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Abstract.

‘Consider computing simple eigenvalues of a given compact infinite matrix regarded as operating in the
complex Hilbert space I? by computing the eigenvalues of the truncated finite matrices and taking an obvious
limiting process. In this paper we deal with a special case Where the given matrix is compact, complex and
symmetric (but not necessarily Hermitian). Two examples of application are studied. The first is concerned
with the equation Jo(z) —iJ1(2) = 0 appearing in the analysis of the solitary wave runup on a slopigg beach,
and the second with the zeros of the Bessel function Jp(2) of any real order m. In each case, the problem is
reformulated as an eigenva.lue problem for a compact complex symmetric tridiagonal matrix operator in 12
whose eigenvalues are all simple. A complete error analysis for the numerical solution by trunca.tion is giyen
based on the general theorems proved in this paper, where the usefulness of the seldom-used generalized

Rayleigh quotient is demonstrated.



§1 Introduction and Summary.

This paper presents part of our investigation into the question of how much of the large existing body of
knowledge on the so-called special functions of mathematical physics can be retold, reworked or reformulated
in matrix language so that one might obtain new insight into the special functions or find a new class of
algorithms for their computation. The work may also be regarded as an attempt of finding a new significant
area of application of matrix theory. Our particular concern in this paper is the theory and application
of the eigenvalue problem for compact complex symmetric matrix operators in the usual complex Hilbert
space I2 of all square-summable complex sequences. As concrete examples of application, we will consider
the numerical computation of zeros of two functions ,namely, Jo(z) —iJ1(2) and Jp,(2) for any real m, where
2 = =1 and Jp,(z) denotes the Bessel function of order m, each problem reformulated as an eigenvalue
problem for an operator of the indicated type.

We first recall a few basic facts from the spectral theory of operators [10, Chap. XIII, §§3-4]. In the
sequel, the generic symbol B(X,Y) denotes the Banach space of all bounded linear operators from a Banach
space X to a Banach space Y. We denote B(X,X) simply by B(X). AT € B(X,Y) is compact if for
any bounded sequence {f,} in X, the image sequence {Tf,} in Y has a convergent subsequence. Given
T € B(X), the set of all complex numbers A for which (T'—AI)™! € B(X) is known as the set p(T) of regular
values of T or the resolvent set. Its complement is the spectrum o(T) of T. In case T is compact and X is
infinite-dimensional, 0 is always in o(T") and each nonzero Ag € ¢(T') is an eigenvalue of T, namely, there
is a corresponding eigenvector z € X such that z # 0 and (T — Aol)z = 0, where I denotes the identity
operator. For A € p(T), the operator (T — AI)~! € B(X) is called the resolvent of T. For any 0 # Ao € o(T),
(T — XoI)7! is not well defined on the whole of X from the definition of o(T). However, T' — Aol may have
a bounded inverse on a smaller closed invariant subspace, say S, of T. A necessary and sufficient condition
for this to be true is that Ao is not an eigenvalue of T restricted to S. Such an operator (T — AoI)™! defined

only on S will be denoted by (T — /\oI)El in the sequel.
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Our working hypothesis for the general theorems (Theorems 1.1-1.3) is given below and will be subse-
quently referred to as the hypothesis (H):

(H) We are given a sequence of compact complex symmetric (but not necessarily normal) matrix
operators {A,}$° in the Hilbert space {2, converging in operator norm to a compact complex symmetric
matrix operator A also regarded as acting in /2. We further assume that A has a nonzero eigenvalue A that
is stimple in the sense that only one linearly independent eigenvector corresponds to A and no generalized
eigenvéctors of rank 2 or more corres;pond to A, namely, no vectors y € I2 exist such that (4 — AI)?y = 0

T denoting

and (A — M)y # 0. Let z be an eigenvector of A corresponding to A\. We assume z¥z # 0,
transpose.

This situation occurs, for example, in the numerical solution of Jo(z) — iJi(2) = 0 and of J,(2) = 0,
where m is a given real number, as described in Theorems 1.4 - 1.8 below.

Our starting point is the following spectral convergence theorem, which is adapted from [12, p.272-274]

in a specialized form suitable to our purpose:

Theorem 1.1. Let A, and A have the same meaning as defined in (H). We have:

(a) For any eigenvalue A # 0 of A, there is a sequence {1, }$° of eigenvalues of A, which converges to .
Conversely, if a sequence of eigenvalues {)\,}° of A, converges to A # 0, then )\ is an eigenvalue of A
(12, p.272, Theorem 18.1].

(b) If a sequence {An}i° of eigenvalues of A, converges to a nonzero simple eigenvalue A of A, then A, is
simple for all sufficiently large n [12, p.273].

(c) If A # 0 is a simple eigenvalue of A, z is an eigenvector of A corresponding to A and a sequence {1, }$°

of eigenvalues of A, converges to A, then there is a sequence {z, }{° of eigenvectors of A, corresponding to

A that converges to z [12, p.274, Theorem 18.3].

Theorem 1.2 below holds on the strength of the hypothesis (H).
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Theorem 1.2. Assume the hypothesis (H). Let A, — A and z, — z, where A, is an eigenvalue of A,
and z, is an eigenvector of A corresponding to As. The existence of such A, and z, is guaranteed by the
last theorem. The ), are simple for all sufficiently large n, again by the last theorem. Let deflated subspaces

S and S, be defined as the orthogonal complement of span{z} and span{z,} in the sense of transpose:
S={yel?*: zTy =0}, Sa={yel: zfy=0} .

Note that S depends on X only, since X is simple. Similarly, S, depends on A, only, for all n such that A, is
simple. Clearly, S and S, are closed subspaces of I? and 12 = span{z} ® S and I? = span{z,} ® S, for all
n such that A, is simple.

Let projections Q : 1> = S and Q, : 1> = S, be defined by:

_ :z:xT — .’L’n:lZ',I;
Q=I-2-, Qu=I-22
iz ZThTn

The Q, are well-defined for all n such that A is simple. One may easily verily that Q%> = Q, Q2 = Q, and
|| @n — Q || 0. Note further that Q@ and Qn behave as identity when restricted to S and S, respectively.
We then have the following 'asse'rtions:‘
(1) When restricted to S, A, A — M, (A= AI)3' € B(S)
(2) For all n such that ), is simple and when restricted to S, An, An — Aul, (An — /\,,I)E: € B(S,)
3) Il (An = \D)52Qn - (4= ADF'Q || 0
(4) I (4a = 2 D) ls, =Nl (A= A1) s
Here the symbol (A — AI)3' denotes, as stated earlier, the bounded inverse of A — Al restricted to §,
and similarly for (A, — /\,,I)E:. The notation of the form || T ||x denotes the operator norm of T whose

domain is a subspace X.

The proof of Theorem 1.2 is given in §2. Here the proof for Parts (3) and (4), the core parts, is due to T.

Ando, Associate Editor of this Journal and acting as the referee for this paper, and represents a considerable
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simplification over our original proof. Part (4) || (A — A I)™! ||s. =] (A = AI)~! ||s is particularly useful
for our subsequent work.
Remark. Let B = (A - M)5'Q € B(1%,5) and B, = (4, — A\.I1)"'Q, € B(1?,S,), then B and B, are
a generalized inverse of A — Al and A, — A, I, respectively, as one can show by direct computation that
(A=-ADB(A-X)=A- I

(1.1) B(A-A)B=B

(A-AN)B=B(A-X)=Q
and
(An = AnD)Bp(An = M) = A, = A1
(1.2) B,(A, - \.I)B, = B,
(An = AI)B, = By(An — A1) = Qn

Part (3) of this theorem then asserts the convergence of generalized inverses B, of A, —A,I to the generalized
inverse B of A~ A, where clearly A, — A\,I — A — A in I2. For a full, up-to-date treatment of generalized
inverses in a variety of settings, we refer t;he reader to [15], a recent encyclopedic work on the subject including
an extensivev annotated biblibgra.phy of 1776 references. It should also be mentioned that the operator B
(respectively B,) is closely related to what is called the reduced resolvent of A (resp. A,) for the eigenvalue
A (resp. A,) by T. Kato [11, p.180, (6.30)]. |

The hypothesis (H) represents a useful speéial situation where an appropriately taken generalized
Rayleigh quotient [21, p.179] well approximates, in the sense of Theorems 1.3 below, a given simple eigenvalue

of a compact complex symmetric matrix operator in 2.

Theorem 1.3. Again assume the hypothesis (H) and suppose that we are given a sequence {v,}{°
such that v, — z. Consider the generalized Rayleigh quotient p, = vanvn/vZ'un and take It as an
approximation to A, where, as in Theorem 1.2, A, is an eigenvalue of A, such that A\, — A. Then we have

the following error estimate for all n such that X, is simple:

l -
| e = 2a | < TTo] I (An = AaD)vn 71l (An = D)7 |ls,
1 —
= ——‘——’l Tz ] “ (.An - ﬂnI)vn ”2” (A - 1 lls (1 + 0(1)) as n — oo.



The proof of Theorem 1.3 is given in §3. Note that, in the last theorem, the error | , — A, | is bounded
by a quantity of order || (An — s D)va |

The theorem may typically be used in the following context: Suppose we are to estimate A — A,. We
write A — A = (A = ptn) + (o — An). If it can be shown, as is the case in the proofs of Theorems 1.5 and
1.8, that | ftg = An | /| A = #ta | 0 as m — oo, then we can estimate A — A, as A — A= (A= pa)(1+0(1))
as n — oo. The point is that A — p, may be estimated accurately when one has detailed kﬁowledge on an
eigenvector corresponding to the exact eigenvalue A, as is again the case in Theorems 1.5 and 1.8.

Before proceeding further to application, we give the following simple lemma on the similarity of two
tridiagonal matrices that will be repeatedly used later without explicit reference: Two complez tridiagonal

matrices sharing a common main diagonal

dy eq 0 di €} 0
[}
fa da P A |
. ‘e eq e el 6:;
0 fn du 0 fyln, d,,

where none of the super- and sub-diagonal components vanish, are similar if the product of two correspond-
ing super- and sub-diagonal components are equal, namely, if exfx = €, fi, k = 2,---,n. Indeed one is
transformed to another by a similarity transformation by an appropriate diagonal matrix.

As the first example of application of Theorems 1.2 and 1.3, we will consider the approximate solution
of Jo(z) — iJ1(z) = 0, where Jn(z) denotes the Bessel function of the first kind of order m (see [4] or [20]
for the general reference on the Bessel functions). The equation is of interest in the analysis of solitary wave
runup on a beach with a constant slope ([5], [19]). It is known ([16], [18]) that infinitely many roots lie in
the lower half complex plane (but none in the upper half plane or on the real axis), symmetrically about

the imaginary axis. The first 30 roots with positive real part accurate up to 8 digits have been computed
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by Macdonald through the use of the following asymptotic expansion for the jth root in polar form, also
obtained by him [13]:
( i[(t/2):!:9,]’

Zz =T€

. 1
T =37+ {1 - 40(j(1 - aj)}SJ—.T

1 2 3 4 o}
_ 1 o 1 o 2 3 a.%
0) = ...27r — j']r —_ 96],37'_3 [21 46(11 + 72&1 - 32&5] + 0(1.47‘_4 ),

1
= Zln(47
| = 3 n(4jx),
where the plus sign in the expression for z is taken for the fourth quadrant roots and the minus sign for the
third quadrant roots.

It may be noted that, for large j, r; = jx(1+ O(;7')) and §; = —-g-

- %(1 + O(j_2)), indica.ting that
the roots are approximately 7 apart. It may further be shown that the equation Jo(2) — 1J1(2) = 0 has no
roots on the imaginary axis; for, putting z = —i7, where 7 is real, we have Jo(2) —iJ1(z) = In(n) — I1(n) > 0
for all real 7 [14, p.151, 3.16.3]. Figufe 1.1 below gives a plot of the first 6 roots of Jo(z) —1J1(z) = 0 in the

fourth quadrant of the complex plane, based on the table values in Table 1.1 below.

0 X 5 10 15 Re

Figure 1.1 The first 6 roots of Jo(z) — 1J1(z) = 0 in the fourth quadrant.
In order to apply Theorems 1.2 and 1.3 to Jo(z) — iJ;(2) = 0, we first reformulate the equation as an

eigenvalue problem for a compact complex symmetric matrix operator in 2 :
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Theorem 1.4.
(1) A complex number z is a root of Jo(2) — iJ1(2) = 0 if and only if z # 0 and 2/z is an eigenvalue of the
compact complex symmetric matrix A € B(I?) defined below.
(2) To the eigenvalue 2/z corresponds only one linearly independent eigenvector given by defined below.
(3) Each eigenvalue of A is simple and nonzero.

(4) The eigenvalues of A distribute symmetrically about the imaginary axis.

'A:th-—x’
z
i [ 0
4 f2 0 f3 1
S B R Cor
0
| 7 = 2(2) = [J1(2), V2Ja(2), V3Ja(z),--|T € 1% .

For the proof of Theorem 1.4, see §4.
The theoretical basis for the numerical procedure for the approximate computation of the eigenvalues of

the matrix A defined in Theorem 1.4 is given by the next theorem together with an accurate error estimate.

Theorem 1.5.

(1) Let z be a root of Jo(z) —iJy(2) = 0. There exists a sequence {A,} c;feigenvalues of the n x n principal
submatrix A, of A such that A\, — A = 2/z and A, is simple and nonzero for all large n.

(2) Let {)\,} be any such sequence. Let z, = 2/A, be taken as an approximation to z. Then, for all large

n such that A, is simple and nonzero, the relative error (z, — 2)/z may be estimated by

zn—Z_Jn(z)Jn+l(z) o n — 00, z fixe
2 iJ2(z) (1+m) 7 fed

with

B() = Fi2(140(1)) as |z | oo,

where the minus sign is to be taken for the roots z with positive real part and the plus sign for the roots z

with negative real part.

The proof of Theorem 1.5 is given in §5.



The theorem is rather remarkable in the sense that the relative error (2, — 2)/z is well approximated
by a simple closed form such as one given above. The theorem also shows that the convergence z, — z is
eventually extremely rapid as the asymptotic expansion J,(2) ~ (2/2)"/n! (»n — o0, z fixed) indicates [1,

p-365, 9.3.1 or p.370, 9.5.10].

Consider now the numerical procedure for computing the A,. The n X n matrix A,, thenxn principal

submatrix of A defined in Theorem 1.4, is easily seen to be similar to

1 f 0
-f2 0 fs3
(1.4) A, =i —fs 0 . =iB, .
) M ) M fn.
0 —fa O

For a given n, we compute all eigenvalues of A, (hence, of A, by similarity), which are given by i times
the eigenvalues of B,. The computation of the eigenvalues of B, may be effected through the use of a QR
algorithm for computing all eigenvalues of a real tridiagonal matrix; for example, the one implemented as
the FORTRAN subroutine HQR in the EISPACK package [17] may be used. Since A, is pure imaginary,
it’s eigenvalues distribute symmetrically about the imaginary axis just as the eigenvalues of A.

Let z®) = 2/A(*) denote the kth fourth quadrant root of Jo(z) — ¢J1(2) = 0. Theorem 1.5 guarantees
the existence of a sequence {A,} such that A, — AF) where ), is an eigenvalue of A, (hence, of fi,,). The
inspection of the computed eigenvalues of fin easily reveals which eigenvalue of A, is to be taken as the A,.
Indeed, A, = A, the kth largest (in modulus) first quadrant eigenvalue of A,. The similar fact holds for
the third quadrant roots of Jo(é) —1Ji(z) = 0.

All computations were performed in the quadruple-precision floating-point arithmetic (28-digits in hex-
adecimal) on the FACOM M-780/20 system at University of Tsukuba.

Table 1.1 below gives the first 10 roots of Jo(z) — iJi(z) = 0 in the fourth quadrant, computed from A,
with % = npi,, the smallest positive integer n for which the approximate root z, computed from fin has 15

correct significant figures of real and of imaginary parts.



Real Imaginary Nomin
1 29803 82414 79049 x 10! —.12796 02540 29915 x 10! 14
2 .61751 53070 95484 x 10! —.16187 17384 47149 x 10! 19
3 .93419 60983 46134 x 10! —.18188 72787 77295 x 10! 25
4 .12498 50706 39585 x 102 —.19614 59538 01999 x 10! 28
5 .15650 10438 53098 x 102 —.20723 09817 83076 x 10} 33
6 18798 91168 36963 x 10° —.21630 10983 27459 x 10! 37
7 .21945 97998 43811 x 102 —.22397 72492 27609 x 10! 41
8 .25091 88576 39076 x 102 —.23063 12806 67550 x 10! 44
9 .28236 97314 53980 x 102 —.23650 36120 66197 x 10! 48
10 .31381 46098 96480 x 102 —.24175 86986 36241 x 10! 51

Table 1.1 The first 10 roots of Jo(z) —1J1(2) = 0 in the fourth quadrant, computed {from A,
with 7 = Tmin, the smallest positive integer n for which the approximate root z, computed from

A, has 15 correct significant figures of real and of imaginary parts.

Table 1.2 compares the observed relative error (z, — 2)/z with its estimate (7/2)J,(2)Jn+1(2) for
the first and second toots z in the fourth quadrant and n = 4,8,12,10, 16, 20 and for the fifth root and
n = 12, 16, 20, 24, 28. It may be seen from the table that two quantities agree to about one digit except for
low values of n , even for the first root, the fact that is quite satisfactory for practical purpose of estimating
the correct number of digits of a given approximate root.

For the first root:

For the second root:

(en — 2]z (7/2)72(2)Jnt1(2)
n Real Imaginary Real Imaginary
4 —0.181 x 10791 —0.385 x 10-% —0.213 x 107! —0.498 x 10702
8 +0.262 x 107°¢ —0.867 x 10™% +0.267 x 1079 —0.543 x 107%7
12 —0.620 x 10~13 +0.393 x 10713 —0.651 x 10713 +0.297 x 10713
16 +0.111 x 10720 —0.101 x 10~%° +0.121 x 10=%° —0.820 x 107!
20 —0.245 x 10=° +0.366 x 10~ —0.320 x 10~ +0.293 x 10727

4 —0.216 x 10t —0.561 x 10+ +0.584 x 10F00 +0.163 x 10FY0
8 —0.482 x 10792 —0.147 x 1093 —0.576 x 10792 +0.288 x 10793
12 +0.428 x 1078 +0.305 x 1079 +0.439 x 1079 +0.335 x 107%¢
16 —0.234 x 10712 —0.318 x 10711 —0.584 x 10~13 —0.326 x 10~11
20 —0.197 x 10717 +0.158 x 10~ 7 —0.209 x 10~17 +0.147 x 10717

10




For the fifth root:

12 +0.116 x 10~ —0.360 x 10~% +0.177 x 10~ +0.306 x 10799
16 —0.741 x 1079 —0.219 x 10791 —0.151 x 1079 —0.392 x 10791
20 —0.146 x 10793 +0.648 x 10~ —0.173 x 107% +40.941 x 1004
24 +0.290 x 107°7 +0.908 x 107 +40.350 x 10797 +0.103 x 10708
28 +0.110 x 10~1° —0.409 x 10~12 +40.120 x 10710 —0.436 x 10712 -

Table 1.2 The relative error (z, —2)/z and its estimate (7 /2)J, (2)Ja+1(2) for the first, second
and fifth roots z in the fourth quadrant, where n = 4,8, 12, 16, 20 for the first and second roots and

n = 12, 16, 20, 24, 28 for the fifth root.

As the second example, we consider computing the roots of Jp,(z) = 0 for any real order m. Since
J_m(2) = (=1)™Jn(z) for any integer m [4, p.87, (6.4)] we assume m # —1,—2,--- in the sequel. The next
theorem, reformulating the problem of computing the nonzero roots of Jp,(z) = 0 as an eigenvalue problem,

is essentially a restatement of what is already known (see [7] and [9]):

Theorem 1.6.
(1) Let m be a real number # —1,—2,---, then 2z # 0 is a root of J,(z) = 0 if and only if 4/2% is an
eigenvalue of the compact complex symmetric tridiagonal matrix A defined below with a corresponding

eigenvector z also defined below:

4
AIL‘«— ;—2-1,‘ ,
where ) 0
d, = , k=1,2,---
dy  fo 0 k (ozk - 1)(ak + 1)
fa da f3 )
A= SO (PR , k=23,
fs ds ’ fi (ax - 1)\/(oz;c - 2)/oy
< 0

ar=m+2k, k=12,---

¢ = 2(2) = [Vm + 2Jm42(2), Vm + 4Jmpa(2), -7,

where for a < 0, \/a = i\/| a|. The matrix A is real symmetric for m > —2. In particular, form > —1,

\

it is positive-definite (hence, it’s eigenvalues are all positive). For m < —2, the components of A are
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real except for the single component f,, which is pure imaginary, where p denotes the smallest positive

integer exceeding | m | /2:

1
T (m42p—1)-i-+/] (m+2p—2)(m+2p)]

o

(2) For m < =2, A is similar to A, the real matrix obtained from A by replacing the off-diagonal pair

(fp» fp) (the first f, on the super-diagonal, the second on the sub-diagonal) by the pair (| fp |, — | f |).

The proof is omitted, save for a brief remark that Part (1) is a matrix equation obtained from the

three-term recurrence relation

(1.5) Ji(2) 2J342(2) Je+4(2)
’ (k+1)(k+2)  (k+1)(k+3) (k+2)(k+3)

It

4
Z_z‘]""‘?(z)’ k#-1,-2,--- ,
which itself derives from the well-known recurrence formula

(1.6) Je—1(2) = (2k/2)Ji(2) + Je41(2) =0 (k arbitrary) .

Example 1.1 The case m = —1.5: A is real symmetric and the d’s and f's are given by

2 2 2

4= Tomsy 2T 1)Es)’ 4= Enee
and

1 1
o= 5 aas T ssvaavas
The d’s are all positive except dj, which is negative, and the f’s are all positive.

Example 1.2 The case m = —7.5: A is complex symmetric and

2 2 2 2 2
d = (=6.5)(—4.5)" dz = (—4.5)(—2.5)" ds = (=2.5)(=0.5)’ ds = (=0.5)(1.5)’ ds = (15)(35)

and
_ 1 fe 1 e oL
T (—45)VoBsv/-35" * T (m25)/=85/-15 ' (C05)/o15V05 ° T (L5)WV05V2E

12
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The d's are all positive except dy4, which is negative, and the f's are all positive except fs, which is pure

imaginary. In this case, the matrix A is similar to the real nonsymmetric matrix A ie.

dy fo 0
dy f2 0 fa d2 fa
fo d2 f3 fa ds | fal
fody is similar to —|fal ds fs
0 . fs  ds
0 B

It follows from Theorem 1.6 Parts (1) and (2) the well-known fact (see [20, p.40, (8)]) that, given any
real m, if z # 0 is a root of J,,(2) = 0 so are —z, Z and —2. For m > —1, the roots of J,,(2) = 0 are known
to be all real [20, p.483]. But this may again be easily deduced from Theorem 1.6. What cannot be deduced
directly from Theorem 1.6 is the following fact known as the theorem of Hurwitz [20, p.483]: If m < —1 and
m# —1,-2,--+, Jn(z) = 0 has an infinity of roots, of which only 2[| m |] roots are complex and the rest
real; of the 2[| m |] complex roots, precisely 2 are pure imaginary provided that [| m |] is odd.

In order to illustrate the fact stated in the last paragraph for the case m < —1, we show below in
Figure 1.2 a sketch of the 18 zeros of J_7.5(2) closest to the origin (they may be computed according to
the computational procedure to be stated after Theorem 1.8 below). As the theorem of Hurwitz asserts,
there are only 14(=2[| m |]) complex zeros, of which 2 are pure imaginary, [| m |] = 7 being odd. For their

numerical values correct to 15 digits, see Table 1.3 following Theorem 1.8.
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X X X
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9 . : ¥t re—+>
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X . X
X —5 X
X ¥ X

Figure 1.2 The 18 zeros of J_7.5(2) closest to the origin in the complex plane.

Our next theofem, when combined with the last theorem, guarantees that the matrix A under consid-

eration is of the same type as the matrix operator, also called A, in the hypothesis (H).

Theorem 1.7. Let m be a real number# —1,—2,--.. Then 0 is not an eigenvalue of A and every

eigenvalue of A is simple in the sense of the hypothesis (H), where A is the matrix defined in Theorem 1.6.

For the proof see §6.

Although asymptotic expansion formulas for large zeros of Ji, (2) for any real m are known (e.g., {20,
the last formula on p.506]), an algorithm for computing a given number of generally complex roots of
Jn(2) closest to the origin with a given accuracy appears unknown, especially for the case m < —1 and
m # —1,-2,---. A matrix algorithm for this computational problem may be constructed based on our next

theorem:
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Theorem 1.8. Let m be a real number # —1,-2,---. Let a complex number z # 0 be a root of

Jn(z) = 0.

(l)b Then there exists a seqtience {)n} of eigenvalues of the n x n principal submatrix A, of A such that
An — 4/2% = A, where A means the matrix A defined in Theorem 1.6, and such fhat A, is simple and
nonzero for all large n.

(2) Let {A\,} be any such sequence and take z, that satisfies 4/22 = A, (or z, = £2/\/},) and z, — z .

Then, for all large n such that A, is simple and nonzero, the relative error (z, — z)/z may be estimated

by

Zn =2 Jms2n(2)Ims2042(2) (1 + 0(1))

- fixed
z 2‘]3z+1(z)(‘m+2n+1) (n—’OO, z fixe ) ,

where

J21(2) = ;—?;(1 +0(1)) (2 real, | z|— oo, m fixed) .

The proof is given in §7. It is remarkable that the same form of error estimate holds for any real
m# —1,-2,---, nat just for m > —1 as assumed in [9].

For the actual numerical procedure based on the last theorem, we only consider the case m < —1 since
the case m > —1 has been discussed in [9]. Let A, denote the n X n principal submatrix of A (n=1,2,---).
For m < —2, let A, denote the n X n real matrix obta.ined from A, by replacing the f, in the super-diagonal
by | fp | and the f, in the sub-diagonal by — | f, |, where we take n > p. The matrix A, and A, are similar.
Hence, the eigenvalues of A, are the same as those of A,. Therefor the problem of computing all eigenvalues
of any given principal submatrix of A may be reduced to that of computing all eigenvalues of a real matrix.
For the-special case —2 < m < —1, the definition of A, obviously does not apply and we directly deal with
A,, which is real symmetric as noted before.

The rest of the numerical procedure for computing the zeros of J,, (z) is exactly in parallel with the
previous problem, namely, the problem of computing the roots of Jo(z)—1J1(z) = 0, and will not be repeated

here.
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Table 1.3 below gives the first 9 zeros of J_7.5(2) in the first quadrant, correct to 15 significant figures
both of real and imaginary parts. The first 4 zeros are complex, of which the first is pure imaginary. The last
column, Nmin, indicates the smallest positive integer n for which the given approximate root to be computed
from A, has the indicated accuracy. Hence, from computing all 25 eigenvalues of A, (n = 25), we would
obtain 50 approximate zeros of J_7.5(z), of which 24 zeros closest to the origin (14 complex zeros, of which
2 are pure imaginary, plus 10 real zeros distributed symmetrically about the real and imaginary a,xe.;,) would

have accuracy of 15 correct significant figures or better.

Real Imaginary Nmin
1 0 51656 06291 45118 x 10! 12
2 .17869 37489 75208 x 10! 49542 27658 75524 x 10! 12
3 .36237 53314 34266 x 10} .42745 29632 26164 x 10! 12
4 .56304 67230 18165 x 10} 29198 38074 41747 x 10! 13
5 .94578 82431 67948 x 10 0 16
6 .13600 62896 81802 x 10? 0 18
7 17197 77667 14518 x 102 0 20
3 .20619 61246 38732 x 102 0 22
9 .23955 26725 49266 x 102 0 25

Table 1.3 The first 9 approximate zeros of J_75(2) in the first quadrant correct to 15

significant figures.

Asin the first example, we will compare numerically two estimates to be called Estimatel and Estimate2

(for z real) derived from Theorem 1.8 against the observed relative error:

Jm+2n(z)‘]m+2n+2(z) Estimate2 = Wz']m+2n(z)-]m+2n+2(z)

1.7 Estimatel = ,
(.7) S T T2 (Z)(m 4 2m + 1) 4(m +2n + 1)

Table 1.4 below gives an example of such comparison for 4 zeros of J_7.5(2) in the first quadrant, where the

values of Estimate2 are computed for the real zeros only.

For the first root (pure imaginary)=i-(5.1656--:):

(zn — 2)/2 Estimatel
n Real Imaginary] Real Imaginary
8 H0.200 x 1079 0 4+0.201 x 10~%¢ 0
10 H0.494 x 10710 ¢ 4+0.495 x 10~ 0
12 H0.150 x 10716 0 4+0.150 x 10716 0
14 H0.852 x 1074* 0 +0.852 x 10724 0
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For the second root (complex)= 1.7869--- +1 - (4.9542---):

(zn — 2)/2 Estimatel
n Real Imaginary Real Imaginary
8 |-0.276 x 10°%° —0.242 x 10~%%-0.286 x 10™%° —0.242 x 107°
10 [-0.337 x 1071 +0.662 x 10~191-0.337 x 10~1° +0.663 x 10~1°
12 H0.225 x 10718 —0.155 x 10~ 18}4+0.225 x 10~*¢ —0.155 x 10~16
14 [-0.183 x 1023 +0.272 x 10™%—0.183 x 10~%° 40.272 x 10~**
For the fifth root (real)= 9.4578-- -

n (zn — 2)/2 Estimatel Estimate2

10 0.907 x 1079 0.933 x 10~% 0.597 x 1079

12 0.934 x 1079 0.941 x 10798 0.602 x 10°98

14 0.122 x 1012 0.123 x 10~ 12 0.785 x 10~13

16 0.328 x 10~18 0.328 x 10~18 0.210 x 10718

18 0.240 x 10~** 0.240 x 10—% 0.153 x 104

For the ninth root (real)= 23.955-- -:

n (2p — 2)/2 Estimatel Estimate2

18 0.361 x 10~% 0.388 x 10~94 0.369 x 1074

20 0.526 x 10797 0.543 x 10~97 0.516 x 10797

22 0.205 x 10~ 10 0.209 x 10~10 0.198 x 10~10

24 0.274 x 10~ 1¢ 0.277 x 10~ 14 0.263 x 10~14

26 0.146 x 10~ 18 0.147 x 10~ 18 0.140 x 10~ 18

Table 1.4 The observed relative error and its two estimates for the zeros of J_7 5(z) in the

first quadrant.

One may see from Table 1.4 that the values of Estimatel agree with the observed relative errors to 1
significant figure or better. The less accurate Estimate?2 is also found accurate to about one significant figure
for zeros with larger moduli.

Remark. It may be proved that 2n approximate zeros of Ji, (z) given as the roots of det(/i,, - fg[) =0
(i.e. those z such that 4/z2 are an eigenvalue of A,, the n X n principal submatrix of A in Theorem 1.6) are
precisely the zeros of what is known as the Lommel’s polynomial Rap41,m+1(2) [20, §§9.6-9.7]. In fact, the

following relation may be derived from [20, §§9.6-9.7]:

2 - 4
R2n+1’m+1(z) = ;(-—-1)"(m -+ 1)(m + 2) s (m + 2n + 1) det(An - Z—ZI).

(1.8)

17



The proof is omitted.

We conclude this section with a remark on the applicability of the matrix technique expounded in this
paper. Indeed, the matrix technique turns out to be applicable to other classes of special functions which
represent a minimal sglution of é, three-term recurrence relation. For example, the eigenvalue problem of

Mathieu’s equation with a complex parameter ¢, namely,

d2
(1.9) , d—;—-zli + (a — 2gcos 2z)w = 0

[3, p.26] is amenable to the technique described in this paper. The result will be reported elsewhere.
For another example of the matrix technique, see (8], where the numerical computation of the zeros of

regular Coulomb wave functions and of their derivatives are studied.
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§2 Proof of Theorem 1.2.

We use the notation alfeady established in Theorem 1.2. As stated in §1, the improved proof below for
Parts (3) and (4) is due to T. Ando.

‘Proof of Part (1). To prove A € B(S), it is enough to show that 27y = 0 implies 7 Ay = 0 under the
given hypothesis A = AT, Az = Az. Indeed, 2T Ay = TATy = (Az)Ty = AzTy = 0. From 4 € B(S),
A — Al € B(S) follows easily.

To prove (A— /\I)El € B(S), it is enough to prove by [10, p.375, Theorem 1] that A is not an eigenvalue
of the restriction As of A to the closed subspace S. To prove this, it suffices to show that Ay = Ay and
zTy = 0 implies y = 0. Suppoée y # 0. By the simplicity hypothesis for A, we have y = ax for some scalar
a # 0. Multiplying zT from left, we have 0 = 2Ty = azT z, hence @ = 0 since Tz # 0 from the hypothesis
(H). This is a contradiction.

Part (2) of Theorem 1.2 may be proved similarly.

Proof of Part (3). Choose an & > sup || A, || and let A = oP + AQ and A, = aP, + 4, Q,, where
P = 22T /272 and P, = 2,27 [2Tx, so that P+ Q =1 = P, + Q,. Since | 2o —z ||— 0, we‘ha.ve
|| A, — A ||— 0. By compactness of P, P,, AQ and A,Q., A and A, are also compact. We will show that
(A=M)"' € B(?) and (A, — A\, 1)~ € B(I?) for all large n such that A, is simple. To prove the first, it is
enough to show (/i — M)y = 0 implies y = 0 by virtue of compactness of A [10, p.375, Theorem 1]. Indeed,
from (A — M)y = 0 follow

0=P(A-A)y=(a— )Py

and

0=Q(A-A)y=(A-2Qy ,

using P2= P, Q> = Q, PQ = QP =0, PAQ = 0 and QAQ = AQ. From the former follows Py = 0 since

o > sup || An [I2]| 4 (121 A|
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From the latter it follows that Qy is a scalar multiple of z, since A is a simple eigenvalue of A by the
hypothesis (H). Hence, PQy = Qy since P is a projection onto the span{z}. But PQ = 0, hence Qy = 0.
We have now proved Py = Qy =0, hence y = Py + Qy = 0.

The other assertion (A, — A, 1)~ € B({?) for all large n such that A, is simple may be proved similarly.

The main utility of A and A, is found in the following identities:

(2.1) (A-ADF' = (A-AD)Qls
and
(2.2) (An - ’\nI)E: = (“in - ’\nI)_lQn Is.

To prove (2.1), it is enough to prove (A — M)s = Q(A — A)s or (A — AF)Q = Q(A — A)Q, since Q is
a projection onto S. This last relation reads AQ = QAQ since A=aP+AQ, PQ =0and Q%> =Q. This is
clearly true since A € B(S) by Part (1). The identity (2.2) may be proved similarly.

Part (3) now follows from (2.1), (2.2) and from the fact that Q@ = Q, Q3 = Q, || A, — A |- 0 and
Q. -@ll—o. |

Proof of Part (4). For simplicity, let B = (A — AI)3', By = (An = MI)5!, B=(A-A)7, B, =

(A — A1), and AQ, = Q, — Q. We will prove

(2.3) I Blls<il Ba lls. (1+ || AQa ) +o(1)
and
(2.4) | B lls. <l B lls (1+ || AQu [}) +o(1)

Part(4), namely, || B, ||s, —|| B ||s, clearly follows from these two inequalities.
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To prove (2.3), take any y € S such that || y ||= 1. Then
| By || =l (A= 2D)7'Qy |l (by (2.1))

=|| BQy|| (by definition)
=l (BQ - BaQu)y + BuQuy |
<1 BQ-BaQull+ 11 BaQuyll  (by llyll=1)
=0o(1)+ || Ba@uQuyll  (by | Ba=B||=0, || Qn = Q|- 0and Q] =Qu)
=o(1)+ || BaQuy || (by (22): BaQn = Ba)
< o(1)+ || Ba lls. |l @uy I
<o(1)+ [ Balls. {1 (Qn - Q| + || Qu I}

<o)+ || Balls, (1 AQu || +1)  (by Qy=1y)

The last member is independent of any particular y € S such that || y ||= 1. Hence (2.3) follows. The
inequality (2.4) may be proved similarly.

The proof of Theorem 1.2 is now complete.
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§3 Proof of Theorem 1.3.

We adhere to the notation established in Theorem 1.3.

To prove the first inequality in the theorem, we compute for all sufficiently large n

v (Ag = AnI)vy

bhn — Ap = 'U-,?'Un.
1 -
= 7 vI (An = AD)(An = M D)5} (An — Aoy
(by Theorem 1.2 Part(2) and the fact (A, — Ay l)v, € S, )
rT(An — AnD)3lrn

= Ty = (by AZ = An )’
where
(3.1) Ta = (An = Al)v, € Sy .

Taking absolute value and applying the Cauchy-Schwarz inequality, we obtain the first part of the theorem,
as required.

To prove the second part, it is enough to prove
(3.2) | 72 IP=Il (An = snD)vw |I* (1 +o(1)),

since v, — by the hypothesis of the theorem and since || (4, — A1)~ ! ||s, —|| (A= AI)~! ||s by Theorem

1.2 Part (4) (it is here that Theorem 1.2 Part (4) is useful). To prove this, write
(3.3) (An - ﬂnI)'Un =7Tp +qn -

It is enough to prove || g» ||= O(]| ra ||?)- To prove this, compute
gn = (An = pal)vy — (An — AnI)v,  ( by the definition (3.1) of 7, )

= ()‘n - ﬂ'n)vn .

Taking norm,
Il gn || =1 An = n || wn ||

1

< r;,ITl Il 7o 1Pl (An = 2a)™2 Is, || = || (by the first part of this theorem) .
nvn

Again the same fact as we used above, namely, the fact that v, — z and || (A, =A.1)7! ||s. =]l (A=AI)7! ||s,
allows us to conclude from the last inequality that || ¢, ||[= O(|| = ||?)-

This completes the proof of Theorem 1.3.
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§4 Proof of Theorem 1.4.

We use the same notation as in Theorem 1.4.

Proof of Parts (1) and (2). The proof will be done in 4 lemmas, Lemmas 4.1-4.1.

Lemma 4.1. For any z # 0, the following matrix equation in I? holds:

i fa 0 J1(2) Ji(z) Jo(2) — iJy (2

fa. 0 fa \/§Jg(z) 9 \/iJg(z) =) 0 )
(4.1) fa 0 . V3J(2) | =7 | VBIs(2) | — 0

0 S : : :

or

2 ; .
Az = =z — [Jo(2) — iJ4(2),0,0,--]T
z
where A Is a compact complex symmetric operator in B(1?) and 0 # z € I2.

Proof. The relation (4.1) may be verified directly by using the well-known three-term recurrence relations

[4, p.93]:
2k
(4.2) Jk_l(z) + Jk+1(z) = ?Jk(z), k=1,2,--- ,
hence,
2
(43) flcyk—-l +fk+1‘.'/k+1 = ;yk, k= 27 3,"" where Ye = \/.];Jk(z)v k= lv 21'“

The matrix A is obviously complex (i.e., non-real due to the presence of i as the first diagonal element) and

symmetric. Compactness of A follows from the fact that a band matrix B = [b;;] (i.e., b;; = 0 for all i and

j such that | i — j |> 7 for some fixed positive integer r) is compact, if and only if lim b;; = 0 [2, p.59)].
i,j—00

The fact that & € I can be deduced from the well-known continued fraction expression of Ji(z)/Jr—1(z) [1,

p.363, 9.1.73]:

Ji(z) 2
(4'4) Jk.k.l(z) - ac-

(1+ O(ki?)) (k = o0, z fixed)

Since no two consecutive J's, i.e. Ji(z) and Jpy41(z) for k = 1,2,---, vanish simultaneously at any z # 0 [4,
p.105], it is clear that z # 0 for any z # 0. |
Remark. By direct computation, one can show that AA¥ # A¥ A, ie., that 4 is not normal.
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Lemma 4.2. If Jo(z) — iJ1(2) = 0, then z # 0, and 2/z is an eigenvalue of A with a corresponding

eigenvector x = [J1(2), V2Jy(z),--]F € I2.

Proof. Jo(0)—3J;(0)=1-17-0=1 Hence, if Jo(z) —1J1(2z) = 0, then 2z # 0 and Lemma 4.1 imblies

that 2/z is an eigenvalue of A with a corresponding eigenvector z = [J1(2), V2J2(2),---]T € 2. |

Lemma 4.3. For a given complex number z # 0, an arbitrary solution of the three-term recurrence

relation
2
(4.5) feye-1 + freryrar = ZU, K =2,3,00,

satisfying the condition yx — 0, has the form y = cx/l;Jk(z), k=1,2,.-., for some constant c.

Proof. From (4.3), yx = ‘\/l;Jk(z), k=1,2,---, obviously satisfy the recurrence relation (4.5). The fact
that yx — 0 was noted there also.

Conversely, if yx (k = 1,2,---) satisfies (4.5) and yx — 0, then the y;’s represent a mintmal solution of
(4.5), i.e., a second solution wy of (4.5) exists such that y; /wy — 0 (e.g., wr = VkY; (2), where Yi(z) is the
Bessel function of the second kind of order k) [6, p.25]. Since the minimal solution is unique up to scalar

multiplication [6, p.25], the lemma clearly holds. |l

Lemma 4.4. If ) is an eigenvalue of A, then A # 0 ,and only one linearly independent eigenvector z

corresponds to A, where z is as defined in Theorem 1.4. Moreover, z = 2/ is a root of Jo(z) — iJ1(2) = 0.

Proof. To prove that 0 is not an eigenvalue of A, suppose the contrary and let Ay = 0-y = 0 for some
y = [yl,yg,'--]T € 2, where y # 0. Expanding Ay = 0, we find 3 = (—i)"'lx/-};yl, k=2,3,---. Since
y # 0, we conclude y; # 0. But then, | g |- 00 as k — oo, a contradiction of the fact that y € 2.

Let A be an eigenvalue of A. To prove that only one linearly independent eigenvector corresponds to
A let Ay = Ay, 0 # v = [y1,¥2,---]7 € {2, Suffices to show that y = cx for some ¢ # 0, where z = 2/), a

well-defined number, since A # 0 as proved above. Expanding Ay = Ay, we obtain the same relation as (4.5),
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where yi — 0 since y € I%. Then, Lemma 4.3 applies, and yx = C\/EJ[;(Z), k=1,2,-.. for some constant c,
namely, ¥y = cz.

Again, let ) be an eigenvalue of A and y be a corresponding eigenvector, then y = c[J1(2), V2J2(z), - |T
for some constant ¢ # 0, as proved above, where z = 2/A. Then, substitution of z = A/2 into (4.1) gives
Jo(z) — 1J1(z) = 0, as required. Jj

Lemmas 4.1-4.4 prove Parts (1) and (2).

Proof of Part (3). In view of Lemma 4.4, it suffices to prove that A has no generalized eigenvectors of

rank 2. We will do this in two lemmas below.

Lemma 4.5. The function f(z) = Jo(z) — 1J1(z) has no multiple zeros, namely, if f(z) = 0, then
fl(z) #0. |
Proof. We prove that f(z) = f'(2) = 0 leads to a contradiction. Indeed, f(z) = 0 gives Jo(2) = iJ;(2)
and z # 0. 'I.‘he‘n the assumption f'(z) = 0 gives
(46) 0= (=) = (=) - iJi(2)
= —Ji(2) = i{Jo(2) — %Jl(z)} (by Ji(2) = Jee1(2) - ng(z) k=12, [4 p.93))
= Lh(z)  (using Jo(z) = i (2))
Hence, J1(2) = 0. But then, f(z) = 0 gives Jo(2) = 0. This is a contradiction, since Jo(2) and Jy(z) never

vanish simultaneously [4, p.105]. §
Lemma 4.6. The matrix A has no generalized eigenvectors of rank 2.

Proof. Suppose the contrary and let w be a generalized eigenvector of rank 2 corresponding to an

eigenvalue A of A4, i.e., let

(A=ADw=u#0
(4.7)
(A-MPw=(A-2)u=0,
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hold for u,w € 2. We will derive a contradiction. To this end, consider again the identity (4.1) in Lemma

4.1, which holds for any z # 0. For convenience, we rewrite it in the following form:
(4= 21a() = f(2)-1,0,0, 1T,
(4.8) f(z) = Jo(2) — iJ1(2),

2(2) = [N1(2), V2 (2), - 1T,

where the vector denoted previously by z is written as z(z) to emphasize its dependence on 2. Differentiation

gives
(4.9) ' ;25-1:(2) + (A - -z-I)x'(z) = f'(z)[-—l, 0,0, .]T’
where
2(2) = [T4(2), Va2, I = 5 {10o(@), VBT (2), -+ T = [a(2), VaTs(2), - 7} € I,

since Ji(2) = (1/2){Jk=1(2) = Jes1(2)}, k= 1,2,--- [4, p.93].
From the second equation of (4.7), u is an eigenvector corresponding to the eigenvalue A. Lemma 4.4
shows that A # 0 and u = cz(z1), where z; = 2/}, f(z1) = 0 and ¢ is a nonzero constant. Then, the first

equation of (4.7) leads to
(4.10) —cz(z1) + (A - A)w = 0.

Eliminating z(z;) from (4.9) (with z = z;) and (4.10), we obtain

(4.11) (A- ;2;—’)(1'(21) +w) = f'(21)[-1,0,0,- -], where w;, = —2—1%

cz3
Write &'(21) + w1 = ¢ = [¢1,92,---]7 € I>. Expanding (4.11), we find the kt* component (k = 2,3,---)
given by .

2
feor—1+ fet19041 = e k=23,
1

where ¢ — 0, since ¢ € I%. Then, Lemma 4.3 applies and we conclude ¢ = c¢'z(z) for some constant

c'. Since u = ca;(zl) with ¢ # 0, we see that ¢ is a scalar multiple of u. Then, the second relation of
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(4.7) gives (A — (2/z1)I)¢ = 0. Using this in (4.11), where 2'(z1) + w; = ¢ as defined earlier, we find
0= f'(21)[-1,0,0,---]7. Hence, f'(z) = 0.

On the other hand, f(2;) = 0 as has been shown. Hence, f(z1) = f'(21) = 0, a contradiction of Lemma
4.5. 1

This completes the proof of Part (3).

Proof of Part (4). The routine computation Jo(z) — iJ,(2) = Jo(~2) — iJ1(—Z) shows that the Toots of
Jo(2) — iJ1(2) = 0 appear in pairs of z and —Z, giving the required proof via Part (1).

A more direct proof is given by the similarity transformation

1 f 0
D7 'AD =i —f2 '—(.)fa f03 | = apure imaginary matrix,
0

where D = diag[l,1,4?,--] € B({?), a diagonal matrix, and D! € B(I?). The eigenvalues of A are precisely
those of D™1AD, whose eigenvalues obviously appear in pairs of, say, u and —J, since it is a pure imaginary

matrix.

The proof of Theorem 1.4 is now complete.
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§5 Proof of Theorem 1.5.
We keep the same notation as defined in Theorem 1.5.

Proof of Part (1). By Theorem 1.4, we have z # 0 and A = 2/z is a simple eigenvalue of the

compact complex symmetric matrix A € B(1?) defined there, with the corresponding eigenvector z =

[J1(2), V2J2(z), -+ -]T € I%. Let the infinite matrix A, be defined by

1 fa 0
fa 0 fs 0 )
(5.1) A, = fs 0 v fa =(/§;’ (0)), n=12---
0 . fn O
0 0

Lemma 5.1. The hypothesis (H) in §1 holds for this particular choice of {A.}{°, A ;A and z defined

above.

Proof. From what we stated above, it only remains to verify || A» — A ||= 0 as n — co and 2Tz # 0.

The first is clear from the inequality

1 1 2
n(n+1)+(n+1)(n+2)+"')=ﬁ

(5.2) | An = AIPS 2f2 0 + flia ) = X
For the proof of Tz # 0, we may use the following remarkable summation formula [20, p.152}:
oo
2 1 of g2 '
(5.3) Z(m + 2k)J5 4ok (2) = 27 {J2 _1(2) = Jm-2(2)Jm(2)} for any m, real or complex.
k=0

Hence we find

Tz = J%z)+2J3(2) + -~

= {J2(2) + 373 (2) + -} + {2J3(2) + 4J5(2) + -}
(5.4)
= (22[4){J3(2) — J=1(2)N1(2)} + (22 [9){IF(2) = Jo(2)2(2)}

= (2/2)-iJ3(2)
where in the final equality, Jo(z) — iJ1(2) =0, J_1(z) = —Ji(z) and the recurrence relation Jo(z) =

(2/2)J1(2) — JO(;) are used. Now, z # 0 as noted above; also Jo(z) # 0, for otherwise Jo(2) — idi(z) = 0
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would imply Ji(z) = 0, a contradiction of the fact that Jo(z) and J1(z) do not vanish simultaneously [4,
p.105]. It follows that (z/2)-iJ¢(2) # 0, ie, Tz # 0. |

Theorem 1.1 now applies. In particular, Theorem 1.1 (a) and (b) guarantee the existence of a sequence
{An} of eigenvalues of A, such that A, — A(# 0) and such that A, is simple and nonzero for all large n.
These nonzero eigenvalues are precisely those of A,. This proves Part (1).

Remark. The computation

(=fI(=f2_5)---(=f2), n:even
detA,,, =
(fH(=f2_,)- - (=f3)-4i, =n:o0dd

shows that the A,’s are nonzero forall n = 1,2,.--.

Proof of Part (2). Using the relation z = 2/X and z, = 2/),, and noting 2, — z, we have

Zn — 2

(5.5) = %"(,\ - ) = -;-(,\ —A)(1+0(1) asn— oo .

z

One is thus to estimate A — A,. For n = 1,2,---, let v, denote the n** truncation of z, i.e.
(5.6) vy = [N1(2), V2Ja(z), - - -, V0 da(2),0,0,- - |7 € 12

and let u, denote the generalized Rayleigh quotient

vI A v
5.7 n = =
(5.7) g T
where A, is defined by (5.1). Clearly v, — z.
We decompose A — A, as
(5.8) A=A =(A =)+ (ta — An)

and will show that the first term is dominant, i.e. (gy — Ap)/(A = o) = 0 (n — o0, z fixed), so that it
suffices to estimate A — p,, in stead of A — A,. (It is here that p, makes itself useful.)

We estimate the first term A — p, first. By the definition of u,,,

(5.9) A= ttn = vT(Ovn — Apva)fvTvs .
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But from the relation Az = Az and by the definition of A, and v,, we deduce

(5.10) - My — Apgvn =] 0, o, 0, Juga(2)/ /7, 0,-+]T .

n — 1 zeros
Using this in (5.9), we find

A= pin = Jn(2)Jns1(2)/vTv,  (by the definition of vy)

= J,,(z)Jn_,_‘l(z)/{z'Tx(l +0(1))}  (by va — )

_ In(2)dan(2)
(2/2)i J§(2)

= O(Ju(2)Jn41(2))  (n— 00, 2 fixed)

(5.11)
(1+0(1))  (by (5.4)

We next estimate gn — Ap. By Lemma 5.1 and by the fact that v, — x, the hypothesis of Theorem 1.3

is seen to be satisfied. The conclusion of the theorem then gives
) ) .
(5.12) e | (An = s Dva [Pl (A= A7 Is (L+0(1)) (=00, 2 fixed) .

Now,
(An. - /J'nI)‘Un = (Anvn - /\vn) + ()‘ - ﬂn)vn

In(2)Jn+1(2)

= “[Oy" 0, Jn+1(z)/\/;;’ 0’”']T + (2/2)1J3(z)

v(l+0(1)) (n— o0, zfixed) ,

using (5.10) and (5.11). Hence,

(5.13) 1(4n = i yon ll= (1 s () | /R ) (1 +0(1) (1 = 00, 2 fixed) .
Substituting this into the inequality (5.12), we find

(5.14) fn = Ap = o(J,'~;+1(z)/n) (n — 00, zfixed) .

From (5.11) and (5.14) follows

(5.15) ’f\"::’:‘ = o(i":((:))) -0 (n— oo, zfixed) (by (44)) ,

proving the claim (gn — An)/(A = #a) — 0.
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It now follows from (5.8) and (5.15) that A — A, = (A — 4, )(1 + o(1)). Substituting this into (5.5) and

using (5.11) for A — p,, one finally obtains

(5.16) 2t o 2o (n oo, 2 ved),

proving the first relation in Part (2) of Theorem 1.5

"It only remains to prove the second relation in Part (2). We will first prove for the fourth quadrant

roots z that
(5.17) | _Jg(z) = —(2i/7)(1 +0(1)) as |z]— oo.

Thus let z be the j*» root of Jo(z) — iJy(2z) = 0 in the fourth quadrant. Then by the Macdonald’s formula

(1.3) in 81,

2=z = rje‘[('/z)"‘gf] , rj =jg7(14+0(1)) (5 — o)
(5.18)
0; = ~(x/2) — {; /U1 +0(1)) G —o0) ,  a;={n(4im)}/2

On the other hand; the asymptotic expansion of Jo(z) as | z [— oo is given from [1, p.364, 9.2.1] by

(5.19) Jo(2) = \/ -;:{cos(z - i—w) +emNo( 2 |"1)}, |argz|<

From (5.18) and (5.19) one obtains, after some computation, the desired asymptotic expansion (5.17).
An arbitrary third quadrant root 2/, being the reflection of some fourth quadrant root z about the

imaginary axis, has the form 2z’ = —z. Hence,
(5.20) B() = J3(~2) = (@) = (2i/m)(1 +0(1) a5 | |- o0

Theorem 1.5 is now fully proved.
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'§6 Proof of Theorem 1.7.

We inherit the notation established in Theorem 1.6.

In order to obviate the difficulty of directly proving the first half, we let

0 b 0

by 0 by .
6.1 B= . , b= , k=1,2,--- ,
(6.1) b, 0 . FE mth/m k1

0

which is compact, symmetric and tridiagonal. Then by direct computation, one sees that B? is a symmetric
band matrix with its (i,j)"‘ component = 0 for all 7 and j such that ¢ + 7 = odd and that the matrix A is
obtained from B? by deleting the odd-numbered rows and columns. It follows that every eigenvalue of A is
an eigenvalue of B2. Hence, it is enough to prove that 0 is not an eigenvalue of B?, hence, of B. It may be
easily verified that y = 0 is the only solution in I? for By = 0. This proves the first half of Theorem 1.7.
The proof of the last half of Theorem 1.7 may be carried out exactly in parallel with the proof of

Theorem 1.4 Part (3), and is omitted.
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§7 Proof of Theorem 1.8.
We use the same notation as established in Theorem 1.8.
Proof of Part(1). The proof runs exactly in parallel with the proof for Theorem 1.5 Part(1). For

n=12,---, welet A, denote the n** truncation of 4, i.e. let

(7.1) A, = (‘%" g)

Then || A, — A ||~ 0. Indeed, for all sufficiently large n we have

| An - AP <(d2,, + A2+ )+ 22+ fopa )

(7.2) <(7’:i4+(_7?:—1)4+.“)+2(.1§z+-—(n:1)4+"”)
2
< (n—_l—);-—)O .

We also find 7z # 0. In fact,

2¥a = (m + 207 42(2) + (m + 92 14(2) + - -

(M

= T {21(2) = In(2)Imaa()}  (by (5.3))

= Thn(z)  (by Ju(x)=0)

(7.3)

#0  (since Jn(2) and Jpm41(2) do not vanish simultaneously) .
The nonzero eigenvalues of A, are obviously those of A,. The eigenvalue A under consideration is known
to be simple from Theorem 1.7. Theorem 1.1 now applies and finishes the proof of Part (1).
Proof of Pa.rt\(2). The proof may be carried out again in parallel with the proof of Theorem 1.5 Part

(2). First, we find

(7.4) z"z‘ ‘= %(A —2)(140(1))  (n— oo, z fixed) .

Forn = 1,2,---let v, denote the n** truncation of the exact eigenvector corresponding to the exact eigenvalue

A, Le let

(7.5) vn = [Vm + 2Jmy2(2), VM + 40 g4(2), -+, VM + 200 420 (2), 0, -+ |7
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and let p, denote the generalized Rayleigh quotient
(7.6) tn = (VT Apvn )/ (vTv,) .

Then one obtains after some computation

A= ptn = vT(Anvn = Anvn) /vl vs

1 Jmt2n(2)Imt2n+2(2)
vTv, m+2n+1

(]'i) 1 Jmgo ( 1 1
m—+2n Z)Jm+2n+2(z) — ed by v, — 2
( -+ O( )) (’n o0, 2 fix ) ( Y Vn )

_ Imt2n(2)Im2n42(2) , n s oo 5 fixe
= E PGt 2n 410 ) (oo 2iined) (b (13)

and by Theorem 1.3

1 ) ;
| o = A < T27s] | (An = g D)va [Pl (A= AD7 ls (1 +0(1))  (» = 00, 2 fixed)

_ 1 Jm+2n+2(2) 2 Al 0
09) = | o e P A= D™ s 4 o(0)

Jv%t+2n+2(z)
-o( Rt
It follows that (gn — An)/(A — #a) — 0 and

A=y = (A= pa)(1 +0(1))

(%) — Jmt20(2)Im2n+2(2)
T (22T 4 (2)(m + 20 + 1)(1 +0(1))

(n — o0, z fixed) .

(n — o0, z fixed) (by (7.7)) .
Substitution of the last relation into (7.4) gives the first equality in Part (2).
It only remains to prove the second equality of Part (2) By [1, p.364, 9.2.1], we have the following

expression for Jp,4+1(2):
2 1 L Em@lo(] 51 )
(7.10) Jm41(2) = ’—K—z—{cos(z - -2—(m +1) - Zw) +e O(Jz=* )} (arglzl< 7, | z]— oo, m fixed) .
On the other hand, the following asymptotic expansion for the large zeros of Ji,(z) = 0 is known [20, p.506]:
11 .
(7.11) z=(k+§m— Z)7r+0(z ) (k- o0, m fixed) .
Substitution of (7.11) into (7.10) gives

(7.12) In+1(2) = \/g(—l)k_l(l +0(1))  (|z]|= o0, Jm(z) =0, m fixed) ,

giving the second relation in Part (2).

This completes the proof of Theorem 1.8.
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