ISE

ISE-TR-93-102

Analysis of Multiclass M/G/1 Queues
with Feedback

by
Tetsuji HIRAYAMA and Sung Jo HONG

August 17, 1993

INSTITUTE
OF |
INFORMATION SCIENCES AND ELECTRONICS

UNIVERSITY OF TSUKUBA




Analysis of Multiclass M/G/1 Queues
with Feedback

by

Tetsuji HIRAYAMA
Institute of Information Sciences and Electronics
University of Tsukuba
Tsukuba-shi, Ibaraki 305, Japan

Sung Jo HONG
Doctral Degree Program in Engineering
University of Tsukuba
Tsukuba-shi, Tbaraki 305, Japan

(August 17, 1993)

Abstract.

We consider the multiclass M/G/1 queues with feedback. J classes of customers arrive at
the stations from the outside of the system according to a Poisson process. The service time
distribution for each class is arbitrary and the service discipline at each station is either the
FCFS or the preemptive LCFS. After receiving a service, the customer at the station s either
departs from the system with probability p;o, or feeds back to the system and proceeds to
the station k& with probability p;x (i,k = 1,---,J). We consider the cost functions naturally
stem from the analysis of the system. They include the mean sojourn times for customers
arriving at every station. First we consider the system at the arbitrary states to obtain the
explicit formulae of the coét functions and then derive the steady state solutions by using
the generalized Little’s formula and PASTA. We also attempt to generalize the results to
the other service disciplines.

Key words. Multiclass M/G/1 queues, feedbacks of customers, mean sojourn times,

scheduling disciplines and Little’s formula.



1 Introductlon.

In thls paper, we consider the multiclass M/G/ ] queueing system with feedba.ck A single server
serves J types of customers at J stations. Customers arrive at the station : (1 = 1,...,J) from
outside of the system according to a Poisson process. The service times of the customers at the
every station are arbitrarily distributed. The customers in the station with the lowest number have
the highest priority. The service discipline at each station is either the FCFS or the preemptive
LCFS. After receiving a service, the customer at the station i or the customer i either departs from
the system or feeds back to the system a,nd proceeds to the station k& (z k=1,...,J). We derive
the explicit formulae of the two cost functions of the specific tagged customer that represent the
total -amount of the mean sojourn times and the cumulative works. :

In the previous paper [11], we consider the system at the arbitrary embedded Markov points
and derive the mean sojourn times. In this paper, we consider the system at the arbitrary system
states in order to derive the cost functions. Then we consider the system under the steady state. In:
Section 2, we define the system and the cost functions in detail. The set of the equations satisfied by
the cost functions is ‘derived. Section'3 is devoted to derive the two other cost functions naturally
stem from the analysis of the system. We derive the statistics with regard to the system states in
Sections 4 and 5. In Section 6, the set of the equations is solved to derive the explicit formulae
of the two objective cost functions at. the arbitrary system-states. The steady state of the system
is defined in Section 7. The uniqueness of the cost functions is established in Section 8. Finally,
in Section 9; we evaluate the steady state values of the cost functions by the generalized Little’s
formula (H = AG) and PASTA (Poisson arrival see time avemges) property. The genera.hzatlon of
the service disciplines also goes abreast.. :

* Disney [4] and Disney et al. [5] have been concerned W1th sojourn times in M/G/1 queues with
instantaneous, Bernoulli feedback. Berg, et al. [1] considered the system in which each customer
requires N services. Fed back customers return instantaneously, joining the end of the quene. The
service discipline is FCFS. They derived the set of linear equations for the mean sojourn times
per visit can be explicitly solved: The M/G/1 queue under the foreground- background processor-
sharing discipline is investigated in [17]. Simon [20] considered the system with c types of customers
and m levels of priority. Type j customers may require service N(j) times. The k** time a type
Jj customer enters the queue it is assigned priority level f(j,k). He obtained the set of linear
equations for the mean waiting times. Doshi and Kaufman [6] studied the sojourn time of a tagged
customer who has just completed his m®® pass in an M/G/1 queune with Bernoulli feedback. They
also considered the model with multiple customer classes. The relationship between the M/M/1
feedback queue and M/G/1 queue with processor sharing is investigated in [2]. Recently, Epema
[8] investigated the general single server (M/G/1) time-sharing model with multiple queues and
customer classes, priorities and feedback. Customers are served in passes, receiving a complete
quantum of service on every pass, or their remaining service demand, whichever is the lesser. If
a customer completes his service demand during the pass, it leaves the system. He derived a set
of linear equations in the mean waiting times of the customer passes for all classes and queues.
The optlma.l scheduling of the multi-class quete with feedback has been studied in [15, 21]. The
problem is known as the multiarmed bandit problem [22]. The priority queues are well investigated
in [12], [10] and [26]. For further related topics on the field, see [13, 16].

2 The model description.

A single server serves J types of customers at J stations. Customers arrive at the station i from the
outside of the system according to a Poisson process {A4;(t) : ¢t > 0} with the rate A\; (1 =1,...,J).
The customer at the station ¢ is called the class 1 customer, or simply the customer ¢. The service



time S; of the class 7 customers is arbitrarily distributed.
The customers are serviced accordmg to the predetermined service dzsczplzn es. We assume the
following overall disciplines: : ‘

e The customers,a.re preferehtiall_y serviced in the ascending order of their classes. That is, the
customer j has priority over the customer : if j is less than 1.

e The service discipline is preemptive over the class. When the customer arrives at the station
i, all the customers belonging to the classes between i + 1 and J are pIeempted from the
se1v1ce The preempted customers resume serv1ces later on.

The service disciplme for each class (station) is either the FCFS or the preemptive LCFS (PR-
LCFS). The station i with the FCFS discipline serves customers according to the first come first
served basis if no customers are in the stations from 1 to 1 — 1. The station 7 with the preemptive
LCFS discipline serves customers according to the preemptive resume last come first served basis
if no customers are in the stations from 1 to : — 1.

“After receiving a service, the customer ¢ either departs the system with probability p;o, or feeds
back to the system and proceeds to the station k with probability p;x (i,k = 1,...,J). Let the
matrix P, = (p;; : 1 < 4,5 < m) (1 < m < J). The arrival processes, the service times and the
feedback processes are assumed to be independent of each other. .

Let v denote the current work, that is, a customer will receive v seconds of service potentially
at-the currently entered station on the visit. The customer departs the system or feeds back to
the system after receiving v seconds of the service. Let T;;(v) be the total amount of service times
that a customer is currently at the station 7 with the current work v receives until the customer
departs from the system or leaves for one of the stations between j + 1 and J for the first time
(1< 1,5 <J). Then,

(v) = v +T1](Sl) with probability p;;, ,l =1,...,7, (2.1)
Tii(v) = with probability p;;, I=j+1,...,J, or 0. )

Note that even if 1 > j, the customer is assumed to Iecelve at lea.st the service v. The expected
value of T;;(v) is given by

E[Tw(”) =v+ EPuE[TlJ(Sz)] 1<4,5<J. (2.2)
Specifically, if we let T,-‘j_ = T;5(S:), ‘t:‘he_n ‘
[ U] - E[S] + szlE[ﬂJ]a 1<4,< U (2'3)
=1 .

So we can obtain its solutlon in the vector form 1f (I P ;)1 ex1sts We deﬁne the 1nten51ty pj i in
the followmg manner: '

po = 0,
J
p; = ZA,‘E[T,'J'], j=1,...,J

Then we put the followmg assumptlon

Assumptlon 2.1.

1. P =0 as n — 00.



2. py< 1.

The first assumption is the sufficient condition for the existence of (I — P;)~! for j = 1,...,J.
The number of customers in the station 7 is denoted by n; and its vector is denoted by n =
(n1,...,77). The customers in each station are arranged in the order of their arrivals. Let v;,,, be
the current work of the m® customer s (i = 1,...,J and m; = 1,...,n;) and let V = {Vim; 11 =
1,...,J and m; = 1,...,n;} be the set of these current works. We call the pair (V,n) the system
state or simply the state. We use the term work also to denote the current work.

Now we give our attention to a specific customer called a tagged customer. Specifically, if the
customer is in the station i, we call him the tagged customer ;. We would like to derive the two
types of the cost functions defined below. The first type of the cost functions represents the mean

sojourn time of the tagged customer. We define

the mean sojourn time of the tagged customer, who currently
arrives at the station ¢ when the initial system state just
prior to the arrival is (V,n), spent at the station j until

the customer departs from the system, 1 <1,;5 < J.

 Wi(Vim) = (2.4)

For convenience, we define that Wy;(V,n) = 0. Note that we exclude the ta'gged customer from
the initial system state. Further, we define

the initial (mean) sojourn time of the tagged customer, who
currently arrives at the station : when the initial system state
just prior to the arrival is (V, n), spent until his first

service completion at the station, 1 <17 < J.

Wi(V,n) = (2.5)

Then the mean sojourn time W;;(-) of the tagged customer i (i = 1,...,J) for the station j
(j =1,...,J)is decomposed into the two parts, the initial mean sojourn time and the mean sojourn
time after spending the initial sojourn time. We mathematically express the fact as follows:

- . E[WKJ(V*,n*)l(z),(V,n)], ? #Ja
WislVm) = { W,(V,n) + Bl i, (Vo n(3), (Vi i = J, (2:6)

where the condition {(z),(V,n)} denotes that the tagged customer currently arrives at the station
i when the system state just prior to the arrival is (V,n), and where K is the station number for
which the tagged customer leaves after staying the station 7 and (V*,n*) is the system state on his
first service completion at the station i. Note that the two statistics W;(V, n) and (V*,n*) may be
different- for every service discipline.

The second type of the cost functions represents the cumulative current work of the tagged
customer. Let f;(t) be the current work or the current remaining service time at time t of the
tagged customer at the station j. For example, if the tagged customer enters the station j at tg,
then f;(to) = S;. The value of f;(t) gradually decreases as the server serves the customer. If
the tagged customer completes his current service at ?1, fj(¢t1) = 0. The customer again enters
the station j at ¢ > t1, then f;(t2) = S;. The value of f;(¢) gradually decreases until the server
completes the service of the the tagged customer at t3. Then, f;(t3) = 0 and so forth. Then we
define

the cumulative current work of the tagged customer, who
currently arrives at the station ¢ when the initial system state
just prior to the arrival is (V, n), accumulated at the station j
until the customer departs from the system, 1 <1¢,j < J,

B[ @), v, )l

Gi;(V,n) = (2.7)



For convenience, we define that Go,;(V,n) = 0. Note that we exclude the tagged customer’s work
S; from the component V of the initial system state. Further, we define

the instial cumulative current work of the tagged customer, who
currently arrives at the station i when the initial system state
just prior to the arrival is (V, n), accumulated until his

first service completion at the station, 1 <1< J,

B[ S0, (.

Gi(V, n’) = (23)

Il

where 0 is the arrival epoch of the tagged customer at the station ¢, and where W; is his first service
completlon epoch (the initial sojourn time) at the station.
Then the cost function (the cumulative current work) G;;(-) of the tagged customer i (¢ =
J) for the station j (j = 1,...,J) is decomposed into the two parts, the cost accumulated
during the initial sojourn time and the cost accumulated after spending the initial sojourn time.
We mathematically express the fact as follows:

v m = | EGxi(V*,n)|@), (V, )], i # 7,
GV )’{ Gj(V,n) + E[Gk;(V*,n)|(j), (V,n)], i=, - @9

where K is the station number for which the tagged customer ¢ leaves after staying the station
i and (V*,n*) is the system state on his service completion at the station ¢. Note that the two
statistics G;(V,n) and (V*,n*) may be different for every service discipline.

After stating some assumptions, we will explicitly solve these equations (2.6) and (2.9) in
Section 6. We also attempt to generalize these results to the service disciplines other than the
above mentioned. :

'These statistics are shown to be closely related to the busy periods. So we close the section
with the definitions of the statistics. Let BJ be the first time until the system is cleared of the
customers from classes 1 through j,j =1,...,J. Let

1 through j with the ‘exceptional’ service time v, j =1,...,J. (2.10)

Bj(v) _ { the first time until the system is cleared of the customers from classes
For notational convenience, let B%(v) = v. In the usual ’queueing parlance, B’ is the busy period
composed of customers 1 through j and B (v) is the Ezceptional First Service Busy Period (EFSBP)
composed of customers 1 through j [24]. We will call B’ and B?(v) simply the class j busy period
and the class j busy period with the exceptional service v, respectively.  Their expected values are
given by

1o ME[T)

(Xl =py)
E[B'(v)] = e (2.12)
1—-p;
Further, we define
B (V,n) = the first time until the system is cleared of the customers from classes 1 (2.13)
*™77 1 through j starting from the initial system state (V,n), i =1,...,J. :

Note that the works vv‘,-m,. (t=j+1,...,J and m; = 1,...,n;) are not performed in this period.
We will call B?(V, n) the class j busy period with the initial state (V,n). We now consider a set of
customers currently in the system and denote it by X. For example, if the mi* customer 7 currently



in the system belongs to the set, we express it as (¢, m;) € X. The set of customers who are initially
in the system and are not in X when the system state is (V, n) is denoted by X. We then define -

0 . _ the first time until the current works of customers
B(Vin X) = { belonging to X have been performed, (2.14)
the first time starting from the initial system state (V,n)
B (Vims X) = until the current works of customers belonging to X have (2.15)

been performed and the system is cleared of the customers
from classes 1 through j except the customersin X, j=1,...,J.

The main difference between B?(V,n) and B’(V, n; X) is that the works vim, (i = j+1,...,J and
m; = 1,...,n;) can be performed in the latter period by appropriately choosing the set X. We
will call it the class j busy period with the initial state {(V,n); X}. Note that these EFSBPs are
invariant for all work conserving service disciplines [14]. Then it can be shown that

BO(V,TI,;X) = Z Vem;» (2.16)
(¢ymi)EX v

B(V,nX) = > B(Ty(vimy))- (2.17)
(2,m;)EX

If weset X; = {({,m;) : 4 = 1,...,5and m; = ],...,ni}, then B/(V,n) = Bj(V,n;Xj) for
i=1,...,J.

3 Initial cost functions.

In this section, we derive the initial cost functions W;(-) and G;(-) of the tagged customer i (; =
1,...,J). First we consider the statistics for the two specific service disciplines, FCFS and PR-
LCFS, and then attempt to generalize the results.

The initial cost functions W;(-) and G;(-) are different for each service discipline. We first
derive them for the FCFS discipline. The set X7 (i = 1,...,J) of customers is composed of the
customers belonging to the classes 1 through ¢ who are initially in the system. We distinguish the
FCFS discipline by the superscript F. The initial sojourn time W1 (V,n) of the tagged customer i
for the FCFS discipline with the initial state (V,n) is composed of the class 7 — 1 busy period with
the initial state {(V,n); X'}, and the class i — 1 busy period with the exceptional service S; of the
tagged customer. Hence,

WEWV,n) = E[B~YV,n; XF)+ B~YS))], i=1,...,J (3.18)

As we have shown in the last section, the EFSBP is the sum of the EFSBPs starting with every
customer in X,F . Its expected value is easily obtained by the usual method [24]. Then

? 7 .. . .
wiv,n)y =3 % BT (vm,)] + E[S] , i=1,...,J. (3.19)
j=imy=1 1-pia 1-pia

On the other hand, the cumulative current work initially equal to S; gradually decreases to 0.
Then we carefully calculate the values. For the FCFS discipline, the current work is equal to S;
until the service of the tagged customer begins. Then it decreases at the rate of 1 second a second
until the customer is preempted by an arriving customer in one of the classes between 1 and 7 — 1.
The current work of the tagged customer keeps its last level. After completing the class i — 1 busy
period initiated by the arriving customer, it then decreases at the rate of 1 second a second until



the customer is preempted by another arriving customer in one of the classes between 1 and 7 — 1,
and so on. Let t; (I = 1,2,...) denotes the attained service time of the tagged customer on his
I* preemption. We obtain the cost function GF(V,n) by conditioning on the service time S; of

the tagged customer, the number A“— ”1 Ak(S) of the customers who preempt the tagged
customer and the time #;,/=1,..., A" Then we obtain
. ) m . S?
GF (V,nlSi, A' = m, {1}) = S: { E[B'(V,ms XV} + 30(Si — ) EIB{ ']+ 5 (3.20)
1=1

where B{"l is the [t* class i — 1 busy period. By the nature of the Poisson process, the time {¢;}
have the same distribution as the order statistics corresponding to m independent random variables
uniformly distributed on the interval S; [18]. Hence we obtain ‘

E[4]S;, A =m] = Sy 1=1L.m (3.21)

Then we have

GﬂVm)=E$di:§i——ﬂjgﬁﬂn+ ~Ai_1E[S?|E[B Y + Egﬂ

3.22
1= pia 5 (3.22)

1=1mj;=1

where A, = Zz

Second, we denve the initial sojourn time for the PR-LCFS discipline. Let XPL ¢. The set
XFPL (i =2,...,J) of customers composed of the customers belonging to the classes 1 through:¢—1
who are initially in the system. We distinguish the PR-LCFS discipline by the superscript PL.
Note the difference of the definitions from the case of the FCFS discipline. The initial sojourn time
WPL(V n) of the tagged customer ¢ for the PR-LCFS discipline with the initial system state (V,n)
is composed of the class 1 busy period with the initial state (V,n) and the initial set of customers
X} PL and the class i busy period with the exceptlona,l first service S;. Hence,

WEL(v,n) = E[B(V, n;X,PL)+B*(si)] | (3.23)
_ oy st Bl )l BISL G (30
=1 m= 1-pi 1—p;
1=1m;=1

Similarly as the FCFS discipline, the cost function GFL(V, n) is obtained as the following expression.

. —1 nj ET m ES2 .
GPL(V,n) = E[S]Z > [ "(”’ ’)] A‘E[ 2|E [B’] + === [ ] (3.25)
1=1m;=1 2
where A; = 2;;=1 Ak
- Next we attempt to generalize the results.

Generalizations of the initial cost functions.

As we have seen above, the initial sojourn times are the sum of the EFSBPs starting with the
tagged customer 7 and every initial customer in X;. The initial cumulative current works are also
decomposed into the values associated with the EFSBPs.

Then we may generally assume the followings:

J . nj . .
Wz(Va n) = Z{(ﬁllg E Yjm; +¢12jnj}+wza 1=1,...,J, (3'26)
7=1 mj=1
J o ) ) .
GiVin) = Sm; S vimy +mimi) g =10 (3.27)
1=1 mj=1



For example, in the case of the FCFS discipline, we can obtain from (2.2), (3.2) and (3.5),

¢2F — {1/(1“Pz‘—1), j=1,...,1,

0, G=it1,...
¢iF — Z leE[T‘l‘t— ]/(1 —pi—-l)’ J=1,...,1,
2 0, G=i41,... 7,

w¥ = E[S]/Q - pi-1),
F { E[Si]/(l—pi—-l)a j=1’°' s by

M= o, F=it ..., ],
g = | BISIZZpaBlLiaa)/(1 = picy), J=1,0.4,
N 0, i=it1,...,J,

g" = E[SAAin1E[BT +1)/2 = E[S7]/{2(1 - pi-1)},

where ¢ = 1,...,J and we distinguish the FCFS discipline by the superscript F. The expected
values E[T};_1] and E[B*~!] are given by (2.3) and (2.11). In the case of the PR-LCFS discipline,
we can obtain from (2.2), (3.6) and (3.8),

¢3PL — ]/(l_pi)) ]'=:'l,...,2'-—1,
0, ]=Z7’_"7‘]7’

Ef:lpﬂE[T,li]/(l_pi)) j=17°°'7i—]1
0 F=1t,...,4d,
E[S:]/(1 = pi),
tPL {E[S,/(]——p,), jzla"')i—lr
7]1] - O

[

¢‘LPL _

szL -

j=i,...,,

]
ElS) i p BTl /(1 = pi), §=1,...,0—1,
0

E[S?)(A:E[B] + 1)/2 = E[S7]/{2(1 - pi)},

where 7 =1, ..., J and we distinguish the PR-LCFS discipline by the superscript PL. The expected
values E[T;;] and E[B'] are given by (2.3) and (2.11).
For notational convenience, we define the following vectors:

3
)

1PL

N2y F

I ) ]=Z>--~7J:

giPL —

W' = (¢, 1,,¢51,...,¢3J)'6R2“1, i=1,...,J, (3.28)
gz = (71117---aﬂ1J,ﬂz1,~-~,W§J)lGRNXI’ ’i=1,...,], (3’29)
V = (vla .- "VJ) € RlXJ7 (330)

where ’ denotes the transposition and where 7 = Zn“_l Ujm; is the total amount of works at the
station j (j =1,...,J). Then, the assumption (3 9) is ananged as follows:

Wi(V,n) = (V,m)W 4w, i=1,...,J, (3.31)
G;(V,n) = (V,n)G +¢', i=1,...,J. (3.32)

The expressions will be cited later to derive the cost functions W;;(-) and G;;(-).

The important things to consider about the assumption are that the aggregated system state
(V, n) should be sufficient for estimating the cost functions W;(V,n) and G;(V,n), and that the cost
functions should be the linear function of the aggregated system state. Of course, the coefficients
W', G w' and ¢* (i =1,...,J) can be different for every service discipline.



4 System states just after the busy periods.

In this and the next sections, we derive the expected value of the system states on the completion
epoch of the initial sojourn times W;. As we mentioned before, these statistics are closely related
to the busy periods. So we consider the system states after the EFSBPs in this section.

Let V{(v) and NJ (v) (0 < j <1 < J) be respectively the total amount of works and the
number of the customers at the station ! on the completion epoch of B’(v). It is assumed for
these variables that the initial (tagged) customer with his current work (or exceptional service) v
is ignored from temporary considerations after receiving the service v as if it was rejected from the
system . Let V(V,n; X) and N’(V n; X) (0 < j <1 < J) be respectively the total amount of
works and the number of customers at the station [ on the completion epoch of B’ (V n; X) where
in this case all feedbacks of customers are taken into consideration (including the customers initially
in the system). Recall that B(V,n; X) is a class j busy period with the initial state {(V,n); X}.
Similarly as B7(V,n; X), these statistics are the sums of the statistics generated at the sub-busy
periods initiated by the every customer in X. Then

) ‘/Ij(V, n,X) = Z Vimy + Z Vlj(vkmkaek;{(kJmk)}): (4'33)
mi€{m:(I,m)¢ X} (k,mi)EX »
NIJ(V,?’L;X) = Z 1+ Z Ni](vkmkyek;{(kymk)})y (434)

m€{m:(I,m)¢ X} (kymp)eX

where 0 < j < | < J. The empty sum, which often occurs at j = 0, is defined to be 0 from now
on. These statistics consist of the customers initially in the system, the customers arrived from the
outside of the system and the customers arrived by the feedbacks. The every random variable in
the right-hand side of each equation are mutually independent.

The derivation procedure of these solutions are similar to those in the previous paper [11]. Since
the EFSBPs are invariant for all work conserving service disciplines, the statistics defined above
are also invariant for these service disciplines. Similarly as the derivation of the moments of the
ordinary busy period, we consider a service discipline which serves the customers nonpreemptively
according to the last come first served basis.

For notational convenience, we define

Vi(0kme) = Vi Uk er; {6, me)}),
‘ Nil(vkmk) Nlj(vkmuek5{(ka mk)}),

Il

and define

1 if the customer k& with the current work v enters the station [
1,(v) = on the completion epoch of the service Ty;(v),
0 otherwise.

Then we have

. AT j(vkm,, ) i AilTei(vrm,))
Vi(vkm,) = S S+ Y, DL Vi(Simi) + Silug(vkmy),
my=1 =1 mi=1
' AlTj(vkm,))
Nil(vkmk) = Al(Tkj(Ukmk)) + Z Z Ngz(simi) + llkj('vkmk)y
=1 m;=1

where S;,,; is the service time of mth customer ¢ (0 < j <1< Jand 1<,k < J). The expected
values are defined as follows:

77%1 E [ijl.(sk ),
Nu = E[NL(S)



(Notice the distinction between the statistics V3, and the aggregated state V;.) By conditioning
on the completion epoch of the current work v and after some calculations, we obtain

| i i
E[Vi(w)] = v {)‘IE[SI] + ZAinz} +prE[S)+ > pxi Vi, (4.35)
| i i
ENL()] = vSh+ D AN +pu+ D prilNy, (4.36)
=1 =1

where0< j< i< Jand 1<k < J. Speciﬁcally, Vi, and W—il satisfy the following equations:

| i i
Va = E[Sk]{/\IE[SI]+ZMV31}+pk1E[51]+Zpkinu k=1,...,5, (4.37)
=1 =1
. i i
N = ESdS M+ ANy +pa+) peily, k=1,...,j (4.38)
~ =1 =1

where 1 < j < I < J. These equations are eaéily solved by the usual techniques in the vector
forms under Assumption 2.1. The expected values of the statistics defined in this section can be
expressed by these results. We can show

‘ Ar(v) J Adv)
VIJ('U) = z Stmy +Z Z Vi.;(simi%
m=1 1=1m;=1
. 7 Av)
N (@) = A +>. D Ni(Sim)-
1=1m;=1
We now define the following constants:
, J : :
& = MNE[S]+) AVE=¢E[S), (4.39)
=1
: J . :
Xu = puB[S+ ) puVi=XxuES), (4.40)
1=1
A 7.
g = N+ NNy, (4.41)
=1
: J .
Xh = Pu+ . PeiNu (4.42)
=1

where0<j< i< Jand1 <k < J. V{, and 'N”,f, are the solutions of the equations (4.5) and (4.6).
Hence their expected values are

ElV/ ()] = o8, (4.43)
E[Nj(v)] = vg§. (4.44)
We can finally obtain
EVi(V,imX)] = 3 vmt+ Y EVi(vem,)]
m€CY(X) (k,mp)EX
= Z Yim, + Z {Ukm,f? + _X—il} 3 (4'45)
meC(X) (k,mp)eX



EIN(V,in; X)) = Y 1+ Y E[N(vim)]
mi€CI(X) (k,mi)EX

o1+ Y {vem + ) (4.46)

m€CI(X) (k,my)EX

Il

where C)(X) = {m : (I,m) ¢ X} and 0 < j < I < J. These results are used to obtain the expected
system state after the initial sojourn times.

5 System states just after the initial sojourn times.

In this sections, we derive the expected value of the system states on the completion epoch of the
initial sojourn times W;. Since these statistics are different for every discipline, we first consider
the FCFS discipline and then consider the PR-LCFS discipline. The aggregated system state is a
pair (V,n) where V = (V1,...,V ) is the vector of the total amount of the current works in each
station and n = (n1,...,nys) is the vector of the number of the customers in each station.

As we have defined before, for the FCFS discipline, the set Xf (i=1,...,J) of customers is
composed of the customers belonging to the classes 1 through 7 who are initially in the system. We
recall the relation (3.1) between the initial sojourn time and the busy period:

WEWV,n) = E[BYV,n; XF)+ BYS)), i=1,...,J (5.47)

Let (i) denote the tagged customer 7 with the initial work S;. The (aggregated) system states
(?,n*) for the FCFS discipline on the completion epoch of the initial sojourn time are obtained
from (4.1) and (4.2),

EF[VT1G), (V,n)] = B[V 7V, n; XF) + Vi7(S0)]
0, I=1,...,6—1,
= { Ther Tokor BV (vemy )] + EVITH(S))), =i, (5.48)
Vl + k=1 Z:lrfk:l E[szl—l('ukmk)] + E[Vlz—l(‘si)]r l=1+1,...,J,

EFInf|(0), (V,n)] = BIN; 7 (V,n; XF) + N7 (S0)]
0, l=1,...,1—1,
= { Tie1 Tk o1 BN (0kmy)] + EIN;TH(S)), 1=, (5.49)
n + k=1 Z:Z;:l E[ Izcl—l('vkmk)] + E[le—l(si)]a l=i+1,...,J,

where 1 < ¢ < J. The concrete expressions for these equations are given below.

Next, for the PR-LCFS discipline, let X{* = ¢ and the set X}'Z (i = 2,...,J) of customers is
composed of the customers belonging to the classes 1 through i — 1 who are initially in the system.
We recall the relation (3.6) between the initial sojourn time and the busy period:

WEL(V,n) = E[B'(V,n; XY+ BY(S))], i=1,...,J. (5.50)

The (aggregated) system states (V" ,n*) for the PR-LCFS discipline on the completion epoch of
the initial sojourn time are obtained from (4.1), (4.2), (4.3), (4.4), (4.11) and (4.12).

EPLVTI(), (V,n)] = E[VA(V,n; XPE) + VE(Si)]
0, I=1,...,i—1,

=V, ‘ A I=i, (5.51)
Vit Tt Tt EVa(vem )l + EIVE(S)], 1=i+1,...,7,
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EPX[n}|(3), (V;n)] = EIN{(V,n; XPL) + Ni ()]
0, I=1,...,1i—1,
= { n, A 1=, (5.52)
m+ T T Ly BV (o)) + BINF(S)],  1=i+1,...,7,

where 1 <1< J.
Next we attempt to generalize the results.

Generalizations of the results.

~ As we have seen above, the aggregated system state after the initial sojourn times are the sum
of the state starting with the tagged customer ¢ and the every initial customer in X;. Then we may
generally assume the followings:

J . ] )
E[Wl(")) (V: n)] = Z{E;clvk + E;clnk} + 7;) (5'53)
k=1 .
J
E[nf|(6),(V,n)] = Y {auVi+ Bunc} + i, (5.54)
k=1

where 1 < 4,1 < J. The explicit values of these constants for the FCFS discipline and the PR-LCFS
discipline can be obtained by the results in the last section. In the case of the FCFS discipline, we
can obtain from (4.11), (4.12), (4.13) and (4.14),
EFVII(), (V,m)] = BV, 7 (V,n; XT7) + Vi7H(S))]
0, I=1,...,i—1,
N =15 —i—1 —i—1 .

Lk=1 {é} Vi + X nk} +& CE[S], l=1, - (5.55)
Vl+z;c=1 {gll—lvk"'nylnk}"'a_lE[Si]) l=7’+1)a‘]7

EF[nf|(3), (V, )] = B[N} (V,n; XT) + N{7H(S0)
0, [=1,...,1—1,
Thet {67V + xi7 ) + £V EBLS)), =1, (5.56)
N+ ke {fziﬁlvk + X;;lnk} + 51.—1E[Si]’ I=1+4+1,...,J,
where 1 < ¢ < J. We distinguish the FCFS discipline by the superscript F. In the case of the
PR-LCFS discipline, we can obtain from (4.11), (4.12), (4.13) and (4.14),
EFEVIN), (V,n)] = EIVE (V,n; XPF) + V¥ (S))]
| 0, . I=1,...,i—1,
= { Vi , , =1, (5.57)
Vi+ i {E{Vk +y;;,nk}+Z’,E[Si], I=i+1,...,J,

EFE[nf|(3), (V,n)] = BIN{(V,n; XFP) + N{(S)]
0, I=1,...,i—1,
= ni, l=4 (5.58)
m+ Do {6V + xume ) +EEIS], 1=i+1,..,
where 1 < ¢ < J. We distinguish the PR-LCFS discipline by the superscript PL. For the notational
convenience, we define the following matrices and vectors.

A =@, :ki=1,...,J), B=Fki=1,.,J),

A= (ayy i kl=1,...,J), B'=(B:kl=1,...,1J), (5.59)
=T, 7, T = (-5 79,

11



where 1 < ¢ < J. We further aggregate the matrices and the vectors as follows.

- i A |
u = | 2, 4, 5.60
E (5.0
w = (T, (5.61)

Then, the assumptions (5.7) and (5.8) are arranged as follows.
E[(V",n")|(0), (V, )] = (V, m)lf’ + ', (5.62)

where 1 < ¢ < J. The expression will be cited later to derive the cost functions. :
Similarly as the initial cost functions, the important things to consider about the assumption are
that the aggregated system state (V, n) should be sufficient for estimating the aggregated system
state (V",n*) after the initial sojourn time W;, and that the expected value of the aggregated
system state after the initial sojourn time should be the linear function of the aggregated system
state. Of course, the coefficients I *andu’ (i = 1,..., J) can be different for every service discipline.

6 Expressions of the cost functions.

In this section, we derive the explicit formulae of the cost functions W;;(-) and G;;(-) under the
assumptions stated in the last sections. As we have defined, W;;(V,n) is the mean sojourn time
of the tagged customer, who is currently at the station ¢ when the current system state is (V,n),
spent at the station j until he departs from the system, and G,'j(V,n) is the cumulative current
works of the same tagged customer accumulated at the station j until he departs from the system,
1<4,7<J.

We put again the assumptions that are derived from the analysis in the previous sections.

Assumption 6.1.

Wi(V,n) = (V,n)W' 4+ w', (6.63)
Gi(V,n) = (V,n)G" + ¢', (6.64)
E[(V",n)|(i),(V,n)] = (V,n)l* +u* € R%, (6.65)

where 1 <1< J.

Of course, the assumption is satisfied by the FCFS and PR—LCFS disciplines.
By fixing the index j (j = 1,...,J), let us consider the cost functions for the station j. Now
we define the following matrices. Let J = 2J2. '

W = (0,...,00W7,0,...,0) €RI*,

G = (0,...,0,6"0,...,0) €RT*Y,
( pulo pi2lo -+ puso
pa1lo p2lo -+ pa2ilo

Q = . . . RJXJ’
\ pilo pj2lo -+ pislo
(10 -~ 0

I, = 01 - O, c R27x27

- . . . . b

\0 0 --- 1
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U = : : .. : ERJXJ’

where / denotes the transposition. Then we have

U;Pn U;Pn U;PU
Upyy Upay -+ U pyy

UQ = . , ) € RI*J,
Upjy Upjy - Upy;

‘We now suppose (I — UQ)™! exists where I is an identity matrix in R7*7. Then we can define

Wi,

W= = -UQ)'W e RTX, (6.66)
Wi;
G,

G = D | =(I-UQ)™'G e RTM. (6.67)
Gij

Further we define
[ ' TloipuWr )

—1J

W Yy Pi— 1k Wi ,
] ] J x1

w +w o pixWey | €ERTTS,
1

Wty P Wiy

g
I

\ W lipnaWy )
[ 0 Y oG )

W pio1kGi; ,
g =149+ uJJZ;{:lekaj € R
Wt Ty D410k

w’ Y1 pirGr; )

From Assumption 2.1, (I — P;)™! exists. Then we can define

[

w = : =(I-Py) 'we R, (6.68)
wy;
[ 91

g = : | =(U-P)'ge R (6.69)
\ 9

As stated in the previous sections, the coefficients W*, w*, G* and g¢' can be different for every
service discipline. So these vectors and matrices are also different for every service discipline.
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The following theorem is now derived.

Theorem 1. By fixing the index j (j = 1,...,J), let us consider the cost functions for the
station j. We put Assumption 2.1 and Assumption 6.1. Further if we assume that (I - UQ)™!
exists, then

W;;(V,n) = (V, Wi +wi;, 1=1,...,J, (6.70)
G,‘J‘(V,n) = (V, n)gij + 9i5, i=1,...,J, (6.71)

are the solutions of the the equations (2.6) and (2.9), respectively.
Proof. We show that (6.8) and (6.9) satisfy the equations (2.6) and (2.9), respectively. For 1 # j,

EWg;(V*,n")|(2), (V,n)]

J
= Z pikE[(V*: n*)wkj + wkjl(i)’ (V,n)]

=
1l
-

Il
M&.

pix [EL(7™, w0, (Vs m)] W + wig | (6.72)

B
]
-

1l
M&.

Dik [{(V, n)Lli + ui} Wi + 'LUkJ‘]

e
1l
-

J J J

= (V,n)U' Y pixWi; + {uz > piWis + Zpik'wkj}
k=1 k=1 k=1

= W;(V,n).

The last equation follows from the definition of the constants W;; and w;;, that is,

J
Wi = U Y piaWiy, (6.73)
k=1
o J
wij = u' Yy paWhi+ Y pikwy;- (6.74)

k=1 k=1

Hence W,;(V,n) satisfies the equation (2.6). In the same manner, we can show that G;;(V,n)
satisfies the equation (2.9) for ¢ # j.
For i = j,

W,(V,n) + BWi,(V*,n)|(5), (V, )]

J
= (V,m )W +w’ + 3 piE[(V", )W + wis |(5), (V, )]
k=1

J
= (V,n)W +w? + 3 pik {E[(V“, n*)(5), (V, n)]Wk; + wkj} (6.75)
k=1

= (V,n)W + v’ + EJ: Djk [{(T/—, n)U’ + u’} Wi, + wkj]
k=1

J J J

= (V,n) {WJ + U’ ijkaj} + {w’ + v’ ijkaj + ijkwk]}
k=1 k=1 k=1

= Wj]-(V,n).
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The last equation follows from the definition of the constants W,; and w,;, that is,

J
Wi = W U Y pixWi;, (6.76)
k=1
wi; = w +w Y pp Wi+ Y . (6.77)

Hence W;;(V,n) satisfies the equation (2.6). In the same manner, we can show that G,;(V,n)
satisfies the equation (2.9). O

7 The system in the steady state.

We have considered the system in the arbitrary states. In the following sections, we consider the
system with the steady state. :

Let us consider the system operated under some fixed service discipline. {(V(t), (t)) t > 0}
is the stochastic process associated with the system state (V,n). The state space is denoted by £.
Each component {v;m;(t) : ¢ >0} (j =1,...,J and m; = 1,2,...) of the process {V(t) : t > 0}
is a process which is left continuous with rlght hand limits. It is assumed that these components
Vjm; are appropriately arranged in order to know the service order of the customers. For example,
these may be arranged for every class of customers in the order of the arrivals in the case of the
FCFS and PR-LCFS disciplines. Each component {n;(t) : t > 0} (j = 1,...,J) of the process
{n(t) :t > 0} is a jump process which is left continuous with right-hand limits at the upward jump
and which is right continuous with left-hand limits at the downward jump. Further we assume that
{(V(t),n(t)) : t > 0} is a Markov process. From the nature of the Poisson processes, the overall
arrival process {A(t) = 7, A;(t) : t > 0} is also a Poisson process. The total arrival rate of the
customers is equal to A = EJJ=1 2. Let T, be the arrival epoch of the m* arriving customer and
let W™ (1 <j < J) be the total amount of the sojourn time of the customer spend at the station
J. G (1 < j < J)is defined as the cumulative current works at the station j of the mt* arriving
customer. We assume that W™ and G7* can be expressed as

W™ = W;(V(Tw), (L)), (7.78)

J

GT = G;(V(Tn),n(Tn)), | (1.79)

where m = 1,2,... and 7 = 1,...,J. From the Markov property, the FCFS and PR-LCFS dis-
ciplines satisfy these assumptions. Further we define the stochastic process {(V(t),n(t)) : t > 0}
associated with the aggregated system state (V,n), and let => denote convergence in distribution.
Each component {V;(t) :t >0} (j = 1,...,J) of {V(t) : t > 0} is a process which is left continuous
with right-hand limits, and {n(t) : t > 0} is a jump process defined above.

Now we are thinking about the steady state, then we are willing to assume that

(K(Tm), n(Th)) = (V(Tw),n(Tew)) as m — oo, , (7.80)
(V(Tr),n(Tr)) = (V(Tw), (Te)) as m — o0, (7.81)
as well as’
1 N
Jim WmZ_-:l W = E[W;(V(Te),n(Tw))] < o0, (7.82)
N
Jim_ _;V“mz-:l GT = E[Gj(V(Too), n(Ts))] < o0, (7.83)
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and

i ooz%ﬁ /0 ni(s)dA(s) = Eln;(To)] < o0, (7.84)
. 1 t__ —
Jim /0 Vi(s)dA(s) = E[V;(To)] < oo, (7.85)

where 1 < j < J. The time average values (V,7) of the aggregated system state are defined as
follows: :

1 t
iy = Jlim 7 /0 n;(s)ds, (7.86)
- 1 t__
7V, = Jim ?/ V,(s)ds, (7.87)

where 1 <5< J.
In the following discussions, the assumptions in this section are assumed to be satisfied.

8 Uniqueness of the cost functions.

We have obtained the set of the solutions of the cost functions W;; and G;; in Theorem 1. Now we
prove the uniqueness of the solutions under the appropriate assumptions.

Let T be the set of the stopping times [7] for the process {(V(t),n(t)) : t > 0} ‘The set 7 is
restncted to the subset 7° such that for some matrix B® > 0 and some vector b® > 0,

7° = {T € T : B[(V(T), (T)I(V,n)] < (V,n)B° +b°, V(V;n) € £} (8.88)

where the initial condition {(V(O), n(0)) = (V,n)} is simply denoted by (V,n). T, can be included
in 7°. Since from the steady state assumption (7.7) and (7.8), there exists a vector bg such that

E[(V(Too), (T ))I(V,m)] = bo, (8.89)

for all (V,n) € £. Also 0 € T°. Further, for all t > 0, let 77,(t) (i = 1,...,J;m = 1,2,...) be the
time such that if the tagged customer were to arrive at the station 7 at tlme t, then the customer

- would complete his mt* current service (service per visit to one of the stations) at that time. For
convenience, let 7§(t) =t (i =1,...,J). Then we define
= {F(T):TeT%i=1,...,J;m=0,1,2,...}. ~ (8.90)

Before proving the uniqueness of the cost functions, we need the following lemma.

Lemma. We put Assumption 2.1 and Assumption 6.1. Further we assume that (UQ)"‘
0 as m — 0o. Then there exist a matrix B! € R27%27 and a vector b! € R'*?/ such that

Y BV (13.(6)), e ran OV (1), n(2))] < (V(2), (1)) B + b, (8.91)
m=0

foralt>0andi=1,...,J.
Proof. From Assumption 6.1, it can be easily shown that

m—1
E[(V(7m), n(rm))|(@), (V, )] = (V,0)Y(QU)" ' E +e; Y PP 1X(QU)E e R (8.92)
k=0
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where 7, = 72,(t) (m > 1) and (V,n) = (V(t),n(t)), and where

Y' = (0,...,0,U',0,...,0) e R¥*7,

u? 0 --- --- 0
0 u? :
X = s . | e R,
: . . 0
0 [P 0 u‘]
e, = (0,...,0,1,0,...,0) € R**/,
I
'E — . ERJXZJ,
Ip

and the other constants are defined in Section 6. Hence we have

S BL(V (), n(rm)I(0), (V)]
m=1

00 oo m-—1
= (V,n)Y' > QU™ 'E+e; Y. > PP *1X(QU)'E
m=1 m=1 k=0

= {(V,n)Y' +e(I-P) ' XHI+ QU -UQ)'U}E

The last equality holds from Assumption 2.1 and the assumption that (UQ)™ — 0 as m — oo.
O

Now we introduce the normed linear spaces of functions [19]. Let f be a function defined on £
into R, and let
£ llv,my = sup { ELF(V(T), m(D)| [(V,n)] : T € T} (8.93)

for every initial system state (V(0),n(0)) = (V,n). Then the set of the functions is defined as
follows:

H(V,n) ={f|f:£— R and ”f”(V,n) < oo} (8.94)

for every (V,n) € £. As usual, we shall consider that the function f € Il(v,») is equivalent to
0 € I(y;n) if || fll(v;n) = 0. Then the set Il(y,) becomes a normed linear space for every (V,n) € £.
Further we define the space II such that ‘

I= () . (8.95)
(Vin)eE

We then obtain the following uniqueness of the solutions.

Theorem 2. Let {W;; :i=1,...,J} and {G;; : i = 1,...,J} respectively be the sets of
the cost functions, which are defined by (2.4) and (2.7), satisfy the equations (2.6) and (2.9) (j =
1,...,J). We put Assumption 2.1 and Assumption 6.1. Further we assume that (U Q)™ — 0
as m — co. Then each components W;; and G;; of the sets are the unique elements of II.

Proof. Fix the initial state (V,n) € £ and the index j (j =1,...,J). We first show that W;; and
G;; are the elements of I,y fori =1,...,J. For T € 7!, we have

J
Wi (V(T), n(T)) < 3 Wi(V(T),n(T))
1=1
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M .
= E[Y W (V(r5ea (1), 27 s (TIDI(V(T), (T)))]

m=1

M
= E[Y_ AV (130er (D)) mrpaca (D)W Xm + 0w }(V(T), n(T))]
m=1

< E[i (V(rea(T)), n(rin (TIDIV (T), M(T)W® + E[M]w®

m=0

where M is the number of visits to the stations and X, denotes the station staying at the m®* visit,
and where W° = (max; ohy, ..., max, qﬁ’fJ,maxk ¢'2“1,...,ma.xk ¢'2“J)', w® = max w* and E[M] =
E[M|(i),(V(T),n(T))] = ei(I — Ps)~*1. Hence we have

{E[(V(T), (T)I(V,m)]B + bW’ + ei(I - Py)~ "1

E[W;(V(T),(T)I(V,n)] <
< {{{(V,n)B° + b°}B! + b} B! + b IW° + €;(I - P;)"'10°.

These inequalities comes from the Lemma and the definition that T € 7 1. The similar inequality
holds for E[G:;(V(T),n(T)|(V,n)], VT € T' and i =1,...,J).
Let {W,% ell:i=1,...,J} and {W,"; €Il :i=1,...,J} be any two sets of the solutions of
the equation (2.6). Then
IWa = W2llvin
= sup E |WA(V(T), n(T)) - WE(V(T),n(T))|I(V;n)]

TeT?
J
< swp Y pub (B [[W (v (@), (1)) = WV (T*), n(T)| I(V (D), (D)} (V)]
k=1
, J
= sup 3 paE [|[Wh(V(T*),n(T*) = WE(V(T),n(T)| [(V, )]
TeT! =1
J i )
< sup Y sup B [|W(V(T),n(T) = WEV(T*),n(T7)| (V. m)

TET! k=1 T*eT!

J
S = sup > palWi — Wil
‘ ‘TGTI k=1 ’

J
= Y pilWi; = Wiillwn)-
k=1
The last inequality comes from the fact that T™ is a stopping time in T, since T* is the service
completion epoch of the tagged customer. Let (W;) = (|[Wa;ll(vin)s-- -5 IWisllv,n))'- Then
0 < (W -w})
< PJ(VV;l - W;‘))

IA

P}“(‘le —,Wf) —~0 asn—oo.
The last expression comes from Assumption 2.1. Hence we have

Wh=WZ2 i=1,../J (8.96)

3?

as the elements of Il(y,). The similar argument shows the uniqueness of the function G;; (1 =
1,...,J).
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Since the state (V,n) € £ and the index j (j = 1,..., J) are arbitrary, the proof is completed.
O

Corollary. Under the assumptions of Theorem 2, the sets of the solutions {W;;(-) : i =
.,J}and {G;;(-):1=1,...,J} in Theorem 1 are unique for all j =1,...,J.

Proof. Let {W}(:):i=1,...,J} and {W2(-):1=1,...,J} be any two sets of the solutions of
the equation (2.6). By the assumptions of Theorem 2, any cost function W;;(-) defined by (2.4) is
in II. Hence, W}(-) € Il and W2(-) € Il. Then we have

sup { E [lej(V(T), n(T)) — WA(V(T), n(:r))l (V,n)] :TeT} =0 (8.97)
for all (V,n) € £ and i = 1,...,J. In particular, T =0 € 7'. Then
| W5(V,m) = WiV, m)| = 0 (8.98)

for all 4,5 = 1,...,J and for all (V,n) € £. In the same manner, we can show the uniqueness of
the function G;;(-). This completes the proof. O

Remark. Thereason why we consider the set 7 is to ensure that the every objective function
f (e.g. f =W, or Gij) satisfies that || f]|(v,) < oo for all initial state (V,n).

9 Steady state values of the cost functions.

Now we evaluate the steady state values of the cost functions W;; and G;;. The generalized Little’s
formula (H = AG) and the Poisson Arrivals See Time Averages (PASTA) property are used to
obtain the values. The power of these results is fully utilized. Finally, some numerical examples

are provided.
Because the cost functions are unique over II under the assumptions of Theorem 2 and T, € 71,
we have

E[W,(V(Too), n(Too))] = 30 5 BUV(Too), n(T) Wiy + w35}, (9.99)

{EU(V(Too), n(Too))1Gi5 + 055} (9.100)

A
<A
E[G;(V(Teo), n(Tw))] = %_

where A = 5.7, ); is the overall arrival rate. We use the generalized Little’s formula [23] that
equates the time average values of the costs with the customer average values of the costs to obtain

Ry = AE[W(V(Tw), n(Too)), (9.101)
V, = AE[G;(V(Ta),n(T:)). (9.102)

For the Poisson arrival, the fraction of time that the system is in any state is equal to the fraction
of the arrivals when the system is in the state. This is the Poisson Arrivals See Time Averages
property (PASTA) [24]. Then we have

n; = Elnj(Te)], (9.103)
V; E[V(Tw))- (9.104)
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From the equations between (9.1) and (9.6), we obtain

J
fj = ZAi{(V,ﬁ)Wij+w;j}, j=1,...,J, (9.105)
i=1
v, = ZAi{(V,ﬁ)gij+gij}, j=1,...,J. (9.106)
=1
Define
J .
S = Z)‘i(Gily'°"gi.]awi1>"°’wi])’ (9107)
=1
J
s = > Al s Gigs Wity Wig). (9.108)
=1

Then we arrive at the equation that determines the steady state expected value of the (aggregated)
system state (V,7): ) )
V,n)=(V,7)S +s. (9.109)

Now we assume that the inverse matrix (I — §)~! exists. Then we have
(V,7) =s(I-8)". (9.110)
Finally, we can get the steady state values of the cost functions.

EWi(V(Too), n(Too))] = s(I —8) *Wij + wij. (9.111)
E[Gi(V(Too)sn(To))] = s(I—8)7"Gij +gi5. (9.112)

The first cost function denotes the (steady state) mean sojourn time that the customer arriving at
the station 7 spends at the station j until his' departure from the system.
These results are arranged in the following theorem.

Theorem 3. Assume that the multiclass M/G/1 system with feedback defined in Section
2 is in the steady state where the assumptions in Section 7 hold. Let # = (#,,...,7y) and
V = (V1,...,V 1) be the vectors of the number of customers and the total amount of works in the
system, respectively. Further, let V~Vij (1 <14,j <J) be the mean sojourn time of the customers,
who initially arrive at the station 7 from the outside of the system, spend at the station j until
their departure from the system. We put Assumption 2.1 and Assumption 6.1. We assume
that (UQ)™ — 0 as m — oo and that the inverse matrix (I — S)™! exists where UQ is the state
transition matrix defined in Section 6 and where S is defined in (9.9). Then

(V,7)=s(I-8)7, (9.113)
Wi = s(I - 8)7'Wy; + wyj, (9.114)
where s is defined in (9.10), and where W;; and other constants are defined in Section 6. O

Of course, the total sojourn time W, of the customer, who initially arrives at the station ¢,
spend from his arrival to his departure is

J
W, = Y W
1=1
J J
= s(I=8)"") Wi+ > wi;. (9.115)

20



Remark. We have not investigated the conditions of the existence of the inverse matrices and
the existence of the steady state in detail. The elaboration in the direction will be required.

Numerical examples and the graphs.
Now we give numerical examples of the model. The number of the stations J is equal to 5. The
system parameters are listed below.

e ); =20.0: the arrival rates (j =1,...,5).

o The service time distributions are the 5 stage Erlang distributions with the means vary from
0.1 to 1.5.

e The feedback probabilities are as follows:
(p11,P12,P13,P14,P15) = (0.10,0.10,0.05,0.05,0.10),

(P21,P22, P23, P22, P25) = (0.10,0.10,0.15,0.10,0.10),
(ps1,P32, P33, P34, P35) = (0.15,0.10,0.10,0.10,0.20),
(Pa1,Pa2,Pa3, Pas,Pas) = (0.15,0.15,0.15,0.15,0.15),
(ps1,Ps2, P53, Psa, pss) = (0.20,0.20,0.10,0.10,0.15).

We calculate the values of the mean sojourn times of the systems where the service disciplines
for all stations are either FCFS only or PR-LCFS only. We make the graphs (Figure 1. and
Figure 2.) for the systems under these two disciplines in which the mean sojourn times Wj of the
customers who initially arrive at the station j (j = 1,...,5) is individually plotted.

10 Conclusions.

We have concerned with the multiclass M/G/1 system with feedback. First we define the cost
- functions W;;(V,n) and G;;(V,n) (1,5 =1,...,J;(V,n) € £) which denote the mean sojourn times
of the tagged customer and the cumulative current works of the tagged customer, respectively. We
obtain the set of equations that are satisfied by the cost functions. It is shown in Section 6 that
it can be solved explicitly under some assumptions that are satisfied by the FCFS and PR-LCFS
disciplines. The important things to consider regarding the assumptions are

1. the aggregated system state (V,n) should be sufficient for estimating the énitial cost functions
W,(V,n), Gi(V,n) and the aggregated system state E[(V",n*)|(i),(V,n)], and

2. they should be the linear function of the aggregated system state (V,n).

Then the objective cost functions can be shown to have the same properties. Strictly speaking, these
assumptions are the sufficient conditions that the objective cost functions W;;(V,n) and G;;(V,n)
are the linear functions of (V,n). Finally, we evaluate the values of the functions of the system
in the steady state. The generalized Little’s formula (H = AG) [9, 23] and the Poisson arrival see
time averages (PASTA) property [25] are used. The number of customers and the expected work
in each class are simultaneously obtained. It is worth noting that the equation (9.4) is a variation
of the formula relating the expected time-stationary work, say V, in the general single class queune
to the expected customer-stationary waiting time, say W = V(T,), i.e.,

V = ME[SW] + E[S?)/2} (10.116)

where A denotes the arrival rate and S denotes the service time. Our method employed in the paper
can be considered to be the supplementary variable method [3] where the supplementary variables
are the (current) works in the system instead of the attained service times.

The special features of our method are summarized as follows.
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5.

The

. We treat the system performance measures explicitly as the (cost) functions of the system

state. :

. The analysis of the ordinary M/G/1 busy period processes has been applied.

. The sufficient conditions that the objective cost functions are explicitly derived have been

given (Assumption 2.1., Assumption 6.1. and some assumptions regarding the existence
of the inverse matrices and the steady states).

. The generalized Little’s formula has been applied as the generalizations of its usual use to

the M/G/1 system (Pollaczek-Khinchin mean value formula [14]).
The algorithm that yields the values of the cost functions can be easily constructed.‘

methodology given in the paper will be widely applicable to the analysis of the multiclass

queuneing systems.
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Figure 1. The mean sojourn times for the FCFS discipline.
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