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Abstract

We present outside-in conditional narrowing for orthogonal conditional term rewriting
systems, and show the completeness of leftmost-outside-in conditional narrowing with re-
spect to normalizable solutions. We consider orthogonal conditional term rewriting systems
whose conditions consist of strict equality only. Completeness results are obtained for sys-
tems both with and without extra variables. The result bears practical significance since
orthogonal conditional term rewriting systems can be viewed as a computation model for
functional-logic programming languages and leftmost-outside-in conditional narrowing is
the computing mechanism for the model.
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1 Introduction

Narrowing[13, 4] is an important computing mechanism for functional-logic programming
languages. It comprises reduction of functional programming and term unification used in
resolution of logic programming. A conditional term rewriting system with narrowing is a
natural computation model for functional-logic programming languages. To design efficient
narrowing while preserving a property of completeness is, therefore, a research not only of
theoretical interest but also of practical importance.

In this paper we consider orthogonal conditional term rewriting systems since most of
proposed functional-logic programming languages can be viewed as a syntactically sugared
version of orthogonal conditional term rewriting systems.

Various narrowing methods have been proposed and their completeness has been studied.
Among them innermost narrowing[5], outer narrowing[14] and basic narrowing [10, 12] have
been well studied. These narrowing methods are originally presented for (unconditional)
term rewriting systems. We consider outside-in conditional narrowing, which has close re-
lationship with outside-in reduction. The outside-in reduction was presented by Huet and
Lévy and its property was deeply analyzed[9]. We adapt this notion of outside-in to condi-
tional narrowing. Using the lifting argument often used in the analysis of computations of
logic programs and narrowing, we can relate outside-in reduction and outside-in conditional
narrowing and show the completeness of outside-in conditional narrowing.

The organization of this paper is as follows. In Sect.2 and Sect.3 we give basic definitions
used for our treatment of outside-in conditional narrowing in subsequent sections. Sect.3.1,
in particular, summarizes the results of Huet and Lévy’s work on reduction derivations of
orthogonal term rewriting systems. Readers familiar with their work may skip Sect.2 and
Sect.3.1 and refer to them only for resolving differences of notations between ours and Huet
and Lévy’s. Sect.4 is devoted to definitions on conditional narrowing. In Sect.5 we describe
the main result of this paper. In Sect.6 we briefly discuss future research themes.

2 Preliminaries

Let F be a set of function symbols, and V a set of variables, satisfying F NV = 0. Terms
are defined as usual over a set of alphabet F U V. The set of terms is denoted by 7 (F, V),
or simply by 7. A term t is called linear when no variable occurs in t more than once. V(A)
denotes a set of variables occurring in a syntactic object A. For example, A is a term, a
rewrite rule, an equation or a sequence of equations. The set O(t} of positions of a term ¢
is a set of sequences of positive integers that address subterms of {. An empty sequence is
denoted by €. A position u in O(t) addresses a subterm t|,, where t|, is defined as follows.
Let t £ f(ty,...,tn). thy 2tifu=candt|, £ ¢y ifu=iw. A position uin O(t) is
called a non-variable position if t], is not a variable. The set of non-variable positions of ¢
is denoted by O(t), and the set of variable positions of ¢ by Oy(t). A term obtained from
t by replacing t|,, where u € O(t), by a term s is denoted by ¢[s],. A context, written as
C[ ], is a term that has a single special constant [], called a hole, as a subterm. C[t] is a
term whose hole is replaced by a term ¢, i.e., C[ ][t]u, where C[ ]|y = []. A set of contexts is



denoted by 7.

Partial order < over positions is defined as follows. For u,v € O(t), v < u if v is a
prefix of u, i.e., Jw such that vw = u. v < u if v < v and v # u. Positions v and v are
called disjoint, written as v | u, if =(v < u or u < v). u is said to be to the left of v if u is
written as w;iw, and v is written as v = wyjws for i < j. u is the leftmost in O(t) if for
any v € O(t) —(v is to the left of u).

A substitution is a mapping from V to 7. The domain and codomain of a substitution
6 are respectively defined as D(f) = {z | 0z # 2,2 € V} and Cod(f) = {0z | 2 € D(0)}.
We identify a substitution 6 with the set {z — 0z | z € D(6)}. An empty substitution is
defined as the empty set @. A substitution is extended to an endomorphism over 7 as usual.
Let V C V. The restriction of 6 to V is denoted by @ |y. The composition of 65 and 6,,
(first apply 61, then 65) is denoted by 620;. We write 6; = 83[V] when 6, [v= 02 [v holds.
When o6, = 6, for some substitution o, we write §; < ;. When o8, = 62[V] for some
substitution o, we write 8; < 02[V]. The set of substitutions is denoted by ©.

3 Derivations in orthogonal term rewriting systems

3.1 Reduction derivation

A rewrite rule is a directed equation of terms, written as | — » satisfying { € V and
V(r) C V(I). A term rewriting system (abbreviated as TRS) is a set of rewrite rules.

Definition 3.1 A TRS R is called orthogonal if the following conditions are satisfied:

e For any rule [ — r in R, [ is linear.

o For any two rewrite rules | — r and I — »’ of variants of rewrite rules in R there
exists no unifier of / and a subterm ! |,, where u € O(I’), except in the case where
! — r and I/ — 7/ are the same rewrite rules (modulo renaming) and u = ¢.

Definition 3.2 A TRS R is called constructor-based if F is partitioned into disjoint sets
Fp and F¢ such that the left-hand side f(ty,...tn) of every rewrite rule of R satisfies
f€Fpandty,...,t, € T(Fe,V).

A function symbol in F¢ is called a constructor symbol. A term in T (F¢,V) is called a date
term.

Definition 3.3 Let R be a TRS. The single-step reduction —5 is defined as follows. Sup-
pose s and t are terms. s —g t if there exist a position u € O(s), a new variant I — r of a
rewrite rule in R and a substitution ¢ such that

o 5|y =0l
o t = s[or]y.

The subterm s |, is called a redez and u is called a redez position. The set of redex positions
in s is denoted by Red(s).



The reflexive and transitive closure of —g is denoted by —» z. A term that does not
contain a redex is called a (—g)-normal form. The subscript R in —x is often omitted if
R is clear from the context. This convention is applied to other relations associated with
‘R, which will be introduced later.

We give several definitions and important results pertaining to orthogonal TRSs, which
were obtained by Huet and Lévy. An elementary reduction derivation s—t is a process
of rewriting a term s at u into ¢ by a single-step reduction. The redex s, is said to be
contracted in this reduction derivation.! Note that in an orthogonal TRS, a pair (s,u)
unambiguously determines the rewrite rule I — 7 and terms ol,or, and hence the term t.
A reduction derivation is a sequence A £ A;A, .-+ A, of elementary reduction derivations
A; 1 8;_1—y;5;. An empty reduction derivation is denoted by 0. We use notation A[z, j]
also as an abbreviation of A; - -+ A;.

Let u € Red(s), and I — r be a rewrite rule used to contract the redex s|,. We define
Pattern(s,u) = {uv € O(s) | v € O(1)}.

Definition 3.4 Let A : s—,t be an elementary reduction derivation and v € O(s). Suppose
1 — r is used to contract the redex s|,. The set v\ A of descendants of v by A is defined as

follows:
{v} ifvjuorv<u
WNA =< {uwvy ||y, =El|w} if v=uwv; and w € Oy(l)
0 otherwise.

The notion of descendant is extended to non-elementary reduction derivations in the fol-
lowing way:

0 = (v},
W\(4B) = Uyenat\B.

For a set U = {uj,...,up},n > 0, of mutually disjoint redex positions in s, we can
define a reduction derivation in which n redexes are simultaneously contracted. We call
this derivation an elementary multiderivation defined by A = (s,U). The multiderivation
is denoted by s—ys[o171]u, -+ [OnTnlu,, Where ; — r; and o; is a rewrite rule and a
substitution, respectively, that are used to contract the redex sl,; for i = 1,...n. U\A
is defined as Uyepu\A. Note that in this definition of a multiderivation, U may be {.
Thus s—ygs is possible.? Since an elementary derivation is an elementary multiderivation,
derivation refers to multiderivation hereafter. The length |A| of the derivation A is defined
as follows.3

o] = 0
|A;1 A 1+ 4]

1We even say that u is contracted if s is clear from the context.

2This should not be confused with an empty derivation 0.

3Later we introduce derivations of different kinds. We assume that the notational convention given here and
the definition of length are carried over to those derivations.



where A; is an elementary derivation. Note that the length of a derivation s —¢ s is 1.

We denote by D(s) the set of reduction derivations starting from s, and by F(A) the
final term of the reduction derivation A, ie., F(A) = s for A : so—y,51—v, - - —U, Sk-
Let A, B € D(s), where |B| = 1 and B contracts all the redexes in the set U C Red(s). We
define the residual B\A of B by A as an elementary reduction derivation in D(F(A)) that
contracts the redexes in the set U\ A. This definition is generalized to reduction derivations
of arbitrary length (by the parallel moves lemma[9]). Reduction derivations A and B are
called equivalent (notation A = B) if A,B € D(s) and for all C € D(s), C\A = C\B.
The relation = is an equivalence relation on the set of reduction derivations, and hence it
determines the quotient set. An equivalent class is denoted by [A]z with A a representative
of the class.

Definition 3.5 Let A : so—y, s1—v, * - - —uv, Sk be a reduction derivation. A set Red(A)
of initial redex positions contributing to A is defined as follows:*

Red(A4) = {u € Red(sp) | 3 < k U; N (v\A[1,i — 1]) # 0}.

Definition 3.6 Let A : so—vy,s1—U, - - —U, Sk be a reduction derivation and u € O(so).
The derivation A preserves u if A does not contract a redex above u, i.e.,, Vi < &k ~(Jv €
U;,v < u).

Definition 3.7 Let A be a reduction derivation starting from s. A position » in s is
external for A if

e A preserves u, or
o A= A;AyA3 and there exists v < u such that

— A preserves u,
— Ay :t—yt’, with v € U and u € Pattern(t,v),
— v is external for As.

The set of external positions for A is denoted by X' (A). The set £(A) of external redex
positions for A is defined as £(A) = X' (A) N Red(A4).

Definition 3.8 Let R be an orthogonal TRS. The reduction derivation A is called outside-
in if either A = 0 or A = A; Ay, where A; is the elementary reduction derivation contracting
a redex position u in £(A) and A, is outside-in.

For a given reduction derivation A, its outside-in reduction derivation is not unique since
&(A) contains more than one positions in general. The choice of the position may be fixed.
* Namely we have the following.

Definition 3.9 A reduction derivation A is called standard if either A = 0 or A = A; A,,
where A; is the elementary reduction derivation contracting the leftmost redex position in
E(A) and A, is standard.

*Note the overloaded use of the symbol Red.



Note that since £(A) consists of pairwise disjoint positions, the leftmost position is uniquely
determined in £(A).
Huet and Lévy obtained the following result on the standard reduction derivation.

Theorem 3.1 (Standardization Theorem [9]) Let R be an orthogonal TRS. For any
reduction derivation A, [A]z contains a unique standard reduction derivation.

3.2 Narrowing derivation

Definition 3.10 Let R be a TRS. The narrowing relation ~» is defined as follows. Suppose
s and t are terms. s ~» t if there exists a non-variable position u € ((s), a new variant
! — 7 of a rewrite rule in R and a substitution o such that

e 0 is a most general unifier of s, and |

o t = o(s[r]u)-

The subterm s/, is called a narez (narrowable ezpression), and u the narex position. The
reflexive and transitive closure of ~+ is denoted by ~»*.

An elementary narrowing derivation s~y 5 t is the process of rewriting a term s into
a term ¢ by the narrowing relation s ~» t. In order to be compatible with the notion of
multiderivation of reduction we define an elementary narrowing derivation as follows:

. s~ t with o and u € O(s) if U = {u},
SM[U"’]tIS{tEas if U = 0.

Note that for an orthogonal TRS a triple (s,U, ) unambiguously determines the term ¢
and the rewrite rule / — r to be applied, and hence the elementary narrowing derivation. A
(non-elementary) narrowing derivation is defined as in a reduction derivation. A narrowing
derivation sy ~u; 5,1 81 ~Us,05] -+ ~[Us,ox] Sk 15 abbreviated as s ~; s; where o =
oy - - 0y if we are only interested in the substitution o. For a narrowing derivation s ~y 4] ¢,
there exists a corresponding reduction derivation s —y t. Hence, we define leftmost-
outside-in narrowing derivation by means of reduction derivation.

Definition 3.11 A narrowing derivation

A:so Uy,01] 51 “P[Us,03] -+ - Uk 0x] Sk

is called leftmost-outside-in if the corresponding reduction derivation A’ : p; so —y, H2s1 —u,
.. =y, Sk, where pt; = 00x—1 ... 0, is standard.

Leftmost-outside-in narrowing derivation is abbreviated as LOI narrowing derivation.

Example 3.1 Let a TRS R be

f(9(d)) —»a
R =1 9(c) = 9(d)
h(z) — z.



There are 5 narrowing derivations issuing from h(f(g(z))) and ending at a. Among them
the following two narrowing derivations are LOI.

A BP9~y iz o Fa(2))n TOE) ~pe) 20 dy @
Azt h(F(9()) ey (2 F(g(2))n FOE) ~1tnaz = e F9(d) ~igey.0 @

Others, e.g., As : h(f(g(2))) ~ahz — dy h(a) ~fe},{z — a}] @, are not LOL

Closely related to the LOI narrowing derivation is You’s outer narrowing [14]. Intu-
itively, an outer narrowing derivation is a derivation in which no later narrowing steps at
higher positions can be performed earlier in the derivation.® In Example 3.1 the narrowing
derivation A, is outer, whereas A, is not. The derivation A, is not outer since the narex at
the position £ can be contracted earlier.

4 Conditional term rewriting systems

4.1 Classes of conditional term rewriting systems

A conditional rewrite rule is a rewrite rule with a condition, written as | — r <= @, where
Q is a condition. A conditional term rewriting system (abbreviated as CTRS) is a set of
conditional rewrite rules. In this paper we are concerned with a condition that is specified
by a sequence of equations sy = t1,...,8, =t,. The order of the equations is insignificant.
Syntactically, equations are treated as a special term, written in infix form, whose root
symbol is =. The symbol = is allowed only to be at the root of a term.

CTRSs are are called 1-CTRS if V(r) U V(Q) C V(I), 2-CTRS if V(r) C V(I), and
3-CTRS if V(r) C V(1) U V(Q) for every rewriterule R: | —» 7 < Q € R as in [12].

Let Ext(R) = V(Q)—V(I). Ext(R) denotes a set of variables in @ without occurring in .
Variables in Ext(R) are called eztra variables. In this paper we treat only 1- and 2-CTRSs.

We further restrict ourselves to a class of CTRSs whose conditional part consists- of
equations of the form f=(s,t) = true, where true is a distinguished symbol in F¢. The
function symbol f= defines the so-called strict equality; f=(s,t)— » true if and only if
normal forms of s and ¢ are syntactically equal closed data terms. We then write s = ¢6
instead of f=(s,t) = true.

Definition 4.1 A CTRS R is called s-CTRS (s for strict) if the condition of every rewrite
rule in R is of the form s, = t1,...,8, = i,.

The restriction of CTRSs to s-CTRSs is essential in the following discussions. One would
like to have the ordinary equality that is realized by a rewrite rule £ = & — true. It cannot
be incorporated into our CTRSs , however, since it is not a linear rule and hence the notion
of outside-in derivation is not well-defined. Properties of s-CTRSs are first investigated

5Refer to Definition 3.10 in You [14] for the precise definition.
8The symbol = is used not only as the strict equality but also as a meta symbol; the distinction should be
clear from the context.



by Giovannetti et al. in conjunction with the design of logic plus functional language K-
LEAF(7, 6]. An s-CTRS of class 1 and of class 2 is denoted by 1s-CTRS and 2s-CTRS
respectively. Note that 1s- and 2s-CTRSs are special cases of III, CTRSs [1].

Given a CTRS R, we define an associated unconditional TRS, written as U(R), by
removing the condition of each rewrite rule in R. A CTRS R is called orthogonal if #(R)
is orthogonal, and constructor-based if #(R) is.

4.2 Reduction in CTRSs

In the literature there are several different ways to define the notion of conditional reduction
and narrowing. We basically follow Bockmayr’s formulation[2]. For technical reasons we
assign pairwise distinct labels to the equations in the condition of a rewrite rule whenever it
is used for reduction and narrowing. This enables us to keep track of each equation during
the reduction and narrowing, and furthermore to treat the condition of a rewrite rule as a
set, of equations.

We define a goal as follows.

Definition 4.2 Let Z be a countably infinite index set, and =], where £ € Z, be (infinitely
many) equality symbols. A labeled equation is of the form s =] t, where £ is called a label
of the (labeled) equation. A set of labeled equations whose labels are pairwise distinct is
called a goal

We denote by £:S the labeled equation s = ¢ in a goal S also. The set of labels in a
goal S is denoted by Label(S). Let @ be the condition s; = #1,...,8, = %, of a rewrite
rule. Then Q denotes a goal {s1 =Zl t1,.0.,8n =Zn t,}, where labels ¢;,. .., £, are pairwise
distinct. As a shorthand notation a labeled equation f=(s,t) =; true is written as s =] ¢.

We now discuss the notion of reductions in s-CTRSs. We will follow the formulation
of Middeldorp and Hamoen [12] to define notions of conditional narrowing, reductions and
intermediate reduction associated with CTRSs.

In the sequel we assume that s-CTRSs contain a set of rewrite rules:

{f=(c(zy,...,xn),c(Y1,-..,Yn)) — true & f=(z1,y1) = true, ..., f=(2n, yo) = true
| ¢ € Fc and the arity of ¢ is n}.

Definition 4.3 Let R be an s-CTRS. We define inductively TRSs R,, associated with R
as follows:

Ro=0
Rpy1={0l—or|l—r<Q€eR,sc0,such that for every ¢ € Q ge—» z, true =, true}.

Relation —x is defined as U, —%,. We sometimes abbreviate s —g_ t as s L t. We call
the reduction s —x ¢t n-level if s —z_ t.

The reduction relation over terms is extended in the obvious way to the one over goals. Let
T generically represents a set consisting only of finite number of labeled equations of the
form true =Z true.



A goal S is called solvable in a CTRS R if there exists a substitution o such that
0S—» g T. The substitution & is called a solution of the goal S. We write R + S if
S—» g T. The least n such that R, I S is called the level of the goal S.

Definition 4.4 (1) A CTRS R is called level-confluent if each R, (n > 0) is confluent.

(2) A TRSis called complete” ifit is strongly normalizing and confluent, and semi-complete
if it is weakly normalizing and confluent.

(3) A CTRS R is called level-complete if each R,(n > 0) is complete, and level-semi-
complete if each R, (n 2> 0) is semi-complete.

The following lemma [1, Theorem 3.5] is a version of a parallel moves lemma for or-
thogonal 2s-CTRSs. This lemma is used to prove the confluence of 2s-CTRSs, as well as to
prove the standardization theorem for orthogonal 2s-CTRSs.

Lemma 4.1 Let R be an orthogonal 2s-CTRS. If A; : s an sy and As : s 1"—>U2 89 then
there exists s’ such that s; ﬂvl\ a4, § and s —"»Uz\ a, 8.

The following theorem is an immediate consequence of Lemma 4.1.
Theorem 4.1 An orthogonal 2s-CTRS is level-confluent.

Since level-confluence implies confluence, orthogonal 2s-CTRSs are confluent.

We next define the standard reduction derivation for an orthogonal s-CTRS R with
respect to —. In Sect.3.1 we gave the definition of standard reduction derivation with
respect to —x for an orthogonal TRS R. Since the TRSs Ri,Ra2,... induced from an
s-CTRS R are not orthogonal in general, we cannot apply the definition of the standard
derivation for orthogonal TRSs to CTRSs directly. Instead, we define the notion of the
standard derivation via //(R). The relation —x is included in the relation —y (). Hence,
a reduction derivation with respect to —x is well-defined as a reduction derivation with
respect to —y ). With this observation we state the definition of standard reduction
derivation for orthogonal s-CTRSs as follows. '

Definition 4.5 Let R be an orthogonal s-CTRS. A reduction derivation with respect to
—r is called standard if it is standard with respect to —y ().

The equivalence relation = on the set of reduction derivations with respect to —y () is
carried over to the case of —g.-

Lemma 4.2 Let R be an orthogonal 2s-CTRS. For any reduction derivation A, [A]z con-
tains a unique standard reduction derivation.

Proof: By the parallel moves lemma for 2s-CTRSs (Lemma 4.1). The proof of Theo-
rem 3.1 in [9] is applicable to 2s-CTRSs g

We next extend the notion of standard reduction over terms to the one over goals.

"This should not be confused with completeness of narrowing.



Definition 4.6 Let R be an orthogonal 2s-CTRS, and Sy, ..., Sk be goals. A reduction
derivation Sy — S; — -+ — S} is standard if £:S5y — £:5; — --- — £:S} is standard for all
£ € Label(Sp). ’

The reduction derivation with respect to —g does not entirely capture the process
of rewriting since rewriting of the goals originating in the conditions of the rewrite rules
used during the derivation is not recorded in the derivation. To the rewriting process, we
introduce a notion of intermediate reduction which is originally due to Bockmayr[2].8 The
intermediate reduction is the right notion when we study the correspondence between the
reduction and narrowing in the setting of CTRS as we will see in Sect.5.1 and Sect.5.2.

Definition 4.7 Let R be a CTRS. The single-step intermediate reduction — over goals is
defined as follows. Suppose S and T are goals. S — T if there exist an equation e € S, a
position u € O(e), a new variant | — r < @ of a rewrite rule in R, and a substitution ¢
such that

o ¢e|, =0l
o T=(S—-{e})U{e[or].}UrcQ,
e R+oQ.

We implicitly assume that whenever @ is taken, Label(S) N Label(Q) = 0. The same
assumption is made in Definitions 4.11 and 5.4. ‘

The reflexive and transitive closure of — is denoted by »». An intermediate reduction is
called an ¢-reduction for short, hereafter. For orthogonal CTRSs an elementary i-reduction
derivation is defined similarly to the elementary reduction derivation. An elementary i-
reduction derivation is a 4-tuple (S, ¢, u, ), and is denoted by S »=¢ 4 o] T. To make explicit
the rewrite rule | — r <= @ employed in the derivation we write also S —[¢ u1nreQ,0] T-

Definition 4.8 Let S . 4,1 T be an elementary i-reduction derivation and £ € Label(S).
The successor of £:S is defined as £:T.

Definition 4.9 Let A : Sy — S} — -+ Sj be an i-reduction derivation.
1. Every equation £:Sp € Sp is initial in A.
2. An equation £:5;,1 < 1 < k, is initial if £ & Label(S;_1).

An initial equation is either an equation in an initial goal or an equation that originates
in the condition of a rewrite rule. )

Given an i-reduction derivation A : Sy — S1 — --- — Sg, for every equation e in Sy
we can extract a reduction derivation eg—y, e1—y, - - - —uv,e1(= €), where eg is an initial
equation, e; is a successor of e;_;, and U; is either 0 or a singleton set for : = 1,...,1.

We call the reduction derivation eg—y, €e1—v, - - - —U, €n a trace of the i-reduction deriva-
tion A. We denote by 7R(A) the set consisting of these traces.

8Bockmayr called the intermediate reduction Reduktionssrelation ohne Auswertung der Primisse (reduction
relation without evaluating conditions). Although his terminology conveys exactly the meaning of what is
involved, we prefer a more concise terminology for it.
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It is meaningful to talk about a standard derivation of i-reduction as the following
Lemma 4.3 shows.

Definition 4.10 Let R be an orthogonal s-CTRS. An i-reduction derivation A for R is
called standard if every trace B € TR(A) is standard.

Lemma 4.3 Let R be an orthogonal s-CTRS and S be a goal. If there exists a reduction
derivation S— T then there exists a standard i-reduction derivation S»» ¢ T.

Proof: We prove by induction on the level n of the goal S. For n = 0 it is trivial.
Suppose that the result holds for n — 1 > 0. By assumption and by Lemma 4.2, for every
equation £:S € S there exists a standard reduction derivation

AL 08 Doy timr 2Qa] £51 Dloatarae@a] £52 D+ Doy hemsres=Qu] £:Sk(S true = true).

In the above derivation, with — (S—u(r)) we associate a pair [7,] — r < Q], where ¢
and | — r < @ are a substitution and a rewrite rule, respectively, used for each single-step
reduction. By the definition of =,

UjQ_jr—L—_»l Tforj=1,...,k
By the induction hypothesis there exists a standard i-reduction derivation

Bf : O’j—QF»—» 'RT forj = 1,...,]6.

Namely, every trace in ’TR(Bf) for j = 1,...,k is standard. By combining A% and Bf for
j=1,...,k we form an i-reduction derivation

{£:S} — {€:5:1} Uo Q- {£:5:}UT — {£:55} UoaQaor» -+ow» T.

Combining the i-reduction derivation issuing from {£:5} leading to T for every equation £:S
in S yields an i-reduction A : S»» gT. Furthermore A is standard since every trace in
TR(A) is standard. g

4.3 Conditional narrowing

Now we turn to conditional narrowing. Similarly to i-reduction we define conditional nar-
rowing and conditional narrowing derivation. A narrowing derivation over terms is extended
straightforwardly to deal with goals.

Definition 4.11 Let R be a CTRS. Narrowing relation ~» over goals is defined as follows.
Suppose S and T are goals.® S ~» T if there exists an equation e € S, a non-variable
position u € O(e), a new variant | — r < @ of a rewrite rule in R, and a substitution o
such that

e 0o is a most general unifier of e|, and I,

o T=(o(S = {e}) U {o(elrlu)} U o@.

®We use ~» for narrowing relation both over goals and over terms (equations).
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For orthogonal CTRSs, the elementary narrowing derivation over goals is defined by the
4-tuple (S, e,u,0), and is denoted by S ~[¢,4 5] T To make explicit the rewrite rule used in
the derivation we also write S ~[¢,u 1~reQ,0] T- A (non-elementary) narrowing derivation
over goals is defined in the same way as the one over terms.

A narrowing trace with respect to narrowing derivations over goals is defined similarly to
the trace of an i-reduction derivation. A set of all the traces extracted from the narrowing
derivation A (over goals) is denoted also by TR(A).

For an elementary narrowing derivation S ~(. 4 0] T, there exists a corresponding el-
ementary i-reduction derivation oS > u,0] T. The correspondence between a narrowing
derivation and i-reduction derivation is generalized. Namely, for a non-elementary narrow-
ing derivation S ~»% T, there exists a corresponding non-elementary i-reduction derivation
oS»» T. .

We define LOI narrowing derivations as follows.

Definition 4.12 Let R be an orthogonal s-CTRS. A narrowing derivation over goals for
R is called LOL if the corresponding i-reduction derivation is standard.

5 Completeness results of conditional narrowing

Conditional narrowing is complete for orthogonal 1s-CTRSs with respect to normalizable
solutions. This is a consequence of a more general result of Kaplan [11]. Namely, conditional
narrowing is complete for confluent 1-CTRSs with respect to normalizable solutions, where
equality in conditions is interpreted as joinability. We further expect the completeness of
LOI conditional narrowing for orthogonal 1s-CTRSs. This is indeed the case. The proof of
the completeness is given in Sect.5.1.

As for 2-CTRSs, Giovannetti and Moiso showed that completeness of 2-CTRSs is not
sufficient for the completeness of conditional narrowing. The following is a counterexample
taken from [7]:

a—b
R=< a—c
b—oc<sz=bz=c

R is a complete 2-CTRS. A goal {b =" c} is solvable since §{b =7 c}—» T, where = is
interpreted as joinability. However, we can not solve a goal b =* ¢ by conditional narrowing.
Hence, we need a stronger property than completeness of 2-CTRSs. It is shown in [12] that
conditional narrowing is complete for level-semi-complete 2-CTRSs. However, this result
presently has little practical implication from the programming language point of view, since
we do not know a computationally effective sufficient condition for level-semi-completeness.
Thus we are guided to look for a class of CTRSs whose properties are ensured by syntactic
means. We will show that orthogonal 2s-CTRSs are complete with respect to normalizable
solutions. We further expect the completeness of LOI conditional narrowing with respect
to normalizable solutions for orthogonal 2s-CTRSs. This is proved in Sect.5.2.
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5.1 Completeness result for 1s-CTRSs

We begin by giving the formal definition of the notion of completeness of conditional nar-
rowing.

Definition 5.1 Let #; and 05 be substitutions. 8; =x 85 if §1z«»g b2 for all z € V, where
«»p is a reflexive, transitive and symmetric closure of —x, and 8; <z 0, if 06, =g &, for
some substitution o.

Definition 5.2 Let R be a CTRS and S a goal. Conditional narrowing is complete if for
every substitution o such that R - .5 holds, there exists a conditional narrowing derivation
S ~* T such that <z o[V(5)].

The following lifting lemma for 1-CTRSs is essential to prove the completeness.!®

Lemma 5.1 (Lifting lemma for 1-CTRSs [2]) Let R be a 1-CTRS. Suppose we have
goals S and T, a normalized substitution § of S and a set V of variables such that
V(S)UD(@) CV and T = 6S. For an i-reduction derivation T»» T there exist a goal
S’, substitutions 8’ and ¢ such that

. S~ S,
o 'S =T,
o 0o =40[V],

e @' is a normalized substitution.

The narrowing derivation S ~?* S’ and the i-reduction derivation T»» T’ employ the same
rewrite rules at the same positions in the corresponding goals.

Lemma 5.3 below establishes the correspondence between a standard i-reduction derivation
and an LOI narrowing derivation. To prove it we need the following lemma.

Lemma 5.2 Let # and o be substitutions and s be a term such that o < 0[V(s)]. Then
Red(os) C Red(fs).
Proof: Straightforward. g

Lemma 5.3 Let R be an orthogonal 1s-CTRS. Suppose we have an i-reduction derivation
A : T»» T and its lifted narrowing derivation B : S ~, S’, where T = 05 and 8 is
normalized. If A is standard then B is LOIL.

Proof: By the lifting lemma (Lemma 5.1), for an i-reduction A there exists a lifted nar-
rowing derivation B. By the definition of i-reduction, there exists an i-reduction derivation
ocB : 0S»» S’ and furthermore o < 0[V], where V = V(S) UD(#). In each step of the
derivations A, B and o B, the same equations are selected, the same positions are con-
tracted (narrowed, in the case of B), and the same rewrite rules are used. For every trace
A’ € TR(A), there exists a corresponding trace A” € TR(oB). We have X(A’) = X (A"),
and Red(4’) D Red(A”) by Lemma 5.2. From the above facts we can infer that if A’ is
outside-in then A” is outside-in, and furthermore that for every contraction at v in A’, if u
in A’ is leftmost then u in A” is leftmost by Lemma 5.2

19Bockmayr first gave this lemma, and a rigorous proof was later given by Middeldorp and Hamoen[12].
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Theorem 5.1 LOI conditional narrowing is complete with respect to normalizable solu-
tions for orthogonal 1s-CTRSs.

Proof: Let R be an orthogonal 1s-CTRS. Suppose we have a normalizable solution o
of a goal S, i.e., 0S— »T. By the confluence of -z, S— =T, where & is a normalized
substitution obtained by reducing all the terms in Cod(s). By Lemma 4.3 there exists a
standard i-reduction derivation §S»» g T. By Lemma 5.3 there exists an LOI narrowing
derivation S ~* T such that 7 < 6[V(S)]. Hence 7 <z o[V(S)]. a

This result extends the completeness result of the leftmost-outside-in narrowing for
constructor-based orthogonal TRSs, which was obtained by Darlington and Guo[3] who
followed the Huet and Lévy’s definition of the standard derivation.

5.2 Completeness results for 2s-CTRSs

The key to prove the completeness of conditional narrowing for orthogonal 2s-CTRSs is a
lifting lemma, for 2s-CTRSs as in 1s-CTRSs. By a lifting lemma, we want to establish the
correspondence between narrowing derivations and i-reduction derivations. A problem arises
here that during the i-reduction extra variables may be bound to a term that becomes a redex
at some later i-reduction step. When this occurs, it is impossible to make correspondence
between narrowing and i-reduction derivations. We have to exclude this kind i-reduction
derivations.

We define a restricted i-reduction »6» over solvable goals as follows.
Definition 5.3 A substitution ¢ is called a -normalized if for any & € D(0), oz is a
Z-normal form.

Definition 5.4 Let R be a CTRS, and S and T be solvable goals.

1. rer= 0,

2. S "5 T if there exist an equation e € S, a position u € O(e), a new variant | — r < @
of a rewrite rule in R, and a substitution ¢ such that

el =0l

T = (S —{e}) U{elorla} UoQ,

oQ— RnT,

o [Ext(R) I8 —Rr,-normalized,

n + 1 does not exceed the level of e.
o is defined as Upnxo 0.

The reflexive and transitive closures of > and e are denoted by »e» and »2», respectively.
The notion of the restricted i-reduction is due to Middeldorp and Hamoen[12].

A restricted i-reduction derivation can be lifted to a narrowing derivation, as shown
below.
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Definition 5.5 A solution ¢ of a goal S is called sufficiently normalized (normalizable) if
0 lv(e) is Rp-normalized (R,-normalizable) where n is the level of ce, for every equation
e€S.

Lemma 5.4 (Lifting lemmma for 2-CTRSs[12]) Let R be a level-confluent 2-CTRS. Sup-
pose we have goals S and T, a sufficiently normalized solution @ of S and a set V of variables
such that V(S)UD(f) CV and T = S. For a restricted i-reduction derivation T»eT" there
exist a goal S’, substitutions 8’ and o such that

o S~2 5,
e 9/S' =T,
. 0o =0[V],

o @ is a sufficiently normalized solution of S’.

The narrowing derivation S ~7 S’ and the i-reduction derivation T»e>T" employ the same
rewrite rules at the same positions in the corresponding goals.

The reduction derivation that corresponds to this restricted i-reduction is defined as
follows.

Definition 5.6 Let R be an arbitrary CTRS, and S, be associated TRSs that are induc-
tively defined as follows:

SO = RO;
Sut1 ={(clor) |R:l>r<Q€ER,0Q—5,T and & lExt(R) is —s,-normalized, ¢ € ©}.
As in —g, we define the reduction relation —s associated with TRSs S, as Upyo —s, -

We now look for a class of 2-CTRSs R whose induced reduction relation —x, is equal
to —s, for each level n.

Definition 5.7 A CTRS R is called level-normal if -, =—g, for all n > 0.

In level-normal 2-CTRSs, for solvable goals the existence of a restricted i-reduction
derivation ending at T is guaranteed. Namely we have the following lemma.

Lemma 5.5 Let R be a level-normal 2-CTRS and S a goal. We have S— ¢ T if and only
if there exists a restricted i-reduction S»e T.

Proof:
(=) By double induction on the level n and the length of the reduction derivation. The
case of n = 0 is trivial. Suppose S "i»l[e,u,,_w¢Q,,] s T, where S’ = S—{e}U{e[or].}.
Let m be the level of e. We distinguish two cases.
Casen+1gm
There exists an i-reduction derivation:

§hE S U SUT S T

. 1 .
The first step is by the definition of o8 and by the level-normality, the second steps are by
the definition of "' and by the induction hypothesis on the level, and the third steps are
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by the induction hypothesis on the length of the reduction derivation.
Casen+1>m
There exists an i-reduction derivation:

Sam S —{eJUT % T.

The first steps are by the induction hypothesis on the level, and the second steps are by
S — {e} C S’ and by the induction hypothesis on the length of the derivation.
(<) Trivial. g

Middeldorp and Hamoen proved the above result for a level-complete 2-CTRS in [12].

Theorem 5.2 Conditional narrowing is complete with respect to sufficiently normalizable
solutions for level-confluent and level-normal 2-CTRSs.
Proof: The proof is similar to the proof of Theorem 5.1. Use Lemmas 5.5 and 5.4

This result partly answers the open problem of Giovanetti and Moiso’s; Conditional
narrowing is complete with respect to normalized solutions that “do not depend” on non-
normalizable solutions for level-confluent CTRSs[7].}!

The level-normality is not a strange property that is only enjoyed by a very restricted
class of CTRSs. We show that orthogonal 2-CTRSs are level-normal.

Proposition 5.1 An orthogonal 2s-CTRS is level-normal.
Proof: The proof is given in Appendix.g

As a corollary of Theorem 5.2, we obtain the completeness result for orthogonal 2s-
CTRSs.

Corollary 5.1 Conditional narrowing is complete with respect to sufficiently normalizable
solutions for orthogonal 2s-CTRSs.

The next question is whether the completeness is retained in the case of LOI conditional
narrowing. The additional conditions of the last two clauses of Definition 5.4 of »» do not
interfere with the choice of positions as dictated by the LOI narrowing. Therefore, in the
lifting lemma, (Lemma 5.4) we have that if the i-reduction derivation is standard then the
narrowing derivation is LOI, as in Lemma 5.3. Thus we obtain the completeness result of
LOI conditional narrowing for 2s-CTRSs.

Theorem 5.3 LOI conditional narrowing is complete with respect to sufficiently normal-
~ izable solutions for orthogonal 2s-CTRSs.

6 Concluding remarks and future research

We have presented LOI conditional narrowing and shown its completeness with respect to
normalizable solutions for orthogonal 1s-CTRSs and 2s-CTRSs. The result bears practical

11 Quotation was put by the authors of the paper [7].
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significance since an orthogonal s-CTRS with LOI conditional narrowing can be viewed as
a computation model for functional-logic programming languages.

A next step in our research is to implement LOI conditional narrowing. Since it is not
possible to find a set of external narex positions during conditional narrowing derivation,
we have to restrict ourselves to a smaller class of orthogonal s-CTRSs; those that enable
us to find an external narex position during a narrowing derivation without look-ahead. A
strongly sequential CTRS of Huet and Lévy is a good candidate for that purpose!2, and
indeed a constructor-based strongly sequential term rewriting system has been used as a
model for functional-logic programming languages.

The proofs of the completeness of LOI conditional narrowing do not suggest the imple-
mentation method of LOI conditional narrowing. A method to implement LOI conditional
narrowing will be to decompose it into more basic operations and to design a rule-based
inference system like Holldobler’s rule set TRANS[8]. Further investigations are needed in
this direction of research.

Lastly, we briefly discuss the completeness results of conditional narrowing for orthogonal
3s-CTRSs.!3 To the best of our knowledge the only published result of the completeness
for 3-CTRSs is the completeness for level-complete 3-CTRSs obtained by Middeldorp and
Hamoen[12]. This result is not applicable to orthogonal 3-CTRSs in an interesting way.
For 3-CTRSs, orthogonality is not sufficient to realize level-confluence. Take orthogonal
3s-CTRSs

a—zc< f(z)y=k
R=<S f(b) >k
f(e) =k,

for example. We see that a —x, b and @ —x, ¢ hold while 6 —%, ¢ does not hold. Hence
R is not level-confluent. Therefore all the arguments in the previous sections that hinge
on the level-confluence derived from orthogonality of CTRSs break down in the cases of
3-CTRSs. In other words, orthogonality plays no active role in securing level-completeness
of 3-CTRSs. To find effective means to realize (or check) level-completeness for 3-CTRSs is
a future research theme.
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Appendix: Proof of Proposition 5.1

In this appendix all the derivations refer to reduction derivations. To prove Proposition 5.1
we need the following lemma.
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Figure 1: Derivations A and A’

Lemma .1 Let R be an orthogonal 2s-CTRS. Suppose that A is a D-redex and A’ is its
contractum, and that p and p’ are substitutions such that
o there exists & € D(p) such that pz = C[A],
o p=p—{z—ClAl}U{z— C[AT}.
If there exists a derivation
A:ps 3 ps, where j5 is the normal form of ps
then there exists a derivation
A':p's 5 pssuch that |A| = |A|.

Moreover, if A or its descendant is reduced in A, we can construct a derivation A’ whose
length is less than k.
Proof: By the diagram chase of Fig.1, we have

A’ :p's 5 p's such that |A] = |A.

The construction of the diagram is possible by Lemma 4.1. The length of the derivation A’
is made shorter when there exists u; that is in V; or is a descendant of elements of V. In
this case u;\V;—; = 0 and we can eliminate the reduction step —u\vi_, in A’ g

Proposition 1: An orthogonal 2s-CTRS is level-normal.

Proof: We prove by induction on the level n of the reduction. Since —g,=—g,, we turn
to the induction step. Suppose —s,=—x,. By definition and the induction hypothesis,
—8,41C R4, Therefore, we have only to prove that for any s —x,,, t, we have s —5s, .,
t. Suppose s —g,,, 1, i.e., there exist a rewrite rule R: [ — r < @, a substitution 7 and
a context C[ ] such that s = C[rl],t = C[rr] and 7Q 5 T. From 7 we will construct a
substitution 7 such that 7 [gyy(g) is Z-normalized, s = C[7],t = C[7r] and 7Q > T.
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Define T as follows:

~ [ re fzeV()
=V oz ifze Ext(R).

Then, the task of constructing 7 is reduced to the task of constructing a substitution ¢ such
that its domain is Ext(R) and it satisfies the following properties:

e for any e € Q,o(r Tvay €) - true =] true, where £ is the label of e, and
e 0 is S-normalized.

We have a stronger result; ¢ is (—g)-normalized. We show the construction of ¢ in
the case that @ = {e}. In the case of @ = 0, there is nothing to prove further. It is
straightforward to extend the construction to the case that @ consists of more than one
equations.

Let an equation ¢(£ 7 vy €), a substitution p(= 7 [gxi(r)) and a derivation

A ut(2 ) “E’{vl} 131 'f‘l*{vz} e ’P"{vk} 2

where t; £ true =] true, be given. We prove that if there exists a derivation ut — #;, then
there exists a derivation g¢ = ¢4 such that o is a normalized substitution. We prove it by
transfinite induction on the lexicographic ordering on the pair of the length of the derivation
and the number of —()-redexes in the substitution of the starting term. The result holds
trivially for the base case.

Suppose A : put 1[,‘,1_.”:(2] t' 5 t; and the result holds for the derivation less than
(w.r.t. the lexicographic ordering) A. We distinguish the following cases.

(1) There exists a position v < u such that (z £)t], € D(u).
Let 4/ = p— {z > pa} U {z — (uz)'} where pz > (uz)’. We have p't = t; whose
length is less than |A| by Lemma .1. By the induction hypothesis there exists a
derivation ot —» ) such that ¢ is normalized.
(2) ueO(1).
(2-1) For every v such that u < v, if t|, € D(u), then v ¢ Pattern(t, u).
The derivation is rewritten as ut = pt[r'), —» t), where ' is a variant of r. By
the induction hypothesis there exists a derivation ot[r'], —» #; such that o is
: normalized. Hence ot —» .
(2-2) There exists v such that u < v, (z £)t|, € D(g) and v € Pattern(t, u).
Let U, be aset of positions of ¢ in ¢, and Red, be a set of —y(r)-Tedex positions
below (>) v. For every v € U, and for every w € Red, we check whether the
descendants of w are contracted or not. We distinguish the following two cases.
1. If a descendant of w gets contracted by becoming a —-redex position, we

contract w beforehand. This gives rise to the situation considered in case (1).
Hence the result holds.
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2. If no descendant of w is contracted, we introduce a fresh variable z and
define p' = p— {2 — px} U {z — pz[z]y;y}.* This gives a new term p't
where the number of the redexes in g is one less than that of the redexes in
p#. The normalization of p't is not affected since w does not contribute to the
reduction. By the induction hypothesis there exists a derivation ot —>
such that ¢ is normalized.

Note that no descendant of w will become an external position during the deriva-
tion because of the orthogonality of the CTRS, and hence the above two cases
are exhaustiveyg.

14 A position w’ such that vw’ = w is denoted by w/v.
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