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Abstract. This paper addresses an algorithm for solving a linear program with an additional
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1. Introduction

In this paper, we describe a practical method for solving a special class of reverse convex

programming problems [3, 4, 18]:
maximize{ ¢’z |z € X NY}, (1.1)

where c € R", X C R" is a polytope, and ¥ C R" is defined by a rank-two quasiconcave

function f : R* — R! as follows:
Y ={ce B | f(z) <O} (1)

Since Y is the complement of a convex set {z € R® | f(z) > 0}, the feasible region
might be neither convex nor connected. Hence (1.1) can have multiple local maxima in
X NY. The detailed definition of rank-two property will be given in Section 2 (see also
14, 17)).

A typical example of problem (1.1) is a linear program with an additional linear

multiplicative constraint [11, 17, 19]:

*The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of
Education, Science and Culture, Grant No. (C)05650061.



maximize{ c'z | z € X, (diTz + dyo)(dyT 2 + d20) — dop < 0}, (1.3)

where d; € R*, i = 1,2, and d;p € R', i = 0,1,2. The product of two affine functions
appears in many applications such as microeconomics [2], bond portfolio optimization
6] and geometrical optimization [8, 10] and so forth (see [13]). In [11, 19], we proposed
a branch-and-bound method for obtaining an e-optimal solution. We reduced (1.3) to a
minimization of a univariate function, the value of which can be computed by solving
an ordinary convex program. We extended this idea and solved more general class of
problems than (1.3) in [12]. In [17], Thach et. al. converted (1.3) into a two-dimensional
concave minimization problem and applied an outer approximation method.

In their recent article [14], Pferschy and Tuy proposed a fairy efficient algorithm for
obtaining an e-optimal solution of (1.1). The algorithm consists of two parts: In the first
part, a local maximum 2’ is searched by using a procedure similar to the usual simplex
algorithm. In the second part, the e-optimality of z' is checked by minimizing the
function f. Since f has rank-two property such as the product of two affine functions,
one can minimize f on a polytope very efficiently by using the parametric methods
proposed in (7, 9]. If 2’ is not a global maximum, it is discarded by adding the cutting
plane cTz > cF2' + ¢, where € is a positive tolerance. In this paper, we will propose
a parametric dual simplex algorithm for solving (1.1). Our algorithm contrasts with
the method by Pferschy and Tuy in two points: using no cutting planes and yielding a
globally optimal solution.

The organization of the paper is as follows: In section 2, we parametrize (1.1) by
introducing two auxiliary variables and define an equivalent master problem. We also
show that an optimal solution z* exists among the intersection points of the boundaries
of X and Y. To find such an intersection point, we apply a parametric dual simplex
procedure to a linear program associated with (1.1) in Section 3. Section 4 is devoted
to the algorithm for searching an optimal solution z*. We show that z* can be obtained
after applying finitely many dual simplex pivots to the master problem. Results of

computational experiments of our algorithm are presented in Section 5.

2. Parametrization of the Problem

The nonconvex problem we consider in this paper is

maximize !z
(P)| subject to Az =b, 2 >0, (2.1)
f(=) £0,

where A € R™*", b€ R™ and ¢ € R". We assume that the set:

X={z€R'|Az=b,22>0} (2.2)



is nonempty and bounded. The function f : R* — R! is continuous and quasiconcave
on X. It also possesses rank-two property on X [14]. Namely, there exist two linearly
independent vectors d;, d; € R™ such that

yeR", dTy>0,i=1,2= f(z+y) > f(z), Vz € X. (2.3)
Let
Y ={z€R|f(z) <0}, (2.4)

then the feasible region of problem (P) is denoted by X NY.
If we remove the last constraint f(z) < 0 from (P), we have an ordinary linear

programming problem:
(P) : maximize{ Tz |z € X }, (2.5)

which has an optimal solution Z since X is nonempty and bounded. If Z € Y, then z
is a globally optimal solution of (P). To exclude this trivial case, we assume throughout
the paper that

max{c’z |z€ X} > max{cTz |z € XNY}. (2.6)
The following is a well-known result on reverse convex programming (see e.g. [18]):

Lemma 2.1. If X NY # 0, among boundary points of Y emists a globally optimal
solution z* of (P). O

In our problem, the linearity of the objective function strengthens this lemma. When
X is of one-dimension, the problem can be easily solved. Then we assume in the sequel
that dim X > 2. We denote the set of relative interior points of X by int X and the set
of boundary points of X by 90X, i.e., X = X \ int X. For Y, dY denotes the set of

boundary points in the usual topological sense.

Lemma 2.2. dXNOY #0 if XNY #0.

Proof: Let us denote by Y the complement of ¥. Then by the assumption (2.6) and
the linearity of the objective function, X N Y* contains an optimal solution Z of (P)
and hence is nonempty. On the other hand, X NY is also nonempty if X NY # (. In
fact, 90X C Y° would imply

X =codX CcoY*=Y",

where co - denotes the convex hull. Thus 9Y intersects X since dim X > 2 and hence
0X is connected. a



Theorem 2.3. If X NY # 0, then there exists a globally optimal solution z* of (P) in
X nNoy.
Proof: Let z* be a globally optimal solution of (P) and suppose z* € int XNJY". Choose
an arbitrary point, say 2! from X NJY and let é be a sufficiently small positive number
such that 2% = z* 4+ §(z* — z!) lies in X. We shall show that z* € Y: Let us denote by
W the closure of the convex set Y° and assume the contrary. Then we have

e_ 0
ST 140
where the last equality follows from the convexity of Y°. Using the accessibility lemma
(Stoer and Witzgall [16] (3.2.11)), we see that z* € int W = Y. This is a contradiction.
Then by the linearity of the objective function, the equality cTz! = ¢T2? = ¢Tz* holds,
which implies that z! € X N JY is also globally optimal to (P). O

22, 2' € Y CW and 2 € Y° = int W,

Remark. Under the same condition as Theorem 2.3, we see that a globally optimal
solution z* of (P) lies in the intersection of an edge of X and the boundary 0} of Y. If
z* € int F N Y for some two or higher dimensional face F' of X, then we can show that
some z! € JF NJY is also a globally optimal solution in exactly the same way as in the
proof of Theorem 2.3. Repeating this argument if necessary, we will obtain the desired

solution. a
The following lemma furnishes an insight into the rank-two property:

Lemma 2.4. Suppose that f : R® — R! is continuous and quasiconcave, and has rank-
two property on X with respect to two vectors dy and d,. Then there exists a function

g : R? — R" which is continuous and quasiconcave on Z = {(d,T2,d,"z) |2 € X }, and

satisfies
f(x) = g(leil?,dng), V.T € X7 (27)
n€ R, n20=g(C+n) >g(), ¥ €Z. (2.8)

Proof: If f is not expressed as (2.7), for some z*, z2 € X we have
'z = d7a%, i =1,2 f(a) < f(”).

However, it follows from (2.3) that
F(&h) < f(2?) = 3i, 472" < d;T2?,
which is a contradiction. It is easy to see that (2.8) holds.

Let us show that ¢ is quasiconcave on Z: Choose arbitrary (!, (* € Z. Then we have
¢! = (diT2%,dyT7%), (? = (diTz*, dpTz*) for some 7, z* € X, and

g(L =N +X¢h) = f((1-N2* + Az
> min{ f(2%), f(z*)} = min{g(¢"), 9(¢*)}

for any A € [0,1]. The continuity of g is obvious. O
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Therefore (P) can be reformulated as follows by the function g : R*? — R:

maximize cTx

(P')| subject to = € X, | (2.9)
g(diTz,d,Tx) <0.

Introducing two auxiliary variables (;, (2, we can transform (P') into an equivalent

master problem:

maximize clz

subject to = € X,
lefl? = (1, dyTz = G2,

9(¢) <0,

where ¢ = ((1,(2). The following theorem can be readily obtained:

(MP) (2.10)

Theorem 2.5. If (z*,(*) is an optimal solution of (MP), then z* solves (P). O
Let us denote
H={(eR*|g(¢)<0}. (2.11)
Lemma 2.6. z € 9Y if and only if ¢ = (d,"z,d,"z) € OH.

- Proof: We first show the ‘only if’ part: Note that ¢ = (d, z, dyT ) lies in H. Given an
arbitrary positive 6, let 8’ = 6/||(dy, d;)||. Since z € 9Y’, there is a point 2’ € Bg(z)NY®,
where By (z) is the §'-neighborhood of z. Let (' = (d;,72',d,T2"). Then ¢’ € H° and

I =<l = (diT(2 - 2)? + (&7 (&' — z))*)/?
< @ I’ 2l < (s, d)|5' = 5.

Thus Bs(¢) N H® # @ and hence ( € §H.
To show the “if’ part let us consider the 2 x n matrix D of rows d; and d,7. Since
these vectors are linearly independent, we assume without loss of generality that the

2 x 2 submatrix D of the first two columns is nonsingular. Given an arbitrary positive
number §, let §' = §/[|D7!|| and consider the &'-neighborhood of ¢. Since ¢ € 9H, we
can find a point (' of Bs(() NHE. Let

y=(D" (é’—c))eRn,

then |jy|| < |ID7YJI¢" = ¢]| < 6 and also D(z +y) = ¢'. Thus §-neighborhood of z
contains a point z + y of Y°. a

For a given ¢ = ((1,(2) let us consider the following problem:
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maximize ¢z

(P(¢)) | subject to z € X, (2.12)
diTe=(, dTz=(

We refer to a  as an active point if ( € OH and problem (P(()) is feasible. Let us denote
an optimal solution of (P({)) by z*(¢), then the argument thus far is summarized into
the following theorem:

Theorem 2.7. The point z* = z*((*) which mazimizes cT2*(¢) over all active points
¢ is a globally optimal solution of (P). O

Thus problem (P) can be solved by solving (P(¢)) as varying ¢ over all active points.
This could be done easily if the boundary 0H is parametrized by one parameter, e.g.,
the implicit function (; = #((;) is known for ¢ = ((1,{2) € 0H. But such a favorable
situation is not expected in general.

In the rest of this paper, we assume the following for the sake of simplicity:
Assumption 2.1. No vertices of X are boundary points of Y, i.e.,
V(X)N oY =0, (2.13)
where V() represents the set of vertices. a

Then we immediately see from Lemma 2.6 that  is not active if 2*(() is a vertex of

X.

3. How to Find an Active Point

In this section we will propose a method for finding an active point ¢, which will serve
as a starting point of our algorithm.

For an interval I of real numbers we denote
X ={z|zeX, "z eI}

When I = [v,v], i.e., a degenerate interval, we simply write X(v). The following two

parametric linear programs play an important role:

_ minimize  d;Tx |

3.1

(Q-(v)) subject to z € X (v), .
maximize do¥x

3.2

(Q4(v)) subject to 2 € X (v). .

We impose here the dual nondegeneracy assumption:



Assumption 3.1. Both of (Q_(v)) and (Q,(v)) have a unique optimal solution unless
X (v) is empty. a

We denote by #(v) and #(v) optimal solutions of (Q_(v)) and (Q,(v)), respectively, if
they exist, and let
ho(v) = doT#(v), hyi(v) =dyTa(v). _ (3.3)

Lemma 3.1. An optimal solution &(v) (resp. #(v)) of (Q_(v))(resp. (Q.(v))) mini-

mizes (Tesp. mazimizes) f(z) on X (v).
Proof: Since h_(v) < d;"x for any x € X (v), from Lemma 2.4 we have

FE@) = g(diT#(v), T #(v)) = g(v,h-(v)) < g(di"z,dy72) = f(2).

We can show the assertion about #(v) similarly. O

Corollary 3.2. If g(v,h_(v)) < 0 < g(v,hy(v)), then there exists at least one active
pownt ¢ = (C1,C2) with ¢y = v. If g(v,h_(v)) <0 = g(v, hy(v)), then either ¢ = (v, hy(v))

15 an active point or there are no active points with (; = v. Otherwise, there are no

active points with (; = v. ]

For a given value v of the parameter there can be an active point { = ((3,(3) with
¢; = U when
9(3,h-(3)) <0 < g(3, hy (D)) (3.4)

holds. If such an active point actually exists, we will find it in the course of solving
(Q4+(?)) starting from Z(?) by the usual simplex algorithm. The procedure we will
present receives a value ¥ such that X (9) # 0 and yields an active point (~ with C~1 > 0.
The first component (; is the least value among all {’s with (; > v which potentially
provide a globally optimal solution of (P).

3.1. ROLE OF THE MINIMIZATION PROBLEM (Q-_(v))
Suppose that we are given a value ¥ satisfying
case 1:  X((9,9+6])NY = { for some 6 > 0. (3.5)

We solve problem (Q_(v)) for every v in the interval [,00) by using a parametric
right-hand-side simplex algorithm. Then we will obtain a sequence of intervals v, vy],
[v1,2], ..., [Up-1,v,], and the sequence of associated optimal bases By, By, ..., B,_; €
Rim+DX(m+1) " where vy = © and v, = max{d; "z | 2 € X }. The following lemma shows
that

case 1.1:  g(v;,h_(v;)) >0, i=1,...,p (3.6)

implies that there are no feasible solutions of (P) satisfying d, 2 > 7.
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Lemma 3.3. X((2,00)) NY =0 if and only if (3.6) holds.

Proof: The ‘only if’ part is trivial. To show the ‘if’ part, let us assume that there is a
feasible solution z’ € X NY such that d, T2’ > #. Let ¢' = (¢},¢) = (d,T2',d;T2'), then
¢} > v and (3 > h_((}), and consequently

9(¢1, h-(¢1)) £ 9(¢1: G) = f(2') L 0.

Let [vk, V4] be an interval containing ¢}, then (] = Avi+ (1 — A)vp4q for some A € [0,1].
By definition A_ is linear on [vg, vk4+1], and by the quasiconcavity of g we have

9(¢1, h-(61)) = min{ g(ve, h-(vk)), 9(ves1s h-(vr41)) }-

When k£ > 1, the right-hand-side is positive, which leads to a contradiction. When
k = 0, replacing vy by v + & for an & such that 0 < §' < min{ 6, d,"2' — ¥}, we again
have a contradiction. a

Applying this lemma with ¥ = min{d,"2 | z € X }, we obtain the following corollary:

Corollary 3.4. Let & minimize dy” © among the minimal solutions of d;"x on X. Then

& &Y and (3.6) occurs if and only if (P) is infeasible.
Proof: Obvious from Corollary 3.2 and Lemma 3.3. a

Unless (3.6) occurs, we will find an interval [vg, vi41] satisfying
case 1.2:  g(vi,h—(v:)) >0, i=1,2,...,k; g(vks1, h-(vks1)) 0. (3.7)

Let  be an intersection of the line segment (vg, b (vx))-(Vet1, h-(vi41)) and OH. If the
intersection is not unique, we take the one with the smallest first component.

Lemma 3.5. The point  obtained in case 1.2 has the least first component among

active points  with ¢; > .

Proof: Assume that there is an active point, say (' = ((},(}) such that o < (] < (h.
Then ¢(¢},h-({})) < g(¢') < 0. By the quasiconcavity of g, we see that (j falls in the
same interval as fl. This contradicts the choice of é . a

3.2. ROLE OF THE MAXIMIZATION PROBLEM (Q4(v))
Left is the case where
case 2:  X((3,9+6])NY # 0 for any 6 > 0. (3.8)

As will be shown in the next section, the procedure is not applied to this case when an
active point ¢ with ¢; = ¥ is found. Then we assume that there are no active points ¢

with (; = 9. By corollary 3.2 we have



9(v,hy(¥)) < 0. (3.9)
We increase the parameter v from 7 and solve (Q4(v)). Then a sequence of intervals
[vo,v1], [v1,v2], ..., [vp—1,vy] is generated as before.

Since we have assumed that the maximal solution of (Q.(v)) is unique for each v,
the set X(v) N { | d2"z = hy(v) } consists of a single point #(v) for each v. Then for
v = (1 = A)vp + Avgyq in the interval vy, vptq] it holds that

2°(v, hy(v)) = (1 = A)2"(vk, by (a)) + Az (veg1, by (V1))
Consequently we have

¢’z (v, hy(v)) < max{ Tz* (e, by (vi)), T (Vrt1, he (Vrs1)) }-
Therefore if both z*(vi, hy(vi)) and £*(vet1, hi(vk41)) belong to Y, ice., g(ur, hy(ui)) <
0 and g(vk+1, he(ve41)) < 0, then we can discard (’s with (; € (vg,vrs1) without over-

looking any points which potentially provide a globally optimal solution of (P). It might
happen that

9(vk; i (v6)) £ 0, g(vit1, by (vr41)) < 0 and

g(v, hy(v)) > 0 for some v € [vy, vg41],
and hence the line segment (v, hy(vk))-(Vks1, hy(vis1)) intersects OH at an active point.
But such an active point need not be considered.

Thus in the above process two cases are possible:
case 2.1:  g(vi,hye(v;)) <0, i=1,...,7, (3.10)
case 2.2:  g(vi, hi(v;)) <0, i=1,...,k g(ves1, he(vrs1)) > 0. (3.11)

If (3.11) occurs, then choose a point { with the least first component among intersection
points of (vk, by (vk))-(Vit1, Ay (ves1)) and OH.

Lemma 3.6. If (3.10) holds, no active points { such that (; > ¥ provide a globally
optimal solution of (P).

Proof: Suppose there is an active point (' = ((],(3) such that (] > ¢. Let (] be in the
interval [v;,v;4,] for some ¢ < p’ — 1. Then as discussed above z*({’) does not provide
a better objective function value than either z*(v;, hy(v;)) or z*(vit1, by (vigs1)). Since
neither (v;, h4(v;)) nor (vi41, by (vig1)) is active under Assumption 2.1, ¢’ can be ignored
by Theorem 2.7. m)

Lemma 3.7. The point f obtained in case 2.2 has the least first component among
actwe pownts ¢ with (1 > v which potentially provide a globally optimal solution of (P).

Proof: Suppose there is an active point (' = ({},(}) such that ¢} € [v;,vi11] 0 (o, (1).
When 0 <7 < k, we see by the same argument as in the proof of the previous lemma
that (' does not provide a globally optimal solution. When i = k, both (] and (1 lie in
the same interval [vi, vp41]. This contradicts the choice of f . a



3.3. PROCEDURE FOR FINDING AN ACTIVE POINT

We are now ready to present the procedure for finding an active point ¢ with {; > @ for
a given ¥ such that X(v) # 0:

Procedure ACT(7).
Case 1. If (3.5) holds, then do the following:

1° Solve (Q-(v)) parametrically as increasing the value v from ¥ and generate
a sequence of intervals [v, v1], [v1,v2], ..., [vp—1,v,), where vo = ¥ and v, =
max{d,"z |z € X }.

2° Find an interval [vg, vp4q] satisfying
g(vi,ho(v;)) >0, i=1,2,...,k; g(vks1, h-(ves1)) < 0. (3.12)
If such an interval is not found, then stop.
3° Compute a point { with the least first component among intersection points
of (vg, h—(vk))-(Vks1, h—(vrs1)) and OH.
Case 2. If (3.8) holds, then do the following:

1° Solve (Q4+(v)) parametrically as increasing the value v from ¥ and generate
a sequence of intervals [vg,v;], [v1,v2], ..., [Up—1,vy], Where vy = ¢ and
v, =max{d,"z |z € X }.
2° Find an interval [vy, vgp41] satisfying
g(vi, hi(v:)) <0, i=1,...,k; g(vks1, hg(vrsr)) > 0. (3.13)
If such an interval is not found, then stop.

3° Compute a point f with the least first component among intersection points
of (vg, hy(vk))-(Vks1, By (viy1)) and OH. O

Under the dual nondegeneracy assumption, the number of pivot operations required by
the parametric right-hand-side simplex algorithm is finite (see e.g. [1]). Hence the above
procedure provides an active point ¢ in finite time if it exists. The associated problem

(P(¢)) has a unique optimal solution 2*(¢) on some edge of X.

Remark. In both the cases of procedure ACT, the intervals [v;_y,v;], i =1,2,..., are
successively generated. If an interval [vy, vg41| satisfies (3.12) (or (3.13)), then we can
immediately terminate this process even though the value of v does not reach max{ d; "z |
zeX}. O
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4. How to Find an Optimal Solution

Suppose we have an active point (° such that z*(¢°) lies on some edge of the polyhedron
X. Such an active point can be obtained by using the procedure developed in the
previous section.

Let us recall the constraint of (P(¢?)):

Ar=b—e'(? =€, z >0, (4.1)

where e’ € R™*? represents the m + ith unit column vector for i = 1, 2, 5T = (7,0,0)

and

Let By € R(m+2)x(m+2) be an optimal basis of (P(¢®)). The optimal dictionary associated
with Bo is defined below:

rp=b— (" — ¢ — Nozw

_ 4.2
2= (B 20 — 23) + Koy, (42)

where

[BO,N()] = 4&., B = Bo_lg, éi = Bo'lei, 1= 1,2,
NO = Bo_l ~'0, 511:}— = (CIA} — CgNo),

(4.3)

and the indices B and N represent the basic and the nonbasic parts, respectively. Since
z*(¢°) lies on an edge of X, the dictionary (4.2) is degenerate, i.e., some components of

b— 'Y — &%(? are equal to zero.

Remark. A dictionary associated with an optimal basis By of (Q-(¢°)) (or (Q+(¢%)))
generates (4.2) very efficiently. In the dictionary of (Q_(¢%)) the last row is as follows:

ho(n)) = dogTB; (b — €¢D) + (don™ — dasT B i), (4.4)

where e! € R™*! is the m + 1st unit column vector, (ngT, d‘)NT) is the partition of dyT
and b7 = (bT,0). Let us introduce an artificial variable Tnt1 (> 0) and replace (4.4) by

Tat1 = ho (7)) — depT B (b — €'(}) — (don™ — d2sT By ). (4.5)

Also add the objective function row to this system of linear equations. If we apply a
single dual pivot at the m + 2nd row (4.5), then we have a feasible dictionary of (P(¢?)).
This dictionary is also optimal under the dual nondegeneracy assumption imposed on
both (Q-(v)) and (Q4(v)), since the set X(¢?) N {z | dyTz = (3} which coincides with
the feasible region of (P(¢?%)) is a singleton. O
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It is well known (see e.g. [1]) that the basis By is optimal to (P(()) for all ( satisfying
b—&'¢, -2 >0. (4.6)

Hence the maximal value of z while By remains optimal can be computed by solving a

two-dimensional linear programming problem:

_ | maximize —c§e'¢; — c§e%(,

P - 4.7
(Po) subject to & (; + &2(; < b. (47)

To find an optimal solution of (P), however, we need the additional constraint g({) < 0:

maximize —che'(; — c§el(,

(Po) | subject to &'¢; + & ¢y < b, (4.8)
9(¢) 0.
Let
Zo={CE€R*|&G+e¢<b} (4.9)

Note that Zy is a bounded polyhedron, since for any ( € Z, we have
min{dTz |z € X} < <max{dTz|z€ X}, i=1,2 (4.10)

Thus (Py) is of the same form as (P), and also has a feasible solution ¢°. If { is a vertex
of Zy, then 2*(() is a vertex of X. Hence Assumption 2.1 implies that no vertex of Z
lies in OH.

Let ¢ be an optimal solution of (Py). Then two cases can occur:

(i) g({) < 0: The point ( solves (Py) but does not lie in GH. Then it can be ignored
by Theorem 2.7.

(i) g(¢) > 0: Applying Theorem 2.3 to (Po) yields the existence of an optimal solution
of (Po) n 8Z0 N (9H

In both cases, it is sufficient to search the intersection points of 9Zy and JH.

4.1. SOLUTION METHOD FOR THE TWO-DIMENSIONAL PROBLEM

Since Zy is a polytope in the plane defined by m+ 2 linear inequalities, we can enumerate
all vertices of Zy in O(mlogm) time by using a technique of computational geometry
(see e.g. [15]).

Owing to the degeneracy of the dictionary (4.2), the active point (° lies on the
boundary of Zy. Let w', ..., w9, wi'(= w') be the vertices ordered counterclockwise
from (°. In general there can be more than two intersection points of dZ, and H, but

we choose the first one as {!. Namely, we find ¥ such that

12



g(w) <0, i=1,...k gw*)>0 (4.11)
and let ¢! be an intersection point of the edge w*-w**! and OH (see Figure 4.2).

Lemma 4.1. When (4.11) occurs, the edge w*-w*+! has a unique intersection point
with OH.

k

Proof: Assume that w*-w**! intersects 9H at more than one point. Let (! and (' be

two distinct points of them and suppose (' is a convex combination of (! and w**!. Let
p ppP

© denote the closure of the open convex set H¢, then
wt € H* = int© and ¢! € H C O.

By the accessibility lemma [16] we obtain ¢’ € int © = H°. This is contrary to the choice
of '. a '

As shown in Section 2, the slope of the tangent to JH is always nonpositive, and hence
we have (? < (! and (? > (5. By Assumption 2.1, we see that

¢ # . (412)

If we replace (° by (! in the dictionary (4.2), then for the i;th row corresponding to the

edge w*-wkt! we have
bi, — &,61 — &, = 0. (4.13)

Choosing some nonbasic column as an incoming basic vector and carrying out a single
dual pivot, we obtain an alternative basis matrix B', which is optimal to (P(¢!)). If we

cannot find such a column, i.e., every element of the irth row of N, is nonnegative:
e* Ny > 0, (4.14)

then for some § > 0 there is no active point ¢ such that {; € (({,{{ + 6] . To find a new
active point we apply procedure ACT((}) in Section 3.

In this way, starting from an active point (° and the associated polytope Zy, a se-
quence (°, Zo, ¢}, Zy, C%, ..., ("', Z,_y, (" is generated until (4.14) holds. Some
polytope may appear more than once in the sequence but all (?’s are distinct. Further-
more, the union |JiZ§ Z; covers the boundary OH between (° and (. Hence {7 with
cTz*(¢(?) = max{cTz*(*) | i = 0,1,...,r } serves as the best incumbent among (’s be-
tween (° and (". Note that we also have a sequence of associated bases B’O, Bl, .. ,B,_l
such that B; is optimal to both (P(¢?)) and (P(¢)).

4.2. ALGORITHM FOR FINDING AN OPTIMAL SOLUTION OF (P)

The algorithm for obtaining a globally optimal solution z* of (P) is summarized below:
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Algorithm OPT.

Phase 1. Find an initial active point (° as follows:

(i) Let ¥ = min{d,"z | € X}. Solve (Q.(%)) starting from (%) and search for
an active point ¢° = (¢?,¢?) with ¢? = ¢. If (° is found, then go to Phase 2.

(ii) Call procedure ACT(%) for obtaining an active point (° = (¢}, (7) with ¢? > .
If (° is not found, then terminate.

Phase 2. Obtain an optimal basis By of (P(¢°)). Let 2* = z*(¢°) and j = 0. Update
the incumbent z* as follows:

1° Construct a polytope Z; C R? associated with Bj according to (4.2), (4.3)
and (4.9). Generate the sequence of vertices w', ..., w9, wi!(= w!) of Z;

counterclockwise from (7. Find an edge w*-w**! of Z; such that

g(w') <0, i=1,...,k g(w) >0.
Let (?*! be an intersection point of w*-w**! and GH. If cT2*((?+!) > cTz*,
then let 2* = 2*((3+1).
2° Let it be the index of the inequality defining the edge w*-w**!. If
eik .B;]Nj Z O,
where N ; represents the nonbasic columns of A, then do the following:
(i) Call procedure ACT(¢i*") for obtaining an active point (/42 = (¢/*2, (3%
with ¢*2 > ¢J*. If ¢(7*2 is not found, then terminate.
(ii) Obtain an optimal basis Bjyy of (P(¢72)). If ¢Tz*(¢/*?) > cT2*, then
let z* = 2*(¢?*?). Let j = j + 2 and go to 1°.
3° Obtain an alternative optimal basis Bj4; of (P(¢?*)) by performing a dual

simplex pivot at the ixth row of the optimal dictionary associated with Bj.
Let y =5 + 1 and go to 1°. m]

Theorem 4.2. Under Assumption 2.1 algorithm OPT terminates after finitely many
iterations and provides a globally optimal solution of (P) if it exists.

Proof: When (° is found in Phase 1, it is the most left active point among those that
potentially provide a globally optimal solution by either Lemma 3.5 or 3.7. When (° is
not found, case 1.1 of Section 3 occurs and (P) is infeasible by Corollary 3.4.

Suppose OPT generates a sequence Zy, Zi, ..., Z,-1 of two-dimensional polytopes
and active points (%, (?,...,(" before ACT is called again. Note that the union of Z;’s
covers the boundary OH between (° and (". Therefore when (" is found, we keep a
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solution as z* which is best among solutions z*(¢) for ¢ with ¢; < ¢i. When ACT is
called again, case 1 of Section 3 occurs and the most left active point ¢"*! on the right

of (" is provided if it exists. No active points are overlooked. Note that
e there is only a finite number of Z;’s,

e each active point to be generated is an intersection of an edge w*-w**! of some Z;
and JH such that g(w"*) < 0 and g(w**!) > 0, and

~e such an edge has a unique intersection with 9H by Lemma 4.1.

Thus OPT terminates after a finite number of iterations and provides a globally optimal
solution of (P). O

Remarks. In both the procedures ACT and OPT, we need not know the function g
explicitly. The value g(w’) computed in step 1° of OPT is equal to that of f at an
optimal solution z*(w*) of (P(w?)). Since the optimal basis B? of (P(w?)) is common for
every w', the computational burden for obtaining z*(w’)’s is only a little.

In step 1° of OPT, we might miss some ¢’ on the edge wi-w**! such that
g(w') <0, g(w'*') < 0 and g(¢') = 0.

However, we can see by the same reason as case 2 of Section 3 that such a (' cannot be
optimal to (Py). Hence 2*({’) is not an optimal solution of (P). O

4.3. NUMERICAL EXAMPLE

Before concluding this section‘, let us illustrate algorithm OPT by using a problem with

three variables:

maximize 2s
subject to 2z, + 22, + z3 < 6,
8z + 4zy + 5z3 < 30,

(4.15)
—26.’1,1 - 81)2 + 18173 _<_ 9,
| Z 01 1:2‘2 07 T3 2 Oa
We see from Figure 4.1 that
3x1—z224+32>20; —z,+32,+4>0 (4.16)
for all z € X. Hence the product of two affine function:
f(IL‘) = (31,1 — X2+ 3)(—-;111 + 31132 + 4) - 18 (417)
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Tyl 3z;—T2+3=0

T+ 234+ 23=06

8z, + 4zy + bzz = 30

‘t*(C‘) —T1 + 3$2 + 4 = 0

z3 :v*(cy () )
—26x, — 8x9 + 1823 =9 '

Figure 4.1. Three-dimensional example (4.15) of (P).

is a quasiconcave function on X [7]. It is easy to check that f has rank-two property on
X for linearly independent vectors d, = (3,—1)T and d, = (-1,3)7, and that we have

9(¢) = (G +3)(¢2 +4) — 18. (4.18)

In Phase 1, we first solve a linear program: minimize{3z; — z2 | # € X }. Then we
have z° = (0,3) as its optimal solution. Since f(2°) = —18 < 0, we need to solve the
following problem in order to obtain an initial active point ¢o:

maximize —2z; + 322
subject to z € X, (4.19)

31—z = .

procedure ACT(z°) solves (4.19) parametrically by increasing the value of v from -3,

and yields an active point (° after a single pivot:
¢® = (—1.490,7.922); z*(¢°) = (0.431,2.784,0.000).
In Phase 2, we solve the following problem parametrically by changing (:

maximize Z3
subject to z € X, (4.20)

31'1 — 29 = (1, —21 + 322 = (o

The optimal dictionary of (4.20) at ( = (—1.490,7.922) is as follows:
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T G

T3 1

Tg

T2

T5

Figure 4.2. The polytope Zg associated with the dictionary (4.21).

z5 = 0.000 + 0.125¢; + 0.375(,,

25 = 0.000 — 0.375(; + 1.875(; + 5.000z,,

6 = —99.000 + 22.000¢; + 22.000¢, + 18.000z,,
z3 = 6.000 — 0.625¢, — 0.875(> — s,

21 = 0.000 + 0.375¢; + 0.125(,,

z = 6.000 — 0.625¢; — 0.875( — 4.

Hence we define

0.125¢; + 0.375(, > 0, —0.375(; + 1.875(, > 0,
Zo =1{ ¢ € R*| 22¢, +22¢;, > 99, 0.625(, + 0.875(; < 6, : (4.22)
0.375¢; +0.125¢, > 0

We obtain an alternative active point ¢! by computing the intersection of g(¢) = 0 and
the edge w?-w® of Zy (see Figure 4.2). Applying a dual pivot to (4.21) at the third row

corresponding to w2-w®, we have:
¢' =(-1.131,5.631); z*(¢*) = (0.280,1,970,1.775).
In the same way, we have
¢? = (3.000,-1.000); z*(¢?) = (1.000,0.000,1.944).

However, there is no active point ¢ such that 3.000 < ¢; < 3.000 + é for some positive
6. We need again to solve (4.19) by using ACT(¢?). Then we have active points:
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Table 5.1. Computational results for (5.1).

m 100 100 - 100 150 150
n 80 100 120 120 150
Algorithm OPT.
Average number of pivots.

Total:  80.2 82.8 96.6 118.8 121.6
(24.091)  (25.262) (23.161) (19.379) (24.352)
Type 1: 11.5 14.5 16.9 21.3 19.2
(7.075) (6.546) (7.217) (6.001) (10.274)
Type 2: 7.7 10.1 17.0 15.4 15.6
(4.627) (4.134) (13.550)  (7.186) (13.669)
Type 3: 61.0 58.2 62.7 82.1 86.8

(24.763)  (23.241)  (20.581)  (15.443)  (27.845)
Average CPU time in seconds.

Total:  8.845 9.435 11.038  23.308  28.733
(3.449)  (3.650)  (3.773)  (4.677)  (9.33)

P-T method.
Average number of pivots.
Total:  218.8 280.2 334.8 456.2 519.3

(182.757) (227.947) (260.272) (339.748) (574.074)
Average CPU time in seconds.

Total:  12.557 18197  23.217  53.288  69.870
(10.688) (15.039) (18.765) (40.436)  (80.815)

¢3 = (6.000, —2.000);  2*(¢®) = (2.000,0.000,2.800),
¢* = (10.474,-2.664); 2*(¢*) = (3.595,0.310,0.000).

The maximum of z3 is attained at z*((?).

5. Computational Experiments

We will report the results of computational experiments on algorithm OPT. We
~ solved the following subclass of (P):

maximize clz

subject to Az <b, z >0,
dTz > dyo, diz > dy,
(dTz — dyo)(dTz — dyp) — doo < 0.
where ¢, d; € R*(i = 1,2), dip € R'(i = 0,1,2), b € R™ and A € R™*". Elements of
¢, di’s and A were randomly generated between —1.000 and 1.000, and those of b, dig’s

(5.1)
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Table 5.2. Computational results for (5.1).

m 150 200 ~ 200 200 220
n 180 180 200 220 250
Algorithm OPT.
Average number of pivots.

Total:  165.2 152.3 172.2 151.9 176.4
(40.877) (36.064)  (33.893) (39.333) (55.579)

Type 1: 38.1 28.3 24.3 23.1 29.0
(15.719) (10.508)  (10.479) (13.141) (9.623)

Type 2: 251 34.2 19.7 15.8 29.8
(17.535) (14.020)  (15.646) (8.483) (14.379)

Type 3: 102.0 89.8 128.2 113.0 117.6

(35.296) (48.099)  (34.790)  (49.649)  (57.395)
Average CPU time in seconds. '

Total:  36.902 52.750 65.847 61.875 93.880
(9.909) (20.613) (16.973)  (26.774) (38.794)
P-T method.
Average number of pivots.
Total:  774.5 402.1 668.2 586.8 752.9
(1015.864) (552.154) (827.674) (608.934) (770.500)

Average CPU time in seconds.

Total: ~ 112.035  83.108  149.338  131.598  241.232
(150.187)  (116.895) (188.593) (140.885) (252.917)

were between 0.000 and 1.000. The size of problems ranged from (m,n) = (100,80) to
(220,250). For each size we selected ten examples which were feasible and had no trivial
solutions. We coded OPT and the algorithm proposed by Pferschy and Tuy [14] (abbr.
P-T method) in C language, and tested them on a SUN SPARCstation ELC computer
(20.5 mips). The tolerance € required by the latter algorithm for obtaining an e-optimal
solution was fixed at 107°.

Table 5.1 shows the computational results when the size of (m,n) is (100,80) to
(150,150). For each size of (m, n), the average number of (primal or dual) simplex pivots
and the average CPU time in seconds (and their respective standard deviations in the
brackets) needed for solving ten examples are listed. Here, Type 1 pivots mean primal
ones which were carried out in Phase 1 for solving a linear program: minimize{d;”z |
z € X }. Types 2 and 3 stand for dual simplex pivots applied in procedure ACT and
step 3° of Phase 2, respectively. Table 5.2 shows the results when (m,n) is between
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(150,180) and (220, 250).

We see from these results that algorithm OPT is fairly efficient compared to P-T
method for randomly generated problems (5.1). In particular, the total number of pivots
required by OPT is only about 25 % of that by P-T method. Moreover, the variance of
the former is far less than the latter. Since P-T method discards local maxima by cutting
off the feasible region, unfortunate cuts sometimes delay the convergence considerably.
Contrary to this, algorithm OPT uses no cuts and hence the convergence is relatively
stable. It should also be emphasized that OPT yields not an e-optmal solution but a
globally optimal one.
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