o(s1=Y1,..0y80 =Yn, E) ', 0.

We can easily check that (8 £) ron = 70[V(G)] and that |4'] < |A|.

The case n = 0 is similarly proved g

Lemma D.5 (Lifting Lemma for OINC-derivations) Let R be an OTRS. Suppose G is
a proper goal and 4 is a non-narrowable substitution such that (D8UV(Cod 8))NV(rhs(G)) = 0.
If there exists an OINC-derivation

OINC
A 0G TID
then there exists an OINC-derivation
A 6 °HC 0, such that o < 8[V(G)]

and |A'] < |A].
Proof: By the induction on the length n of the derivation A. The result holds trivially for
n = 0. Suppose that the result holds for n — 1. We distinguish the following four cases by the

first step of the derivation A.

(1) G2s=z,E
The derivation A is written as

A: (G £)0s=z,0F Y»l»m(={x > gspMOE OIZ,,0, where 2 nm[V(6G)]. (31)
On the other hand, we have

s=z,E chq(:{z — 8} o E.
Using the assumption on 6, we can easily see

1710 = 90’1. (32)
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(2)

By (31) and (32), we have

80, E °HC, 0.

By the assumption on # and by the induction hypothesis, we have

NC
B:oE % 0,

such that 03 X 726[V(01 E)] and |B| < |A[ - 1.
We have 0901 =< 12801 = 12m6[V(G)]

. Therefore, we obtain an OINC-derivation

vl OINC
A:s=2,E 5, oiE v, 0,

such that (2 o201) <X 78[V(G)] and |A'] < |A].

G2z=tE wheret¢gVandfzr=s
The derivation A is written as

A:(6G2)0(z=1t,E) = s=t,0E
O, moE (33)
ome!

2 ?

where n £ nom [V(G)].
Since s and t are non-narrowable, s and ¢ are unifiable with the most general unifier ;.
This unification is realized by the combination of [d]-, [v1]- and [v2]-steps.

On the other hand, we have

r= t?'E xgaj(:{x > t})UlE. (34)
We define a substitution 7 as follows.

S { mz ifzeV(t)

MmOz otherwise.

We know 1,0 = 70;. From (33), we have an OINC-derivation

To1 B Oi&cmﬂ.

Since (D U V(Cod 7)) N V(rhs(01E)) = 0, by the induction hypothesis, there exists an
OINC-derivation

B:oF 0&002 a, (35)
such that o3 < 7o7[V(01E)] and |B| < |A| - 1. We have 0 £ 0907 =X m2701[{V(G))}, hence
o <X mmb(£ nd)[V(G)].
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Concatenating (34) with (35), we obtain an OINC-derivation

A:z= i, E x?’al on E O“’I"]Y"Caz o,

such that o < n8[V(G)] and |A’| < |A].
(3) G & f(s1,...,8,) =1, E where t ¢ V and the first step of the derivation A is [on]
By assumption, we have an OINC-derivation
A:(0G2)0(f(s15---580) =t E) & f(8sy,...,0s,) =t,0E
= 0sy =1l1,...,08, =1l,,r=1t,60F
o 0, and n=mV(9G)].

2

In the above derivation, a rewrite rule f(ly,...,l,) — r is employed in the [on]-step. By
the assumption on @ and by the induction hypothesis, we have an OINC-derivation

OINC
B: (G’ é)81 =l y8p=ln,r =1, FE 5,0,

such that oo < 720[V(G’")] and |B| < |A| — 1. Hence, we obtain an OINC-derivation

OINC
Az f(s1yeeeySn) =L E B sy =11, ,8, = lnyr =8, E 5,0,

such that o(£ o2) < nf[V(G)] and |A'| < |A|.
(4) G £ f(s1,+++18n) = f(t1,-..,tn), E where t ¢ V and the first step of the derivation A is
[d]
Similarly to the case (1). g
Lemma D.6 Let R be an OTRS. If there exists an OINC-derivation with respect to R=

OINCe O

A:(G&)z=y,E
then there exists an OINC-derivation with respect to R=

AI H nE O“Il‘v’*cg O

where

)0 ifz=y
7= {z+~y} otherwise
such that on < 6[V(G)), and |4'| < |A].
Proof: The proof for the case n = { is trivial. Suppose z # y. The derivation A is written
as

OINC OINC
A:z=y,FE ~I~{~V~9101E wIY»ngZl,
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where 8; = {z — d,y — d} for some ground data term d.
Let 7 be a substitution {z — y} and 7 a substitution {y — d}. Then, we have 6, = ™.

Hence, TnE Hg»gztl. By Lifting Lemma D.5 for OINC-derivations, we have
A :nE U5, 0, where o < 8,7(V(nE)]
and |A’| < |A] - 1. Furthermore, o9 < 8277 = 6261(2 6)[V(G)] 4

Theorem D.1 (Completeness of s-OINC) Let R be an OTRS, and G be a proper goal. If
there exists an OINC-derivation with respect to R=

G %NS, o
then there exists an s-OINC-derivation with respect to R
G *UNC 0 such that o < 0

Proof: By the induction on the length of the OINC-derivation. Use Lemmas D.2,D.3,D4
and D.6. Note that we also need symmetric versions of Lemmas D.2 and D.4 to cope with the
two inference rules of [ons] and of [ims], respectively. g
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