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Abstract. This paper addresses a practical method for minimizing a class of saddle functions
f:R* = R! on a polytope. Function f is continuous and possesses the rank-two property,
i.e., the value of f is defined only by two linearly independent vectors. It is shown that a
parametric right-hand-side simplex algorithm decomposes the problem into a finite sequence
of one-dimensional subproblems. A globally e-optimal solution of each subproblem is obtained
by using a successive underestimation method. Computational results indicate that the algo-

rithm can solve fairly large scale problems efficiently.
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1. Introduction

In this paper we will develop a practical algorithm for minimizing a class of saddle
functions f : R® — R, i.e.,

minimize{f(z) | z € D}, (1.1)

where D C R™ is a polytope. We assume that f is continuous and possesses the rank-two
property on D with respect to two linearly independent vectors ¢y, ¢, € R*. This means
that there exists a continuous function g : R? — R! such that f(z) = g(c;Tz, ¢;,Tz)
for all z € D [14], though we need not know g explicitly in our algorithm. Since f is
a saddle function, g(-, c;"z) and g(c;Tz, -) are convex and (quasi)concave functions
respectively for any fixed z € D. Owing to this convez-concave property of f, there
are multiple locally optimal solutions in D. In contrast to (quasi)concave minimization
problems, (1.1) might have no globally optimal solutions among vertices of D.

Saddle functions are well known in many literature in the context of minimax prob-
lems. In [16] Muu and Oettli have solved a more general class of (1.1), in which f is
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a full-rank saddle function. Muu has also considered a problem containing a full-rank
saddle function in the constraint rather than in the objective function [15]. However,
the algorithms developed for the general purpose can usually handle only instances of a
very limited scale. We will therefore exploit the rank-two property of f and show that a
parametric simplex algorithm decomposes (1.1) into a finite sequence of one-dimensional
subproblems, which can be solved very efficiently.

Rank-two nonconvex minimization problems are important in practical applications
such as bicriterion decision making [3, 7], computational geometry [10, 13] or network
flow problems [23] to name only a few (see [22]). Many of them, including linear multi-
plicative programs [8, 17, 21] and certain d.c. programs (minimizations of the difference
of two convex functions k;(c;"z) — hy(c;Tz)) [19], belong to the class (1.1).

In Section 2 we will show that (1.1) can be solved by solving a sequence of one-
dimensional problems of the same form as (1.1). The sequence can be generated by
applying a parametric right-hand-side simplex algorithm to two linear programs associ-
ated with (1.1). Section 3 is devoted to the procedure for obtaining a globally e-optimal
solution of one-dimensional problems. By exploiting the convex-concave property of f
we will construct a branch-and-bound algorithm based on a successive underestimation
method [6]. Results of computational experiment on the algorithm are presented in
Section 4. In Section 5 we will briefly discuss the average performance of the algorithm
when we apply it to certain nonconvex quadratic programs.

2. Decomposition of the Problem into One-Dimensional Problems

The problem we consider in this paper is as follows:

minimize f(z)
subject to Az =b, z > 0,

(P) (2.1)

where A € R™*", b € R™, and f : R® — R! is a continuous function. There are two

linearly independent vectors c;,c, € R™ which characterize f on the feasible region:
D={ze€R"| Az =b, z > 0}. (2.2)
Namely,
(i) Rank-two property: For any x € D
deER", ,"d=0, k=1,2= f(z +d) = f(2). (2.3)
(1) Convez-concave property: For any x € D

d€ R, Td=0=5 f(z+ M) < (1= Nf(@) + M\(z+d), VN[0, 1], (2.4)
de R, c,"d=0=> f(z + Ad) > min{f(z), f(z +d)}, VA €0, 1]. (2.5)



We assume in the sequel that the feasible region D is nonempty and bounded, which
implies that (P) has a globally optimal solution.
Let ¢ = ;T for an arbitrary z € D and consider a subproblem of (P):

minimize f(z)
subject to z € D, c;Tz = (.

(P(O)) (2.6)

Then (P(()) is feasible and has an optimal solution which coincides with that of a linear
program, i.e., either

I T
minimize ¢’z
PL 2.7
(PL:(¢)) subject to z € D, ¢;Tx =, (2.7)
or
oo T
maximize ¢’z
PL 2.
(PL2(C)) subject to z € D, ¢;Tx = (. (2.8)
Let z*(¢) be an optimal solution of (PL(¢)) (k =1, 2) and define
z*(() € argmin{f(z) | z = z*((), k =1, 2}. (2.9)

Lemma 2.1. If (= c,"z for some z € D, then *({) is optimal to (P(¢)).

Proof: By the rank-two property, f is a function of a single variable = ¢,Tx on D if
the value ¢; Tz is fixed at . The values c,T#!(¢) and c,T22(¢) are the minimum and the
maximum values of 7 respectively. It follows from (2.5) of property (ii) that the minimum
of f is attained at either of the extreme points of the interval [c,T21((), c,Tz%(¢)]. O

Let
Cmin = min{c;"z | £ € D}; (max = max{c,Tz | z € D}. (2.10)

It is obvious that a globally optimal solution of (P) can be obtained by solving (P(¢)) for

all ¢ € [Cminy Cmex]- By Lemma 2.1, this can be done if we solve the two linear programs
(PLy(¢)) and (PL3(¢)) as varying the value ¢ over the interval [Cmin, (max)-

Theorem 2.2. There exists { € [{min, Cmax] Such that z*(() is a globally optimal solu-
tion of (P). O

Let us apply a parametric right-hand-side simplex algorithm to (PL.(¢)) (k =1, 2).
For the sake of simplicity we impose here the dual nondegeneracy assumption:

Assumption 2.1. Both (PL,(()) and (PLy(()) have a unique optimal solution for any
C € [Cmina Cmax]- 0



As increasing the value of ¢ from (uin, a sequence of intervals [(¥, ¢X), ¢k, ¢k, .

[¢F. -1, CF.] are generated, where (¥ = (i, C¥ = Cmax and &, > ¢} for each i. We also
obtain the associated sequence of bases Bf, B, ... B Y 1 € RmtUX(m+D) gych that BF

is an optimal basis of (PLy(¢)) for all ¢ € [¢¥, ¢ ,H] Let us denote [¢F, ¢F.,] by ZF. As
well known, z*#(¢) is an affine function over each Z¥ and can be expressed as

k
() = ﬁ—-—,;m'%cm 4 Cck Mchy), e Zh. (2.11)

If for every i we can compute
2(2}) € argmin{f(z) | & = (1 - N)z*(¢F) + Azt (¢h), A€ [0, 113, (2.12)
then Theorem 2.2 guarantees that
z* € argmin{f(z) | =2"(Z}), j=0,1, ..., ;. — 1, k=1, 2} (2.13)

is a globally optimal solution of (P). The procedure for computing z*(Z¥) will be pre-
sented in the next section.
We summarize the algorithm below:

Algorithm PSM.

Step 1. Solve a linear program: minimize{c;’z | z € D} and obtain an optimal basis
B°® and the associated optimal solution z°. Initialize the incumbent: z* = z°
v* = f(z*). Let k =1 and go to Step 2.

Step 2. Let ( = ¢;T2z° and B = B°. Solve a linear program (PLy(¢)) parametrically by
increasing ¢ from (:

1° If (PLk(()) is infeasible for { > ¢, then go to Step 3.

2° Determine a value { of ¢ such that B is an optimal basisforall ( € Z = i<, Z]
Using a dual pivot operation, obtain an alternative basis B which is optimal
to (PL&(C))-

3° Compute z*(Z) € argmin{f(z) | z = (1 — N\)z*({) + Az*), A € [0, 1]}. ¥
f(2*(Z)) < v*, then update the incumbent: z* = z¥(Z), v* = f(z*).

4° Let {( = (, B = B and go to 1°.

Step 3. If k = 2, then terminate. Otherwise, let k£ = 2 and go to Step 2. i

Under Assumption 2.1, the above algorithm terminates after finitely many iterations
yielding an optimal solution z* of (P) if Step 2. 3° can be done in finite time. In the
case of degeneracy, we have to use an appropriate pivoting rule to avoid cycling (see e.g.

[2D).



3. Successive Underestimation Method for One-Dimensional Problems

In this section we consider the problem to be solved in Step 2. 3° of algorithm PSM, i.e.,
for each k =1, 2, ’

minimize  f(z)

(Pu(2)) subject to z = (1 — A)z*(¢) + Ae*((), A € [0, 1],

(3.1)
where z*({) and 2*(C) are optimal solutions of (PLi(¢)) and (PL4(C)) respectively, and
Z=|(, (] is a subinterval of [¢ i, Cmax| such that a basis B is optimal to (PL¥(()) for all
¢ € Z. The difference between (P(Z)) and (P) is that the feasible region of the former:

Di(Z) = {z € B" |z = (1 - \)ok(() + a*(©), A € 0, 1)} (3:2)

is only a line segment. Hence, if f is either convex or concave over Di(Z), we can
compute a minimum z*(Z) very efficiently by using any one of ordinary methods. This
includes the case in which either c;Tx or ¢;72 is a constant for any r € Dy(Z). Although
both the values are affine functions of A over D(Z), they are not constants in general.
We will therefore propose a successive underestimation method for obtaining a globally
e-optimal solution of (P.(Z)).

3.1. LOWER BOUNDS OF THE OBJECTIVE FUNCTION VALUE

We first define a vector ¢ € R" below:
&=c1— (aTes / ||eal|?)ca. (3.3)

Since ¢; and c; are linearly independent, we have ¢;7¢ > 0 and ¢;7¢ = 0. Hence by
(2.4) of property (i) function f is convex with respect to the direction &. Let

Lu(2) = argmin{f(z) | = = o*(() + Ma(@)é, A€ [0, 1]}, (3.4)

Lu(2) = argmin{f(z) | = = 2*(©) — Aa(Z)é, X € [0, 1]}, (35)
where

o(2) =T~ )/ (e74). (3.6)
Also let

v*(2) = min{f(z) | = € Ly(Z) UT4(Z)}. (3.7)

Lemma 3.1. For any subinterval Z' = [(, C] € Z the following relationship holds:

v¥(Z) < v*(Z)). (3.8)



Proof: Choose an arbitrary ¢’ € L(Z'). Then there exists X' € [0, 1] such that ' =
z*(¢") + Xa(Z'),. By the linearity of z*(¢) over Z we have

2’ = (1= B)2*(Q) + Bz*(¢) + Nva(2)a, (3.9)
where §=(('~ )/ (- andy=(T - () /€~ (). Let

z =2+ B+ X1D)e; T=2"0)~ (18- X1)a(2)a.
Then (3.9) is reduced to the following:

z' = (1-B)z+ 4.
Since ¢,"¢*({) = ¢ and ¢;7z*(() = by definition, we see that

a’(@-z) =a’s* () - aTe* Q) - AZ)eTE = - (- (=) =0

by noting (3.6). We can also check that 8 + v\ € [0, 1] if Z' C Z. Hence by (2.5) of
property (ii) and definition of v*(Z) we obtain

f(2') 2 min{f(z), f(2)} 2 v*(2).
~ Similarly, we have f(z) > v*(Z) for any x € T;(Z'). O

As a corollary of this lemma, we can show that v¥(Z) gives a lower bound of the optimal
value f(z*(Z)) of problem (P.(Z)):

Lemma 3.2. For any x € Dy(Z) the following holds:
F(@) 2 *(2). (3.10)

Proof: For any x € Di(Z) there exists some (' € Z such that z = z*(({’). Hence (3.10)
is derived by applying Lemma 3.1 to Z' = [{',{'| CZ. O

Thus we can ignore D,(Z) in the course of locating a globally optimal solution of (P)
in PSM if

v*(2) 2 f(z) | (3.11)

holds for the best feasible solution z* obtained by that time. In this case we cannot
update the incumbent better than z* by any point of Dy (Z).



3.2. BRANCH-AND-BOUND PROCEDURE

Let us suppose that (3.11) does not hold. When some point z' in the set:
Li(2) = {z € L{2) UT"(2) | f(=) < v*(2)} (3.12)

is found to be a feasible solution of (P), we may discard Dy(Z) and proceed to the
next step after revising the incumbent z* by /. If such an z’ cannot be found, i.e.,
Li(Z) N D = @, we have to search Dy(Z) for a better feasible solution than z*.

Let us bisect the interval Z = [(, (] into Zy; = i€, ¢o] and Ziz = [{o, (], where
o = (( +{) /2. Then the value f(2*((y)) is an upper bound of the optimal value of
(Px(2)). If f(z*(¢o)) < f(z*), then we need to update the incumbent as z* = z*((y).
Note that we can compute z¥((,) without performing any pivot operations, since z*(()
is affine over the interval Z. We next construct the problems (Py(Z1;)) and (Pi(Z2))
associated with the intervals Z;; and Z;, respectively, and compute lower bounds v*(Z;;)
and v*(Z1) of their optimal values. It is obvious that Di(Z11) U D(Z12) = Di(Z) and
Dy(Z11) N Dr(Z12) = {2*((o)}. Let us define a piecewise constant function on Dy(Z):

_ v*(Zy1), © € Dp(Zn1),
91(@) = { v¥(Z12), o € Di(Z)\ Di(Zu1). (3.13)
Then by Lemma 3.1 we have
v¥(Z) < g1(2) < f(z), Vz € Dy(Z). (3.14)

A further bisection of Zy, with v*(Zy,) = min{v*(Z,;), v*(Z12)} at its middle point (;
can generate an alternative function g, which underestimates f over Di(Z) more exactly
than g;.

If we iterate the above operations as selecting one subinterval of Z giving the least

lower bound among them, we will obtain a sequence of piecewise constant functions g;’s
such that

(v*(Z) =) go(z) < g1(z) < ga(2) € -+ £ f(2), Yz € Di(Z). (3.15)

Note that z*((;) is a minimizer of g; and a jumping point of g;1;. The incumbent z* is
updated by z*((;) when necessary. If

94(2*(&)) 2 f(2*) | (3.16)

happens to hold, then two cases are possible: (i) z* is an optimal solution of (Py(Z))
if z* € Dy(Z), (ii) there are no globally optimal solution of (P) in Di(Z) otherwise. In
either case we can terminate the procedure.

The procedure is summarized as the following branch-and-bound algorithm. Here
€ > 0 is a given tolerance, * and v* are the incumbent and its objective function value
respectively.



Procedure BBP(k, z*, v*, Z).

1° Compute v*(Z) and Ly(Z) according to (3.3) - (3.7) and (3.12). If v*(Z) > f(z*),
then terminate. Otherwise, let Z = {Z} and j = 0.

2° Select an interval Z; = [Qj, (;] € Z with the least v*(Z;) and let Z = Z\ {Z;}. If
L(Z;) N D # 0, then terminate after revising the incumbent: z* = z’, v* = f(z*)
for any ' € Li(Z;) N D.

3° Let (; = (g) +¢;) /2. If f(2*(¢;)) < v*, then update the incumbent: z* = z*((;),
v* = f(z*). If
f(@*) = o¥(Z;) < ¢, | (3.17)
then terminate.
4° Let Z; =[(;, ¢;] and Z; = [(;, (;]- Compute v¥(Z;), Li(Z;), v*(Z;) and Li(Z;).
5° Let 2= ZN{Z;, Z;}. Let j = j + 1, and go to 2°. m}
Theorem 3.3. Procedure BBP terminates after finitely many iterations if € > 0. If

€ = 0 and BBP does not terminate, it generates an infinite sequence of points zc"’((j) ’s,
every accumulation point of which is a globally optimal solution of (P(Z)).

Proof: Suppose the procedure does not terminate. Then an infinite sequence of intervals
Z; = [gj, (,]’s is generated in Z. We can take a subsequence Z;.’s such that (Z =) Z;, D
Z;, D Zj, D ---. Since Z; is divided by the middle point (; = (9 +C;) /2, we can assume
that Ciz - g.jl = Q(Cju-: - gj“_l

I125(C;0) = 2H(¢ N = Nl=* () — =* D) / 2¢ (3.18)

by the linearity of z¥(¢) over Dy (Z).
Now we assume that there exists some positive constant ¢ such that

) for every £. Hence we have

fe*) = o4(Z;) 2 0, V. (3.19)
By the continuity of f there is some positive value 8(o) such that if
|z’ — 2"|| < (o), (3.20)

then |f(z") — f(z")| < 0. It follows from (3.18) that (3.20) holds for any z', " € Dy(Z;,)
when £ is beyond a number:

l(o) = njz* @) - *(Qll - né(o).



Table 4.1. Computational results when ¢ = 1075,

m 200 200 250 250 300 300 350
n 150 200 200 250 250 300 300
Total number of pivots.

226.4  362.5 3858  352.5 385.1  463.3 452.1
(30.124) (96.225) (98.238) (90.155) (120.45) (160.515) (209.555)

Total number of branchings.

(41): 1387  182.8 160.8  152.7 195.9  200.2 153.0
(78.411) (100.152) (83.244) (98.105) (82.440) (122.173) (102.326)

(4.2): 1513 1182 163.0  189.3 1346 2173 145.7
(82.002) (94.448)  (94.043) (140.644) (94.291) (106.39) (121.598)

CPU time in seconds.
(4.1): 46.040 83.130 124.515 117.942 174.678 233.958  279.792
(5.897) (24.615) (26.276) (30.304) (55.837) (66.787) (132.336)

(4.2): 46.305 82972  124.525 118463  173.562 234.020  279.613
(6-310) (24.795) (26.236) (30.646) (54.174) (66.834)  (132.489)

Moreover, we can see from (3.4) — (3.7) and (3.12) that if ' € Li(Z;,), i.e., f(z') =
v*(Z;,), then ||z’ — z|| < &(c) for any x € Dy(Z;,). Therefore we have f(z*((;,)) ~
v*(Z;,) < o for £ > {(0), which contradicts assumption (3.19). If € > 0, then (3.17)
holds after finitely many iterations and BBP terminates.

Suppose € = 0. Then we have lim,_(f(2*((;,) — v¥(Z;,)) = 0. Since we choose Z;,
with the least v*(Z;,) from Z, we obtain

}_’_f?o f(xk(cu)) = zlgfo vk(zjz) < f(z), Vo € Di(Z). d

To save the memory needed by BBP we can employ the depth first rule in choosing
Z; from Z instead of the best bound rule. Although the convergence is somewhat slower,
this modification causes no trouble if ¢ > 0. However, if € = 0, the sequence z*((;)’s
might converge to some locally but not globally optimal solution of (Px(Z)).

4. Computational Experiment

We will report the results of computational experiment on algorithm PSM incorporating
procedure BBP. We solved the following two subclasses of (P):

minimize (¢;7z — ¢10)% = (€177 — c10)(c2Tx — ¢30)
subject to Az <b, £ >0, (4.1)
Cka Z Cko, k= 17 27



Table 4.2. Computational results when (m, n) = (200, 150).

€ 1073 10-° 1077 10~°
Total number of branchings.

(4.1): 36.4 138.7 255.9 373.7
(24.577) (78.411) (139.543) (203.150)

(4.2): 344 151.3 286.7 423.7
(18.597) (82.002) (141.017) (200.655)

CPU time in seconds.

(4.1): 45.778  46.040  47.403 47.537
(6.140) (5.897) (6.298) (6.739)

(4.2): 45.767 46305 47413 47.650
(6.212) (6.310) (6.092) (6.587)

minimize (¢;7z — ¢19)? — (c172 — ¢10) exp(cao — 3T x)
subject to Az < b, z > 0, (4.2)
clz > cpo, k=1, 2,

where ¢ € R", cro € R', A € R™*" and b € R™. All data of examples were randomly
generated between —1.000 and 1.000. Problem (4.1) is a so-called linear multiplicative
program, whose objective function can be expressed by the product of two affine func-
tions, say ;7 — c10 and (c1 — c2)Tx — ¢10 + c20. If the product is quasiconcave on the
feasible region, we can solve the problem efficiently by using the algorithms proposed in
[8, 9, 12]. Unfortunately, the objective function of (4.1) is neither convex nor quasicon-
cave because (¢; — ¢2)Tz — ¢j9 + ¢z9 can have both positive and negative values on the
feasible region (see e.g. [8]). Hence the available algorithms do not work for (4.1).

In procedure BBP we employed the depth first rule in choosing Z; from Z. Also,
among two subintervals Z; and Z; of Z; we took out the one giving the less lower bound
from Z before the other. The program was coded in C language and tested on a SUN
SPARCstation ELC computer (20.5 mips).

Table 4.1 shows the computational results when the tolerance is fixed at ¢ = 10~°
and the size of problems ranges from (m, n) = (200, 15) to (350, 300). It contains the
average number of pivot operations (including primal ones for the linear program solved
in Step 1 of PSM), branching operations and the average CPU time in seconds (and also
their respective standard deviations in the brackets) needed for solving ten examples.
Note that both problems (4.1) and (4.2) require the same number of pivot operations
because their feasible regions are identical. Table 4.2 shows the results when (m, n) is
fixed at (200, 150) and e ranges from 1073 to 107°. The average number of branching

10



operations and CPU time of ten examples are listed in it.

We can see from Tables 4.1 and 4.2 that algorithm PSM can solve fairly large scale
problems of both the classes (4.1) and (4.2) with enough accuracy when they are ran-
domly generated. There is not much difference in the results between the two classes.
It should be noted that the number of branching operations depends only upon the
tolerance € but not upon the size of (m, n). However, since the branching involves no
hard operations such as a simplex pivot, it has a little influence on the computational
time as shown in Table 4.2. The total computational time is consequently dominated
by the number of iterations of the parametric simplex algorithm.

5. Instances Solved in Polynomial Time

As shown in Section 1, problem (P) involves numerous subclasses. Among them are the
following two nonconvex quadratic programs:

minimize  f(z) = (;T2 — c10)(c2Tx — 30)

P1
(P1) subject to z € D,

(5.1)

minimize  fo(z) = c;Tx — (cTx — ¢30)?

(P2)| .
subject to = € D,

(5.2)

where ¢ € R", cko € R' (k =1, 2) and D C R" defined by (2.2). Linear multiplicative
programs (P1) appear in many applications such as microeconomics [5], bond portfolio
optimization [7], and computational geometry [10, 13] and so forth (see [9, 17]). If every
feasible solution = € D satisfies ¢;Tz > cxo for k = 1, 2, then f; is a quasiconcave func-
tion on D [8]. In this case we can solve (P1) efficiently by using the algorithms proposed
in [8, 12], which are also based on parametric simplex algorithms. Problem (P2) is a con-
cave quadratic program, whose objective function f, has only one negative eigenvalue.
In their recent article [18] Pardalos and Vavasis have proved the NP-completeness of
(P2) by converting a clique problem on a graph to (5.2).

Here we will discuss the average performance of algorithm PSM when we apply it to
those nonconvex quadratic programs (P1) and (P2).

Recall that (Pi(Z)) solved by BBP is a minimization of f over the line segment
Dy(Z). If f is a quadratic function such as f; and f,, we can calculate a rigorous
solution of (Px(Z)) analytically without calling procedure BBP. Hence the total number
of arithmetic operations needed for solving (P1) and (P2) can be bounded only by that
of dual pivot operations. Moreover, we can solve them even if the feasible region D
is unbounded. In this case the parametric right-hand-side simplex algorithm would
generate a basis B which is optimal to (PL,(¢)) (k =1, 2) for all { € Z' = [(, +00) for
some (. At the same time it generates some direction vector d € R", and we have

Di(Z") = {z € R" | 2*({) + Ad, A > 0}. (5.3)

11



It is easy to check whether f; (f;) is bounded from below on Dy(Z'). If we find it
unbounded, the original problem has no globally optimal solutions.

Let us again consider the linear programs (PLi(¢)), k = 1, 2. Denote by gx(¢) the
objective function value of (PL.({)), i.e.,

91(¢) = min{c,"z [z € D, ¢,z = (}, (5.4)
92(¢) = max{c;"z |z € D, e,z = (}. (5.5)
Lemma 5.1. Let (iy = inf{c;"z | ¢ € D} and (,p = sup{c;Tz | = € D}. Then,

(3) function g, is piecewise linear conver on the interval (Cins, Caup), (4) function g, is

preceunse linear concave on the interval ((ing, Coup)-
Proof: Follows from a well-know result on linear programming (see e.g. [2]). O

We can regard PSM as a method which generates the analytic form of g; and compute
a global minimum of f over the line segment corresponding to each linear piece of g.
Under Assumption 2.1 the number of linear pieces of g;’s coincides with that of dual
pivot operations of PSM.

If we take the partial dual with respect to the constraint ¢;Tz = ¢ of (PL;(()), then

9a1(¢) = n:g:in{cfx |z €D, Tz =(}
= min sup{c,”z + n(c; Tz - ¢) |z €D}
* neRm

= su;:{—-n( + min{nc;"z + ¢,z | x € D}}.
n€ER

Letting

hi(n) = min{nc;"z + "z | z € D}, (5.6)
we have

91(¢) = :;g{-nC + ha(n)}- (5.7)

Similarly, g, can be reduce to

92(¢) = 1nf {~nC + ha(m)}, (5.8)
where
ha(n) = max{nec,"z + c¢;Tz | z € D}. (5.9)

The following lemma is analogous to Lemma 5.1:

Lemma 5.2. (i) Function hy is piecewise linear concave on R', (i) function hy is

piecewise linear conver on R'. O
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Thus we can see from (5.7) and (5.8) that if the analytic form of h; is given, we can
obtain that of g; in O(l;) time, where I} represents the number of linear pieces of hy.
The number of linear pieces of g is obviously O(Z},).

Adler and Haimovich have proved in [1, 4] that the average number of linear pieces
I} is bounded by O(min{m, n}) under sign-invariant probabilistic assumptions imposed
on the data (A, b, c1, c3) (see also [20]). In their probabilistic model, Assumption 2.1
is fulfilled with probability one. This implies that the average number of dual pivot
operations required by PSM is also bounded by O(min{m, n}). On the other hand, the
linear program to be solved in Step 1 of PSM is a standard linear program, which is well
known to be solved in polynomial time. Consequently, the average number of arithmetic
operations needed for solving (P1) and (P2) is lower-order polynomial relative to the
size of A.

The key of the above discussion is the polynomial solvability of (Py(Z)). If f is
quasiconcave on D, either of the extreme points z*(¢) and z*(() of Dy(Z) is optimal to
(Px(Z)). Hence we can solve such instances of (P) in polynomial time on the average as
well.
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