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Abstract

Lazy narrowing calculi are presented and examined from a viewpoint of a computation
model for lazy functional-logic programming languages. First, we present a lazy narrowing
calculus LNCy, which Hélldobler originally gave for paramodulation. We recast Giovan-
netti and Moiso’s completeness results of conditional narrowing in the presence of the extra-
variables, and prove the completeness of LNCy with respect to the conditional narrowing.
Next, we develop LNCj into a new lazy narrowing calculus to be called LNC}, which can
be used as a computation model for a lazy functional-logic programming language. LNC) is
derived by imposing restrictions on a form of equations that are used in goals and equation
definitions. We show, under certain conditions, the completeness of LNC) by relating it to
the completeness of LNCy. LNC; has only four inference rules, the choice of which in a
refutation is determinate, hence is efficiently implemented.
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1 Introduction

Narrowing was originally proposed in the 70’s to automate equational reasoning within the
framework of term rewriting systems [24]. Renewed interest in narrowing came from the re-
searches of integrating functional and logic programming languages. Several researchers no-
ticed that narrowing can be used as a basic computing mechanism of functional-logic programs
[10, 23, 12, 26, 20, 2, 17, 7, 18, 5, 13]. Basic ideas are to use equations to define a function,
and then to use narrowing both for reduction and for equation solving. Unrestricted narrowing
originally proposed in equation solving is not so efficient as to be a practical computation model
for functional-logic programming languages.

Researches on integrating functional and logic programming languages in this direction, there-
fore, amount to the speed-up of narrowing. The problem can be addressed in two ways; namely,
to define appropriate expressions to be used for narrowing, and to design efficient narrowing
calculi on those expressions. Since we are interested in the kind of narrowing calculi that are
used for computation models for programming languages, we naturally assume a certain class of
expressions as programs and we also require the efficiency of the calculi.

In this conjunction Hullot’s basic narrowing [16] and the technique developed by Bosco et
al. of simulating the basic narrowing by the SLD-resolution [4] can be regarded as our starting
point. Bosco et al. developed a language K-LEAF based on the flattening and the “outermost”
SLD-resolution [2] and presented an efficient implementation of an outermost SLD-resolution by
extending WAM [3]. The former makes possible significant reduction of the search space which
narrowing calculi have to explore by restricting the expressions that narrowing can be applied
to, and the latter obtained further reduction of the search space by restricting the equations to
the class of equations that can be viewed as defining functions. In a more general theoretical
framework Hoélldobler developed calculi for equational and logic programming [14].

In this paper we start from a narrowing calculus to be called LNCj together with a language
Ly for the LNCy. LNCy consists of a set of the inference rules which is a subset of the infer-
ence rules of Holldobler’s calculus TRANS. LNGC is used to solve a set of conditional equations.
While Hélldobler’s interest is in general equational and logic programming in [14], we restrict our
interest to equations defining functions. We therefore step forward to increased efficiency sacri-
ficing the generality as equation solving. We then define another calculus LNC) together with a
language £; so that calculus LNC; can be used for a model of a functional-logic programming
language.

We next show that narrowing calculus LNC) is a sound and complete calculus for equation
solving, and further show that it can be used as a computation model for a functional-logic
programming languages. The proofs of the soundness and completeness are based solely on
transformations of expressions by inference rules without resorting to new notions such as pro-
duced variables and ordering relations of equations that are used in discussing the operational
semantics of K-LEAF.

The paper is organized as follows. In section 2 we give our notations of term rewriting and
logic programming. In section 3 we present the language Lg for the narrowing calculus LNCj.
In section 4 we present LNCj together with the completeness proof. The soundness of LNC)
relies on Holldobler’s result. In section 5 we give the language £1 which is a restriction of the
language Lo, but is tuned for a programming language. In section 6 we give the calculus LNC;
which is derived from LNCp. The soundness and completeness results of LNC] are then given.



2 Preliminaries

We assume the reader’s familiarity with term rewriting [15] and logic programming [19]. The set
of variables is denoted by V 3 z,y,2,.... The set of (first-order) terms (notation 7 3 t,s,...)
is defined as usual. Var(0) is a set of variables appearing in a syntactic object 0. For exam-
ple, 0 is a term, an equation or a sequence of equations. The set of occurrences of ¢t (notation
Occ(t) 3 u,v,...) is defined as usual. The length of an occurrence is defined by the length as
the sequence of natural numbers. When the length of u is shorter than the length of v, we write
u < v. An occurrence of length 0 is denoted by A. The subterm of ¢ at an occurrence u(€ Occ(t))
is denoted by t/u. When t/u is not a variable, we say u is a non-variable occurrence. The set
of non-variable occurrences of ¢ is denoted by Occ(t). The replacement of s in t at u(€ Oce(t))
is denoted by t[u « s]. A term tis called linear when no variable occurs in ¢ more than once.
Let — be any compatible relations on terms. Reflexive transitive closure of — is denoted by
—». Symmetric closure of —» is denoted by «». A substitution is denoted by 8,0,p,7.... The
empty substitution is denoted by €. The domain, codomain and variables in the codomain of a
substitution § are denoted by Dom(8), Cod(6) and Vcod(f) respectively. The restriction of 8
to V is denoted by 0TV. The composition of 3 and 6;, (first apply 61, then 63) is denoted by
0201. We write 61 —» 09 iff 612 — oz for any variable z. 0 is a normalized substitution (w.r.t.
—) iff for any z € Dom(0) 6z is a normal form (w.r.t. —). When 6 —» ¢’ for some normalized
substitution #’, we call 6 a normalizable substitution and call §' a normal form of §. A normal
form of 0 is denoted by 6|. When o6; = 62 for some substitution o, we ‘write §; > 65. > is
quasi-ordering. When 6, > 63 and 65 > 0; we write §; ~ 62. A most general unifier (mgu) is
defined as usual.

3 Language £

We first present the language Ly for the narrowing calculus LNCj. Ly is a language of first-order
Horn clause logic equipped with only equality predicate symbol. The equality symbol ( ) is used
as an infix predicate symbol. The syntax of Lo is as follows:

(conditional equation) := (head)(body) | (head)
(head) :u= (equation)
(body) := <= (equation),,..., {equation},

where n > 1
(goal) = <= (equation),...,(equation),
where n > 0

(equation) := (term) = (term)
Note:
e (term) is a syntactic cafegory for T (a set of terms).
e <= is a logical connective implication and , (comrha) is a logical connective and.

 The syntax of variables and function symbols are left unspecified. However, as a convention
in this paper, we use z, y, z and w to denote variables and f, g and h to denote function
symbols.



We specify the syntax of £ in a general manner, here. We will later impose syntactic restric-
tions on the equations in the head and body as extra syntactic rules. At this point, we naturally
impose following conditions on the occurrences of variables.

An equation t = s of the head satisfies the following conditions.

e t is a non-variable term.
o Var(t) 2 Var(s).

These conditions are usually imposed when we consider ¢ = s as a rewrite rule scheme t—s.
More syntactic restrictions will be introduced later to enable us to regard a set of conditional
equations as a certain type of conditional term rewriting systems that we desire.

A set of conditional equations is called conditional equational system (coined by Dershowitz
and Okada [8]).

Example 1. The following two conditional equations define a function append which appends

two lists.
append(nil,z) = x
append(cons(z,y), z) = cons(z, append(y, z))

Suppose we require the inputs to append be lists of integers. We may define ints_append as
follows:

intlist(nil) = true _
int list(cons(z,y)) = true < int(z) = true,int list(y) = true
nt_append(z,y) = append(z,y) < intlist(z) = true,int_list(y) = true

intlist and int are intended to be truth-value functions. We may simply write it list(...)
and int(...) instead of int_list(...) = true and int(...) = true respectively.

Hereafter, ¢, s, l and r denote terms, G denotes a goal, E and F denote the (possibly empty)
conjunction of equations.

4 Lazy narrowing calculus LNC,

Given a conditional equational system R, the lazy narrowing calculus LNCy w.r.t. R is defined
as a formal system consisting of the following inference rules over a set of goals.

4.1 Inference rules

The inference rules of LNCj are as follows.

1. Outermost narrowing [on]

<= F, f(s1,...,8,) =s,E'
< E,s1=1t1,...,8p =t,,F,t =5, F'

flt1,...,t)) =t<F



2. Imitation [im]

< E, f(s1,.-.,8,) =1z, E
<= 0(E,s1 =21,...,5, = Tp, E') where 6 = {f(z1,...,2,)/2}

3. Variable elimination [v]

<E,z=tFE

< 0(E, E') where § = {¢/z) z ¢ Var(t)

4. Removal of trivial equations [t]

< E,t=tFE
< E,F'

5. Decomposition [d]
< E, f(s1,...,80) = f(t1,...,tn), B
<= Esy=1t,....,8p =t,, B
Note:

* s =1 denotes either s =t or t = 5. Hence, inference rules [on], [im] and [v] respectively
denote two rules.

e The outermost narrowing rule [on] is applicable to an equation of a goal if there exists a
new variant f(%1,...,t,) =t < F of a conditional equation in R,

¢ The variable elimination rule [v] is applicable to an equation of a goal if z ¢ Var(z).
® LNCp is a subset of TRANS (complete set of transformation rules) of Hélldobler [14].

Abusing the notation, we use LNCj to denote the set of inference rules of LN Cy. Let G
and G’ be the premise and the conclusion of the rule [@] € LNCy respectively and 8 be the

substitution formed in the inference step. We write G —>0[o,] G'. When [a] € {[on],[t],[d]}, 6
is the empty substitution £. 6 is sometimes omitted. An n-step derivation of Gy and R w.r.t.

LNCy is a sequence

(] o On— "
GO —)[LI] Gl -—)0[:12] e __)[017-1—1] Gn_l —»o[a"] Gn

where [a1],...,[an] € LNCj and is written as Gy —» LONCO Gn where § = 0, ...60;. The length
of an n-step derivation is defined to be n. The length of a derivation may be 0 or infinite. In



a derivation we mark the selected equations in the bold face as shown in Example 2 below. A
derivation of G and R w.r.t. LNCp which ends with the empty clause (denoted by O) is called
a refutation of G and R w.r.t. LNCy. Logically, it is a refutation of a set of clauses {G} U R.

When G —»ch0 0, 07Var(G) is called a computed answer substitution of G and R w.r.t. LNC,.
The subset {[v], [t], [d]} of LNC) is referred to as UC (standing for “unification calculus”). A

derivation, a refutation and a computed answer substitution w.r.t. UC (and other calculi given
later) are defined as in LN Cj.

Example 2. Let R be a conditional equational system {f(z) = h,g = g}.
and G be a goal <= f(g) = z. A refutation of G and R w.r.t. LNCy is

< f(g)==z —>[0n]<=g=x,h=‘z{£>/ﬁch—z {i/lf,{l:l

This example shows how LNCjp realizes so-called lazy evaluation by binding a variable to
reducible term g. An infinite derivation starting from < f(g) = z can be generated if we choose
the outermost narrowing rule [on] to apply to the goal <= g = z instead of the variable elimination
rule [v].

4.2 Soundness

We next consider the soundness of LNCj as a calculus for defining a refutation proof procedure
for a given equational specification (given in the form of a conditional equational system). Let
G be a goal <= E and R be a conditional equational system. A substitution 6] Var(G) is called a
correct answer substitution of G and R if OF is a logical consequence of R.

Since LNC) is a subset of TRANS, the soundness of LNCy w.r.t. correct answer substitutions
is an immediate consequence of Hélldobler’s Theorem 7.2.3 (soundness of TRANS w.r.t. correct
answer substitutions) [14, p. 186].

Theorem 1. (soundness of LNCp) Let R be a conditional equational system and G be a goal.
The computed answer substitutions of G and R w.r.t. LNCy are the correct answer substitutions

of G and R.

4.3 Completeness

For a conditional rewriting system which satisfies the properties of level-confluence [9] and level-
normality (italicized notions are defined shortly), LNCy gives a complete refutation procedure.
The proof of the completeness of LN Cj proceeds in the following way:

1. We introduce another narrowing calculus called NC. NC is a calculus more akin to the
original idea of narrowing of Slagel [24].

2. We recast Giovannetti and Moiso’s completeness result of conditional narrowing in the
presence of extra-variables (i.e. variables occurring in its body without occurring in the
LHS of the head of a conditional equation) [9] in the framework of NC.

3. We prove the completeness of LNCj in the presence of extra-variables by relatmg it to the
completeness of NC.



We begin by introducing the narrowing calculus NC w.r.t. a conditional equational system
R. The formulas of NC are the goals of Ly, and the inference rules of NC are given below.

1. Narrowing [n]

< E,s=t,F
< 0(E,F,s[lu « r]=t,E') where § is an mgu of s/u and I, and u € Occ(s)

l=r<F

2. Reflection [f]

<= E,s=t,F
< §(E, E') where 6 is an mgu of s and ¢

The narrowing rule [n] is applicable to an equation of a goal if there exists a new variant
I =r < F of a conditional equation in R such that §(s/u) = 6l for some mgu 6.

The following Theorem 2 shows that NC is a sound calculus. Theorem 2 is an immedi-
ate consequence of Holldobler’s Theorem 6.2.1 (soundness of paramodulation and reflection)[14,
p.96].

Theorem 2. (soundness of NC) Let R be a conditional equational system and G be a goal.
The computed answer substitutions of G and R w.r.t. NC are correct answer substitutions of G
and R.

The completeness of NC depends on the confluence property of the rewrite relations induced
by the conditional equational system. Given a conditional equational system R, depending on the
interpretation of the equality (=) in the body of the conditional equations, we can define several
conditional rewriting systems as R being its underlying conditional equational system and then
can define the rewrite relations induced by them. Without extra-variables, it is sufficient to con-
sider a confluent conditional rewriting system whose rule scheme is t—s < s Lty ooy 8m |t
! With the presence of extra-variables, Giovannetti and Moiso showed that the confluence of the
rewrite relation induced by the above rule scheme is no longer sufficient for the completeness that
we are interested in, and proposed a notion of level-confluence to guarantee the completeness.
Below we will give the definition of the level-confluence according to Giovannetti and Moiso.

Given an equational system R we define a conditional rewriting system R* by a set of con-
ditional rewrite rules t—s <= s1 | t1,...,8m | tm for each conditional equation t = s < s =
t1,...,8m =tm in R. Here, the equality (=) in the body of the conditional equations are inter-
preted as the predicate over the existence of a common reduct. That is, for a rewrite relation
—R, Si | 1; means that there exists a term g; such that s; —»p ¢; «—g ;. The seeming circularity
of the definition of rewrite relation —p is to be resolved by imposing a hierarchy of the rewrite
relations.

An n-level rewrite relation =g (n > 0) is inductively defined as follows:

'1t is called a standard conditional rewriting system in Dershowitz and Okada 18]



1. 29 R is the empty relation.

2.t 1-';113 s holds iff there exists a new variant [—r < t; | s1,...,tm | Sm of a conditional
rewrite rule in R*, an occurrence u € Occ(t) and a substitution 6 such that s = tfu « 6r],
t/u =0l and for all : = 1,...,m there exists ¢; such that 6t; —»p g; «—p 0s;.

A conditional rewriting system R* is called level-confluent iff, for all 7 > 0, the rewrite relation
. R is separately confluent. ‘

Rewrite relation —g is defined as |J;»g —r. Note that level-confluence implies confluence,
but not vice versa. -

Similarly (beware of the slight difference), an n-level normalized rewrite relation — R' (n>0)
is inductively defined as follows:

!
1. =3 R is the empty relation.

2.t 2 }g/ s holds iff there exists a new variant [—r <t | s1,...,tm | Sm of a conditional
rewrite rule in R*, an occurrence u € Occ(t) and a substitution 8 such that s = tlu — 0Or],
t/u = 01, for all ¢ = 1,...,m there exists ¢; such that 6t; =% ¢; «~r 0s; and for all
extra-variables = in t; = s1,...,tm = Sy 0z is in n-normal form (i.e. normal form w.r.t.

=r).

A conditional rewriting system R* is called level-normal iff = p=— Rl for all © > 0. The prop-
erties of level-confluence and level-normality of a conditional rewriting system R* are applied
also to the underlying conditional equational system R. There are syntactic sufficient conditions
for a conditional equational system to be level-confluent and level-normal. In the section 5, we
will see that programs of the language £; are level-confluent and level-normal.

Now we have the following theorem of Giovannetti and Moiso.

Theorem 3. (completeness of NC) Let R be a conditional equational system which is level-
confluent and level-normal, and G be a goal. For any normalizable correct answer substitution
§ of G and R, there exists a computed answer substitution § of G and R w.r.t. NC such that
6 > 0.

Remark 1. Giovannetti and Moiso presented the theorem for terminating conditional term
rewriting systems [9]. The terminating assumption was needed at two places in their proof.
It was required firstly to guarantee R to be level-normal, and secondly to guarantee the given
substitution # to be normalizable. The first requirement can be lifted when we assume R to be
level-normal. The second is lifted when we consider only normalizable correct answer substitu-
tions.

In order to prove the completeness of LNCy we need the unification theorem of Martelli and
Montanari [21] and lifting and switching lemmas for LNCj.

The following Lemma 1 is a restatement of Martelli and Montanari’s Theorem 2.3 [21, p. 262
in our framework.

Lemma 1.(unification theorem of Martelli and Montanari) Let G be a goal. If there exists a

refutation G —e[f] O then there exists a refutation G —»GUC a.



Martelli and Montanari showed that UC gives an mgu 6’ such that 8’ ~ 6. We easily see that
we can obtain ¢ which is the same as 6.

Lemma 2.(lifting lemma for LNCp) Let R be a conditional equational system, G be a goal and
v be a substitution. If there exists a refutation G —»cho 0, then there exists a refutation
G —»f}vco O such that §' > 6v, and whose length is the same as the length of the refutation
¥G —»inc, O.

Lemma 3.(switching lemma for LNCj) Let R be a conditional equational system. If there
exists a refutation II: <« E,s=t,s = t E —»LeNCo O where s = t is selected in the
first step and s = ¢’ in the second step of the refutation, then there exists a refutation
< Es=ts =t FE — LBNCO O which is the same as II except that the first two selections
of the equations are switched and whose length is the same as the length of the refutation II.

Lemmas 2 and 3 can be proved by the induction on the length of the refutation w.r.t. LNCy.
Detailed proofs are given in appendix A.1 and A.2 respectively.

Lemma 4. (completeness of LNCy w.r.t. NC) Let R be a conditional equational system and

G be a goal. If there exists a refutation G —-»%VC O then there exists a refutation G —» f}vco O
such that §' > 4.

Lemma 4 is proved by the induction on the length of the refutation G —>->0NC O using Lemmas
1, 2 and 3. The proof is given in appendix A.3.

By Theorem 3 and Lemma 4 we obtain the completeness of LN Cy.

Theorem 4.(completeness of LNCy) Let G be a goal and R be a conditional equational system
which is level-confluent and level-normal. For any normalizable correct answer substitution
of G and R, there exists a computed answer substitution ¢’ of G and R w.r.t. LNCj such that
6 > 4.

Remark 2. LNGp is a subset of Holldobler’s TRANS (complete set of transformation rules).
TRANS contains [pv] (paramodulation at a variable position) and [tc] (application of a trivial
clause) in addition to the rules of LNCy. Since we are interested in a conditional equational
system which can be interpreted as a conditional term rewriting system rather than general con-
ditional equations, we omit from the beginning of our discussion the [pv] and [tc] of TRANS.

Although LNCj enjoys the soundness and completeness as a calculus for giving an equation
solving procedure it is not qualified, in our view, as a computation model for a programming lan-
guage because of its inefficiency. For a given equation, applicable inference rules are not unique.
This will create a large search space which is untolerable in practice. LNCj is theoretically
important, however, since it is the basis of the calculus LNC; which we explain next.



5 Language £;

We first present the language £; for the narrowing calculus LNC). L£; is a more restricted
language than L£g. The reasons for imposing further restrictions on £y are as follows.

e We are interested in the integration of functional and logic programming, rather than
adding equational reasoning capabilities to logic programming. Hence we view conditional
equations as defining functions. In practice, conditional equations are used in more re-
stricted form than in £y when they define functions. For example, in ML, equational
expressions are of the form

fd1,...,dp) =1
where dy, ..., d, are restricted to expressions called atomic patterns. The following expres-
sion
f(z, f(y,2)) = f(f(=z,9),2) (1)

which is regarded as an assertion about a property of the function f (associativity) are
excluded from ML programs since f(y, z) in (1) is not an atomic pattern. To exclude the
(conditional) equations like (1), we distinguish, in £, constructor symbols from function
symbols, following the design philosophy of modern functional programming languages.
Constructor symbols are used to construct data structures. For example, cons in Example
1 is a constructor symbol which is used to construct a list.

e The completeness of LNCy requires a given conditional equational system to be level-
confluent and level-normal. These properties, however, are known to be undecidable in
general. Therefore, we must guarantee that a conditional equational system possesses
these properties by some easily realizable measures, for example, by syntactic restrictions.

5.1 Terms and equations in £,

Terms in £ are classified into three categories, i.e. function terms, constructor terms and vari-
ables, depending on the leftmost symbol of the terms. A function term (respectively constructor
term) is a term whose leftmost symbol is a function (respectively constructor) symbol. A data
term is either a variable or a constructor term whose proper subterms are data terms. Hereafter,
we use d and e to denote data terms.

We require the following conditions on a conditional equational system R.

C1. Each conditional equation in R is of the form:
fldi,...,dp) =t <t =e1,...,tm =€m
where d1,...,d, are data terms and ey, ..., e, are ground data terms.
C2. R satisfies the following conditions:
C2-1. (weak non-ambiguity) For any conditional equations s; = t; <= Fj and so = ty < F

in R, if there exists a  substitution 6 such that 6(s;/u) = 8s3 for some u € Occ(sy)
then 8(s1[u — t3]) = 6t;.

C2-2. (left linearity) For any conditional equations s =t <= F in R, s is a linear term.



Note that when the condition C1 is assumed in the condition C2-1, only possible case of
6(s1/u) = Osg is for u = A.

For a conditional rewriting system R*, we define an induced unconditional rewriting system
U(R*) as {l-r | l>7r < 51 | t1,...,8n | tn € R*}, and define (unconditional) rewrite relation
—y(Rr+) as usual. A conditional rewriting system R* is ln if R satisfies the condition C2 and
the RHSs of the equations in the body of conditional equations of R are in ground normal forms
w.r.t. —pge) [1]. R is called HIn if R* is lln. We see that Iln conditional equational systems
are level-confluent (Theorem 3.5 [1]), and level-normal (pointed out in [11]). '

For a goal we require the following conditions:

C3. A goal < E,t = d, E' satisfies the following conditions:

C3-1. Var(t)NVar(d) = 0.
C3-2. Var(E)NVar(d) =90.

C3-3. d is a linear data term.
Note:

e The conditions C3 (C3-1 ~ C3-3) look awkward at first sight. They are, however, necessary
to ensure the soundness and completeness of LNC;. We will show the examples later.

e The conditions C3 are imposed on an initial goal. We will show later in Proposition 1 (1)
and (2) that goals created by the applications of the inference rules of LNCy or LNCY also
satisfy the conditions C3.

A conditional equational system which satisfies the conditions C1 and C2 is referred to as
an L1 program and a conditional equation in an £; program is referred to as an £; conditional
equation. We easily see that £; programs are Iln, and therefore that they are level-confluent
and level-normal. A goal which satisfles the conditions C3 is referred to as an £; goal. Note
that since an £; program and an £ goal are also a conditional equational system of £y and a
goal of Lo respectively, LNCp and NC are well defined for an £; program, and an £; goal is a
legitimate formula of LNCj and NC.

The disparity of the restrictions on the bodies and the goals is accounted for by the observa-
tions where we ask an oracle to work. The level-normality demands that extra-variables are to
be instantiated to normal forms when the equations containing them are introduced to a goal by
an inference step [In] 2, whereas in an initial goal extra-variables (synonymous to free variables
in this context) are not requested to be instantiated to normal forms. As we will see later, for
LNC; we only insist on the completeness for normalizable answer substitutions. Since an an-
swer substitution is an "answer,” it is user’s (or human’s) responsibility to decide whether terms
obtained in answer substitutions are normalizable. Of course it is undecidable to know terms
are normalizable for a non-terminating term rewriting system. Thus a user has to run a risk
of non-terminating computation when he wants to ascertain the normalizability of the answer,
whereas in the goals the calculus itself has to check whether extra-variables are instantiated
to a normalizable term or not. This is undecidable again. However, to continue computation
without losing the level-normality the calculus has to know it. A simple method to check that
extra-variables are always instantiated to normal forms is to make the conditional term rewriting
systems Iln.

*to be given in section 6.1
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e &;: transformation of an £; conditional equation to homogeneous form
Q1[f(....d,...)=s < E]=®[f(...,z,...) =s <z =d, E]

where d is a non-variable data term and z is a fresh variable.

o ®s: shallowing for the bodies of an £; conditional equation:
A< dof...,s=c(...,d,...),..] =A< ®...,s =¢(...,z,...),z=4d,...]

where d is a non-variable data term, z is a fresh variable and A is an equation.

e ®3: shallowing for an £; goal:
= 03...,s=c(...,d,...),.. ] == B3[...,s=c(...,z,...),z=4d,.. ]

where d is a non-variable data term or a variable occurring in the initial goal, and z is a
fresh variable.

Figure 1: transformation rules

If the computed answer substitution is used for further computation it is sensible (and safe)
to ask initial goals to satisfy the condition that we request to bodies. Since we want to obtain a
completeness result that is as general as possible we impose the conditions C3 on initial goals,
which are less strict than the conditions of In.

5.2 Transformation to the basic forms

Ly programs are sufficiently expressive as functional-logic programs. It is still structurely very
complex, however. In order for LNC) to be simple and efficient as a calculus, we transform £;
conditional equations and goals to structurely simpler forms called basic £; conditional equa-
tions and basic £; goals respectively. The transformation consists of three transformation rules:
transformation to a homogeneous form and shallowing on the bodies of £1 conditional equations
and on initial £1 goals. The transformation rules are given in Figure 1.

An £, conditional equation of the form f(z1,...,2z,) =t < F where z1,...,, are distinct
variables is called homogeneous [25]. The transformation rule ®; shown in Figure 1 transforms
an £, conditional equation to a homogeneous £; conditional equation.

A data term of the form c¢(zi,...,z,) or a variable is called shallow. The transformation
rule @, transforms an £; conditional equation to an £; conditional equation such that the RHSs
of equations in the body are linear shallow data terms, and ®3 transforms an £; goal to an £;
goal such that the RHSs of equations in the goal are linear shallow data terms. The notion of
shallowness is due to Cheong [6].

There is a subtle difference between ®; and ®3. 3 is applicable to a sequence of equations
of the form ...,s =¢(...,d,...),... even when d is a variable if it occurs also in the initial goal,
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whereas ®2 is not. We will see in section 6.3 that this additional shallowing by @3 is essential
to obtain a class of substitutions called constructor term substitutions (to be defined in section
6.3) which we want to regard as answers of the computation.

To an L£; conditional equation, ®; is first applied and then ®, is applied. The result-
ing conditional equation is homogeneous and all the RHSs of the equations in the body are
shallow. It is called a basic conditional equation. For an £; conditional equational system
R, Basic(R) is defined as a set consisting of basic £; conditional equations. To be precise,
Basic(R) = {A’ < ®[F'] | let A’ <= F' be ®1[A < F],A < F € R}. Similarly, a basic goal,
written as Basic(G), is defined for an £; goal G. That is, Basic(G) is <= ®3[E], where G is
< FE.

6 Lazy narrowing calculus LNC;

In this section we present the main result of the paper. It consists in the lazy narrowing calculus
LNC; and its soundness and completeness. We begin by introducing LNC1 w.r.t. a basic £;
program Basic(R). The formulas of LNC; are basic £; goals.

6.1 Inference rules

1. Lazy narrowing [In]

4=f($1,...,sn)=d,E

v =1
= B(F’tzd,E) Where 0 = {sl/xl?"-,sn/wn} f(xla 7$n) <=F

2. Variable elimination of data terms [vd]

<z=4d,F
< 0F where 0 = {d/z}

3. Variable elimination of constructor terms [vc]

< c(s1,...,8p) =z, E
< 0F where 0 = {c(s1,...,5,)/7}

4. Unification of constructor terms [u]

<=c(s1,...,80) =c(z1,...,20), E
< 0F where 0 = {s1/z1,...,5,/Tn}

Note:

12



e The lazy narrowing rule [In] is applicable to a goal if there exists a new variant
f(z1,...,3,) =t <« F of a basic £; conditional equation in Basic(R).

e The variable elimination rule [vc] and the unification rule [u] are applied to an equation of
the goals whose LHS is a constructor term.

e By Proposition 1 (2) which we give shortly, Var(t) N Var(d) = 0 for any equation ¢t = d
of the goals in a derivation w.r.t. LNC;. Hence the occur check is unnecessary when a
binding is formed in the application of the rules of LNC}.

Let R be an L; program and G be an £; goal. When there exists a refutation

Basic(G) —»ch1 O of Basic(G) and Basic(R) w.r.t. LNCjp, we call 1 Var(G) a computed
answer substitution of G and R w.r.t. LNC].
From the efficiency point of view, LN C] has following advantages over LN C).

e In LNC}, at most one rule is applied to a selected equation in a goal, whereas in LN Cy
more than one rule may be applied. The computation in LNCj, therefore, proceeds in
a more determinate way, and the search space in the refutations w.r.t. LNC) is greatly
reduced compared with LNCj.

e In LNC1, the occur check is unnecessary.

Example 3. Let R be an £; program {f(z) =c¢,g = g} and G be an L; goal < f(g) = z. The
refutation of Basic(G) (= G) and Basic(R) (= R) w.r.t. LNC is as follows:

cfg =29 ec=250

with the computed answer substitution {c/z}.

We give below some properties concerning syntactical structures of goals. The following
Proposition 1 guarantees that the goals appearing in a derivation w.r.t. LNCj (respectively
LNC)) are L; goals (respectively basic £; goals). The proof is straightforward by the case anal-
ysis.

Proposition 1. Let R be an £; program and G be an £; goal.
(1) All goals in a derivation of G and R w.r.t. LNCy are £; goals.
(2) All goals in a derivation of Basic(G) and Basic(R) w.r.t. LNCy are basic £ goals.

The following technical lemma is used in the proof of Lemmas 6 and 10.

'

Proposition 2. Let R be an £; program and < z = d be an £; goal. There is a unique
refutation < 3z = dJ —»LGNC] O such that 67{z} = {d/z} and Dom(0) — {z} = Var(®3[z =
d]) — Var(z = d).

(Proof) By the induction on the structure of d.
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Furthermore, the following Proposition 3 shows that the variables in the initial goal occur
only in certain goals of the derivation. The proof of Proposition 3 is straightforward by the
induction on the length of the derivation.

Proposition 3. Let R be an £; program and G be an £; goal. In the goals of a derivation of
Basic(G) and Basic(R) w.r.t. LNC,

(1) for all equations of the form ¢t = z,
z € Var(G), and

(2) for all equations of the form t = ¢(z1,...,T,),
Tly...,Tn & Var(G).

As we saw in Example 2, in LNCj the lazy evaluation is realized by applying the variable
elimination [v] to an equation of the form ¢ = z, where ¢ is a reducible term. Since LNC] pro-
vides [vc], the lazy evaluation is realized also in LNC) when t is reducible to a constructor term
or t is already a constructor term. This was shown in Example 3. However, since LNC} does not
provide the variable elimination of function terms, it fails to find a correct answer substitution
whose codomain contains function terms. For example, the goal <= f(g) = z in Example 3 has
{f(g)/z} as a correct answer substitution, but LNC] can not find it. Furthermore, when t is
not reducible to a constructor term, an infinite derivation is caused. Consider a goal <« g = z.
It causes an infinite derivation. One might think that these are drawbacks of LNC}, if one
consider all correct answer substitutions as desired answers. However, these are not so actually.
We discuss on this issue in the next section.

6.2 Consideration on answer substitutions

In logic programming 3, correct answer substitutions are considered as desired answers. This
idea does not entirely capture the notion of the answer of lazy functional-logic programs. In
logic programming, function symbols are used to construct data structures, and terms are not
evaluated to other terms. It is natural to consider terms bound to variables in an initial goal as
the answers of computation. On the other hand, in our functional-logic programming, construc-
tor symbols are distinguished from function symbols. Constructor symbols are used to construct
data structures as in logic programming, but function symbols are used to name user-defined
functions which are used to form a function term that is to be evaluated. Function terms are no
longer regarded as answers of computation. As a desired answer of functional-logic programs,
we have to choose either data terms or constructor terms. We have chosen constructor terms as
desired answers, because we consider lazy evaluation. We guarantee LNC} to be complete for
these desired answer substitutions. A detailed discussion on this decision is given in [22].

Hereafter, we consider correct answer substitutions whose codomain consists of constructor
terms or variables as our desired answers. The discussions of soundness and completeness in the
following sections observe this decision.

6.3 Soundness

The following Lemma guarantees that computed answer substitutions w.r.t. LNC} are construc-
tor term substitutions. A substitution 6 is called a constructor term substitution iff terms ¢ in

3We are assuming here logic programming in Prolog.
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Cod(8) implies either ¢ is a constructor term or a variable. Note that the empty substitution &
is a constructor term substitution.

Lemma 5. Let R be an £; program and G be an £; goal. Let II be a derivation
. 0 0. 0;_ 9; 0;
Go(= Basic(G)) —>[le] G —’[312] —>[a‘.1_1] Gi—1 2o, Gi —»@11]

where [a1], [@2],... € LNC;. Furthermore, let o;, ¢ > 0 be substitutions such that

gyp =¢
ag; = 0,'0','_1 ('L Z 1).
Then, for all 2 > 0, o;TVar(G) is a constructor term substitution.

(Proof) We will show, by the induction on %, that (i) 0,7 Var(G) is a constructor term sub-
stitution and that (ii) the variables occurring in the RHSs of the equations of the goal G; are
not in Dom(o;]Var(G)) U Veod(o;1 Var(G)) for all ¢ > 0.

When 7 =0, (i) and (ii) obviously hold. For the induction step, assume that (i) and (ii) hold
when 7 = k — 1. We will show (i) and (ii) hold when i = k. We distinguish the following four
cases according to the cases of [ay].

When [of] is the unification rule [u], letting Gr_; be <= ¢(s1,...,52) = ¢(z1,...,3,), E, we
have a derivation: '

<=c(s1y...,80) =c(z1,...,2,), E —g'fu]<= 6LE(= Gy,)

where 6p = {s1/z1,...,8n/2a}. By the induction hypothesis, zi,...,z, ¢ Dom(op_; 1
Var(G)) U Veod(ok—11Var(G)). Hence we have

ollVar(G) = 0xVar(G) U op—11Var(G)
= 0k-11Var(G) by Proposition 3 (2).

Hence (i) holds when i = k. By the induction hypothesis, variables occurring in the RHSs of the
equations of E' are not in Dom(ok—~11Var(G)) U Veod(ok—11Var(G)). Furthermore, since ) does
not affect the RHS of the equations of E by Proposition 1 (2), 6, E = E. Hence (ii) holds when
1=k,

The case of [o;] being [In] is similar to the case of [u]. The cases of [vd] and [vc] are easy
since only a constructor term substitution is formed in the application of the inference rules.

Remark 3. It is essential for the soundness (and the completeness) of LNC; that the trans-
formation @3 is applied to an initial goal < ...,s = c(...,d,...),... even if d is a variable
occurring in the initial goal. For example, let R be an £; program {a = d} and G be an L; goal
<= c(a) = c(z), where ¢ and d are constructor symbols. Basic(G) is <« c(a) = c(2),z = z. We
obtain the refutation of Basic(G) and Basic(R)(= R) w.r.t. LNC;:

{a/z}

<=cla)=c(z),z=1z —a![u] sa=z
—»6[1,,] =d==z
{d/=}

v
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and a computed answer substitution {d/z}. If we use < c(a) = c(z) instead of Basic(G)
however, the refutation would be as follows;

<= c(a) = ¢(z) {—a>/[z]} a.

We would obtain a non-constructor term substitution instead of the desired answer {d/z}. Hence
the soundness (in the sense of Theorem 5 below) of LN C; would not hold.

Lemma 6.(soundness of LNC w.r.t. LNCy) Let R be an £; program and G be an £; goal. If
there exists a refutation
Basic(G) —»LoNcl D

then there exists a refutation
0’
G —[ne, G,

such that 6'1Var(G) = 6] Var(G).
(Proof) We use the following sublemma.

Sublemma: Let Go be an £; goal. If there exists a refutation II : Basic(Gy) -»f,‘}vcl O, then
0’
there exists a refutation Go —n¢, O, such that 85 Var(G) = 6o Var(G).

In particular, when II is Basic(G) —» L() ~e, O, the sublemma gives Lemma 6.

Proof of the sublemma: The proof is by the induction on the length k of the refutation II. If
k = 0 the result immediately holds. Otherwise, we distinguish the following four cases according
to the first step of the refutation II.

[1] (when the first step is [vd]) In this case, Gq is of the form <« z = c(dy,...,d,), E.
Basic(Gy) is <= = = ¢(z1, . .. y2n), ®3[z1 = d1, ..., 2, = dn, E]. Hence, II is

: Basic(Go)
—)‘r[i,d]‘ < 01(P3[z1 = d1,..., 2, = dy], ®3[E]) where 01 = {c(z1, ..., zp)/z}
(which is the same as <= ®3[2z; = d1],. .., ®3[2, = du], ®3[01E]

since z does not appear in dy,...,d, and in the RHSs of the equations in E)
—»INe, <« 0283[01 E] by Proposition 2
6
—”LINCl D’

where o3 is a substitution such that oa1{21,...,2,} = {d1/21,...,dn/2,} and (Dom(os) —
{z1,...,2,}) consists of fresh variables introduced by @3, and 6; is a substitution such that
610201 = . Since o3 does not affect the RHSs of the equations of E, the goal <= 09®3[01 F] is
the same as <= ®3[0201E]. Let 0 = {c(dy, ..., dn)/z}. Then o201 F is the same as ¢ E. Hence,

we have a refutation < ®3[cE] —» f‘Ncl 0. By the induction hypothesis, we obtain a refutation
91
< 0F —»[yc, O such that 017 Var(G) = 611 Var(G). Since < x =c(dy,...,dn), E _§"M<= oF,

letting 6 = 6] 0, we obtain the desired refutation G ——»z‘}vco O such that 841 Var(G) = 6o Var(G).

[2] (when the first step is [In]) In this case, Gy is of the form <« f(s1,...,8,) =
-e(dy,y...,dn), E. Basic(Gyg) is < f(s1,...,5,) = c(z15-..,2n), P3[21 = d1,...,2, = d,, E].
Let f(yl,...,ej,...,yn) =1t < Oy = €1y, Yj—1 = €—1,Yj+1 = €j41,...,Yn = €p, F] be a
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new variant of a basic £; conditional equation used in the first step of II. For simplicity we

consider only the case that e; is a variable and e1,...,ej_1,€41,...,€, are non-variable terms.
We write e; as z;. Il is :
Basic(Gy)
a —
—[In] <= o(P2flyr = €15+, ¥j-1 = €1, Yj41 = €541, ..., Yn = €, F],

t= C(Zl,...,Zn),CD;;[[Zl =di,...,zp = dnaE]])
where 0 = {s1/y1,...,8;/j,...,5n/Yyn}

6
—»rNe, D,
where 6 is a substitution such that 810 = 6y. Since o does not affect e, ..., €5—1,€541,. ., €n,
di,y...,dj-1,dj41,...,dn, and the RHSs of £ and F, the goal <« o(®sfy; = €1, ., Yjo1 =
€j—1,Yj+1 = €j+l,---sYn = en, F|l,t = c(21,...,2,),83[21 = d1,...,2n = dn, E]) is the same

as <= Qofs1 = e1,...,5j1 = €j_1,8j41 = €j41,...,8n = €n,0F], 0t = c(z1,...,20), @3]z =
di,...,2n = dn,0E]. Furthermore, since eg, e ,€5-1,€j41,-..,6, and the RHSs of F' does not
contain variables occurring in the initial goal, ®ofs; =e1,...,s;-1 = ej_1, Sj41 = €j4lye-.,Sn =
en,0F] is the same as ®3[s; = €1, .+, 8j—1 = €j—1,8j41 = €j41,...,5n = en,0F]. There-
fore, we obtain a refutation <= ®3[[s; = ey, .. sy 8j=1 = €j—1,8j4+1 = €j41,...,5, = ep,0F, 0t =

c(di,...,dn),0E] —-»glNcl 0. By the induction hypothesis, we obtain a refutation < s; =

. 0!
€15+, 8j~1 = €j—1,5j41 = €j41,...,8n = €n,0F,t = ¢(dy,...,d,),0E — ¢, O such that
1TVar(G) = 611 Var(G). We obtain

<=f(81,...,sn)=c(d1,...,dn),E
—on] ES1=€l,...,8 =Xj,...,5, = en, F,t =c(dy,...,dn), E
where a new variant f(ej,...,zj,...,e,) =t <= F of an £ conditional equation is used

!

=] ES1=€l,...,5-1= €j_1,5j+1 = €j41,...,5, = en, 0’ F,0't = c(d,...,dn),d’E
where o’ = {s;/z;}.
Let 6y = 670’. We have the desired refutation Basic(Gp) -——»z‘}vco O such that 651 Var(G) = o1
Var(G).
[3,4] The proofs of the cases that the first step of II is [vc] and [u] are straightforward.

By Lemmas 5, 6 and Theorem 1, we obtain the soundness of LNCj.

Theorem 5.(soundness of LNC1) Let R be an £; program and G be an £; goal. The computed
answer substitution of G and R w.r.t. LNC] is a constructor term substitution and a correct
answer substitution of G and R.

The following example shows that the condition C3-1 is necessary for the soundness of LN Ci.

Example 4. Let R be an £; program {f(y) = c(y)} and G be an £; goal <« flz) =z. G
does not satisfy the condition C3-1. Then there would be a derivation of Basic(G)(= G) and
Basic(R)(= R) w.r.t. LNCy:

<= flz)=1=z iﬁ/[ﬁ,}lc c(z) =1z {C—(f[)‘/a? O

C

with a computed answer substitution {¢(z)/z} of G and R. {c(z) /z} is not a correct answer
substitution of G and R, however.
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6.4 Completeness

We next consider the completeness of LNC1. We will prove that, for any refutation G — ¢, O,
there exists a corresponding refutation G —nc, O. Then, the completeness of LNC} follows
from the completeness of LNCy (Theorem 4). We first give following three technical lemmas.

Lemma 7. Let R be a conditional equational system, G be a goal, and ¢ and ¢’ be substitu-
tions such that o «» g o’. If there exists a refutation cG —» If) NC, O then there exists a refutation
o'G —» {f}vco O such that 8 «»g ', and whose length is the same as the length of the refutation

6
oG — NG, H.

(Proof) The proof is straightforward by the induction on the length of the refutation
oG _»LoNCo O

|

Lemma 8. Let G be a goal < s; = t1,...s, = t, and R be a conditional equational system

that is level-confluent and level-normal. If 4 is a normalizable correct answer substitution of G
and R then for 2 = 1,...,n, fs; «»pg 0t;.

(Proof) By Theorem 3, there exists a refutation G —f;vc O such that ¢ > 6]. Let
78’ = 6|. It is easy to prove by the induction on the length of the refutation that if G —’91'\'(: O
then 0's;«»pf't; for ¢ = 1,...,n. Therefore, we obtain s; —»g v8's; «»p Y0't; «—pg 6t; for
i=1,...,n '

The following lemma shows that in a refutation w.r.t. LNCy the variable elimination rule [v]
can be applied earlier. Let 6; >pg 65 denote the relation between substitutions 6; and 02 such
that for any variable z, o8z «»g 0oz for some substitution o.

Lemma 9. Let R be an £; program and G be an L; goal <= s = z, E such that = ¢ Var(s). If
there exists a refutation
II: G —»LaNCo D,

where 67 Var(G) is a normalizable substitution, then there exists a refutation

G

D o B i, O

such that o901 >g 6. Moreover, the length of the refutation < 01 F —»ﬁvco O is shorter than
the length of the refutation II.

(Proof) By Lemma 3 we may assume that the goal s = z is selected in the first step of the
refutation II. Hence we have

0 0
G —»Nc, <= 60FE — e, D (2)

such that 616 = §. Since z ¢ Var(s), the variable elimination rule [v] can be applied to s = T,
and hence we obtain the derivation

G Jiv]<= 01E,where 01 = {s/z}. (3)
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Since 69T Var(G) is a computed answer substitution of the goal <= s = z and R w.r.t.
LNCy, by Theorem 1 it is a correct answer substitution of the goal <= s = = and R. Moreover,
since 69T Var(G) is normalizable, by Lemma 8 we have fgs «»p fpz. Since s = = o1z, we have
bporz «» g Opz. For any variable z(# z), we have 0yo1z = 6)z. Hence, letting 6 = 6y07, we
obtain 6 «»p 6. Applying Lemma 7 to the derivation starting from 6pE in (2), we obtain

0’
<= 00F —»nc, O, where ) «»p 0. (4)
Since g1 > 6, we can apply Lemma 2 to the refutation (4) and obtain

< 0 E —Inc, O, (5)

where 09 > 016p. Combining the derivation (3) and the refutation (5) we obtain a refutation

0201

G —$t¥c, O. ' , ' (6)

What remains to be proved is o907 > 8. Since oo > 6160 «» g 6109 = 6§, we obtain

o2 2R 9,
and then
0201 2R fo1 (7)
We will prove o7 > g 6. We have
forz =0s since 01 = {s/z}
= 016ps since § = 616,
«»np 010pz since fgs «» g Oy
=0z since 0 = 6,6,
and hence we obtain ‘
90‘1.’1: “»p fz. (8)
For any variable z # =
fo1z = 0z. 9)
From (8) and (9) we obtain
0o, «»p 6. (10)

From (7) and (10) we conclude that o059 > 6.

Lemmas 2 and 7 state the preservation of the length of the refutations, and hence the refu-
tation (5) is shorter than the length of the refutation (2).

Now, we are ready to prove the completeness of LNCy via LN Co.

Lemma 10.(completeness of LN C’1 w.r.t. LNCy) Let R be an £ program and G be an £; goal.
If there exists a refutation G —» | NCo O where 07 Va'r(G) is a normalizable constructor term sub-
stitution, then there exists a refutation Basic(G) —» L NC; O such that 81Var(G) > g 61 Var(G).
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(Proof) We use the following sublemma.

Sublemma: Let G be an £; goal. Suppose that there exists a refutation II : Gy —»,‘f‘}vco ]
where (i) 6T Var(G) is a normalizable constructor term substitution, and (ii) for all the equations

!

of the form s = z of G, z is in Var(G). Then there exists a refutation Basic(Gy) —»10,‘}\701 O
such that 85T Var(G) >g 00T Var(G).

In particular, when Il is G —» LaNco 0O, the sublemma gives Lemma 10. The above condition
(ii) is necessary to prove the cases [2] and [4].

Proof of the sublemma: The proof is by the induction on the length k of the refutation II.
For k = 0, the result immediately holds. For k > 0, we have to consider the following five cases
according to the rules used in the first step of the refutation II. From Lemma 3, it suffices to
consider the case that the leftmost atom is selected in the first step of II.

[1] (when the first step of I is [d]) Since we are considering £; goals, by Proposition 1 (1) G
is necessarily of the form <= c(di,...,d,) = c¢(d1,...,d,), E, where dy,...,d, are ground data
terms. In this case II is

<« C(dl,...,dn) = C(d1a°"’dn)7E _)[d]<= dy = di,...,dpn = dn, B —*’g(}VCo 0.

Basic(Go) is <= c(di,...,dn) = c(z1,...,20),P3[21 = di,...,2, = dn, E]. Hence, we have a
corresponding derivation w.r.t. LNCj:

<c(dy,...,dn) = c(21,...,2,),P3[21 = di,..., 2, = dy, E]

—gfu] < 01(P3[21 = d1,..., 2, = dp, E]) where o1 = {d1/21,...,dn/2:}
(which is the same as < ®3[d; = dy,...,d, = dn, E]
since o1 does not affect di,...,d,, E)

Since (i) and (ii) hold for the refutation <= d; = d,...,dn = dp, E —»2‘}\,00, by the induction

hypothesis we obtain a refutation Basic(Gy) ‘*’0}5\}01 O, where 6 is a substitution such that

011Var(G) 2 g 601 Var(G). Let 6 = 6101. We see that 64T Var(G) = 6:11Var(G) > 00] Var(G).

[2] (when the first step of II is [v]) Let G be <= s = d, E. The case that s is a function
term and d is a variable is impossible by the assumptions (i) and (ii). Therefore, it suffices to
consider the following two cases; the cases that s is a variable and d is a data term, and that s is
a constructor term and d is a variable. We only prove the former case. The later case is trivial.

We write s as z and d as ¢(d1,...,d,). In this case II is

&x=c(dy,...,dn), E << 0E —ihe, O,

where 0 = {c(dy,...,d,)/z} and 6; is a substitution such that ;0 = 6. Basic(Gy) is

<z =c(21,...,2),83[21 = d1,...,2, = dn, E]. We have a corresponding derivation w.r.t.
LNClt
== c(21,...,20), @321 = di,..., 2, = dn, E]
—fﬁ,d] < 01(®3[z1 = dy, ..., 2z, = dy, E]) where 07 = {e(21,. .., 20)/7}
(which is the same as < ®3[z = d1],..., ®3]z, = d,],0123[E]
since o1 does not affect dy,...,d,) ,
—-»ﬁvcl < 09201 23[E] where 09l{z1,...,2,} = {d1/21,...,dn/2a} by Proposition 2

(which is the same as <= oc®3[E]).
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By Proposition 1 (2), z does not appear in the RHSs of the equations of E. Hence, < o®3[E]

is the same as < ®3[oFE]. Since oz is a constructor term, (i) and (ii) hold for the refutation
' oa0y

<= oF —*ZINCO O. Hence, by the induction hypothesis we obtain Basic(Gy) _fAL Nc, O, where
11Var(G) 2R 011 Var(G). Let 6y = 6)0201. We see that 631 Var(G) >g (810201)] Var(G) = 6]
Var(G).
[3] (when the first step of I is [on]) Since Go is an £; goal, by Proposition 1 (1) the RHSs
of the equations of Gy are not function terms. Hence it suffices to consider the case that Gy is
<= f(s1,...,8,) =c(e1,...,en), E. In this case II is

<= f(s1,...,sn) =c(ey,...,en), E
—lon] <81=4d1,...,8n =dy, F,t=cle1,...,en), E

[
'—»L(}VCO O,
where a new variant f(di,...,d,) =t < F of an £; conditional equation in R is used. Assume

that d; is a variable. For simplicity we consider only the case that d; is a variable and the others
are non-variable terms. We write d; as z;. By Lemma 9, we have

=s1=d1,...,8§=Xj,...,8n =dn, F,t =c(e1,...,e,), E
o={s;/z;}
) & o(sy = dl,...,Sj_l = dj_l,.S‘j_|_1 =djt1,...,8, = dn, F,t = c(e1, cooyen), B)
7]
_»L{NCO D>

where 0, is a substitution such that 6;0 > 6. Since ¢ does not affect diy..osdj1,djq1,. .., dn,
S1y+++38j=1, Sj+ls--+15n, €l,...,€n and B, the goal <= o(s1 = dy,...,sj-1 = di—1,8j41 =
djt1y---38n = dn,F,t = cle1,...,e,),E) is the same as « s = di,...,8j-1 =
dj-1,8j+1 = dj41,...,8n = dn,0F,0t = c(ey,...,e,), E. Basic(Go) is < f(s1,...,8,) =
c(z1,...,2n), ®3[21 = e1,...,2, = ey, E]. Using a new variant flyt, oo,z 0yn) = t <
Qoflyr = dy,. .., yj-1 = dj—1,Yj+1 = dj41,...,Yn = dn, F] of a basic L1 conditional equation in
Basic(R) we obtain a corresponding derivation w.r.t. LNC;:

< f(s15.0,80) = c(21,...,20), P32 = €1,...,2p = en, E]
o
=l = 01(Pofyy =di,...,y-1 = dj-1,Yj+1 = djt1,. .., Yn = dn, F],
t=C(Zl,...,Zn),@3[[21 =61,...,2n=6n,E]]),

where 01 = {s1/y1,...,8j-1/Yj=1,5;/%j, $j+1/Yj+1,---,5n/yn}. Since o; does not affect di,
oy dj—1, djg1, ..., dpn, €1,...,e,, E and the RHSs of F, < 01(®ofyn = diy...,yj-1 =
di-1,Yj+1 = djql,. .y Yn = dn, F,t = c(21,...,2,),P3[21 = e1,...,2, = en, E]) is the same
as < ®ofls1 = du,..., 851 = dj1, 8541 = dj41,..., 50 = dn,01F], 01t = (21, ..., 20), D321 =
e1,-.-,2n = en],P3[E]. Since 017{z;} = 0, this is the same as < Dofsy = dy,...,s5-1 =
dj-1,841 = djt1,...,8n = dn,0F], ®3[0t = c(ey,...,e,), E]. Furthermore, since the RHSs
of F and di,...,dj_1,djt1,...,d, contain no variable, this is the same as <« P3fs1 =
diy...,85-1 = dj_1,8j41 = dj41,...,8, = dp,0F,0t = clei,...,en), E]. o does not affect
e1,...,en and F, and the RHSs of F and dj, ..., d;j_1,dj4+1,...,d, are non-variable terms. There-
fore, (i) and (ii) hold for the refutation < s; = di,...,8j-1 = dj-1,8541 = dj41,...,5, =
dn,0F,0t = c(e1,...,e,), E —»leCo 0. By the induction hypothesis we obtain a refutation

0101

< Basic(Go) —»Lnc, O, where 6} 1 Var(G) >g 611 Var(G). Let 0y = 0i01. We see that
o1 Var(G) > g 611Var(G) = 6101Var(G) >R 8] Var(G).
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[4] (when the first step of II is [im]) By a similar observation to the case [2], we see that Gy
contains no equation whose LHS is a function term and whose RHS is a variable. Hence it suffices

to consider the following two cases; the cases that Gy is of the form < z = ¢(dy,...,d,), E and
that Gy is of the form < ¢(s1,...,5,) = z, E. We only prove the former case. The later case is
trivial.

In this case II is

<‘-=X=C(d1,...,dn),E

—*Em] <o(d) =1x1,...,dy =29, E)
[4
'_»LIJVCO D’
where 0 = {¢(z1,...,2,)/z} and 610 = 6. By Lemma 9, we have

< o(d; =x31,...,dnp =X, E)

o' l}
—»INC, S O00F

_"’zzNC'o 0,
where o' = {di/z1,...,dn/zn} and 62 is a substitution such that 0’ >p 6;. Basic(Gy) is
<z =c(21,...,22),P3[z1 = di,...,2, = dyn, E]. We obtain a corresponding derivation w.r.t.
LNCy:
=z =c(z1,...,20),B3[21 = di,..., 2, = dn, E]
_,"[:,d] < 01(®3]z1 = di, ..., 2, = dp, E]) where 01 = {c(z1,...,2,)/z}
(which is the same as <= ®3[z1 = d1], ..., P3[zn = d,],01P3[E]
since o1 does not affect dy,...,d,)
—iNe, <« 0201 P3[E] where oal{z1,...,2,} = {d1/21,...,dn/2n} by Proposition 2

(which is the same as <= o'c®3[E])

By Proposition 1 (2),  does not appear in the RHSs of the equations of E. Hence, < 0’0 ®3[E]

is the same as <= ®3[o’0 E]. Since 0’0z is a constructor term, (i) and (i) hold for the refutation
8 o071

< od'E —»fﬁvco 0. Hence, by the induction hypothesis we obtain Basic(Gg) —31 ~Nc, O, where
051Var(G) > 61 Var(G). Let 0 = 650201. We see that 851 Var(G) >g (620"0)1Var(G) >g (610)]
Var(G) = 641 Var(G).

[5] (when the first step of II is [t]) Since we consider £1 goals, an inference step by [t] in a
derivation w.r.t. LNCj is simulated by several inference steps by [d]. Hence the result follows
by the case [1].

By Theorem 4 and Lemma 10, we obtain the completeness of LNC}.
Theorem 6. (completeness of LNC}) Let R be an £; program and G be an £; goal. For any
correct answer substitution 6 which is a normalizable constructor term substitution, there exists

a computed answer substitution ¢’ of G and R w.r.t. LNC] such that 6 >p 6.

Remark 4. In Theorem 6, § > 6 can be sharpened to 78" —» g 6| for some substitution 7.
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The following example shows that the conditions C3-2 and C3-3 are necessary for the com-
pleteness of LNCj.

Example 5. Let R be an £; program {g = d,h = d,f = c/(c(g),c(h))}, where ¢ and ¢’ are
constructor symbols and d is a data term. Let G be an £; goal < ¢(g9) = z,¢c(h) = z. G does
not satisfy the condition C3-2. {c(d)/z} is a correct answer substitution of G and R which is
a normalizable constructor term substitution. The refutation of Basic(G) and Basic(R) w.r.t.
LNCy would fail, however:

<c(g) =z,c(h) =2

NS = ehy = clo)

Let G’ be an L£; goal < f = /(z,z). G’ does not satisfy the condition C3-3. {c(d)/z} is a
correct answer substitution of G’ and R which is a normalizable constructor term substitution.
The refutation of Basic(G') and Basic(R) w.r.t. LNC; would fail:

< f=Cd(z,w),z=z,w=1

__)e[ln] = c’(c(g),c(h)) = c’(z,w),z =rL,w==z
COLEPIY = clg) = o,ch) =2
S <o) = elg).

7 Concluding remarks

We have presented two lazy narrowing calculi for lazy functional-logic programming languages.
The soundness and completeness of the lazy narrowing calculi are proved. We first showed a lazy
narrowing calculus LNCy which defines a complete equation solving procedure for a conditional
equational system. The non-deterministic choice of inference rules in the refutation of a goal
w.r.t. LNCy will create a large search space in practice. Hence we are lead to a more efficient
calculus LN C] at the cost of generality. The loss of generality is not a severe limitation since we
are interested in a programming language, not in an equational theorem proving.

The language basic £ of the calculus LNC) imposes several restrictions on the syntax of equa-
tions and on the variable occurrences. Some of those restrictions can be lifted by the program
transformation. LNC) enables determinate choice of inference rules in the refutation. Hence it
can be implemented efficiently on a conventional machine. '

L1 can be a first-order functional-logic programming language. It (when the operational se-
mantics is given by LNC)) shares features with K-LEAF. However, £; has a simpler semantics
solely based on the narrowing calculus LNC). It is different from K-LEAF in that we allow
equations in the body of conditional equations or in a goal.

References

[1] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: confluence and termination. J.
Comput. Syst. Sci., 32:323-362, 1986.

[2] P. G. Bosco, C. Cecchi, E.Giovannetti, C. Moiso, and C. Palamidessi. Using resolution for
a sound and efficient integration of logic and functional programming. In Languages for
Parallel Architectures, chapter 4. John Wiley & Sons, 1989.

23



[3] P. G. Bosco, C. Cecchi, and C. Moiso. An extension of WAM for K-LEAF: a WAM-based
compilation of conditional narrowing. In Proc. 6th Int. Conf. Logic Prog., Lisboa, pages
318-333, 1989.

[4] P. G. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-resolution. Theor. Comput.
Sci., (59):3-23, 1988.

[5] M. M. T. Chakravarty and H. C. R. Lock. The implementation of lazy narrowing. In Proc.
8rd. PLILP’91, pages 123-134, 1991. LNCS 528.

[6] P. H. Cheong. Compiling lazy narrowing into Prolog. Report delivered for the ESPRIT
basic research action No0.3020, 1990.

[7] J. Darlington and Y. K. Guo. Narrowing and unification in functional programming — an
evaluation mechanism for absolute set abstraction. In Proc. RTA 89, pages 92-108, 1988.
LNCS 355.

[8] N. Dershowitz and M. Okada. Conditional equational programming and the theory of con-
ditional term rewriting. In Proc. Int. Conf. 5th Generation Comp. Syst., pages 337-346,
1988.

[9] E.Giovannetti and C. Moiso. A completeness result for E-unification algorithms based on
conditional narrowing. In Foundation of Logic and Functional Programming, pages 157-167,
1988. LNCS 306.

(10] L. Fribourg. SLOG: a logic programming languages interpreter based on clausal superposi-
tion and rewriting. In Proc. 1985 Symp. Logic. Prog., pages 172-184, 1985.

[11] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: a logic plus functional
language. J. Compt. Syst. Sci., 42(2):139-185, 1991.

[12] J. A. Goguen and J. Meseguer. EQLOG: equality, types, and generic modules for logic pro-
gramming. In DeGroot and Lindstrom, editors, Logic Programming, pages 295-364. Prentice
Hall, 1986.

(13] Michael Hanus. Efficient implementation of narrowing and rewriting. In Proc. Int. Workshop
on Processing Declarative Knowledge. To appear in LNCS.

[14] S. Hélldobler. Foundations of equational logic programming. LNAI 353, 1989.

[15] G. Huet and D. C. Oppen. Equations and rewrite rules. In Book, editor, Formal Languages:
Perspectives and Open Problems. Academic Press, 1980.

[16] J. Hullot. Canonical forms and unifications. In 5th. CADE, pages 318-334, 1980. LNCS 87.

[17] M. Rodriguez-Artalejo J. J. Moreno-Navarro. BABEL: a functional and logic programming
language based on constructor discipline and narrowing. In Algebraic and Logic Program-
ming, pages 223-232, 1988. LNCS 343.

[18] H. Kuchen, R. Loogen, J. J. Moreno-Navarro, and Mario Rodrfguez-Artalejo. Graph-based
implementation of a functional logic languages. In ESOP '90, pages 271-290, 1990. LNCS
432.

24



[19] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[20] G. Mansfield, A. Togashi, and S. Noguchi. AMLOG: an amalgamated equational logic
programming language. J. Inf. Process., 11(4):278-287, 1988.

[21] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans. Prog. Lang.
Syst., 4(2):258-282, 1982.

[22] S. Okui and T. Ida. Narrowing calculi for lazy functional-logic programming languages (in
Japanese). submitted for publication.

[23] U.S. Reddy. Narrowing as the operational semantics of functional languages. In Proc. 1985
Symp. Logic. Prog., pages 138-151, 1985.

[24] J. R. Slagel. Automatic theorem proving in theories with simplifiers, commutativity and
associativity. J. ACM, 21:622-642, 1974.

[25] M. H. van Emden and J. W. Lloyd. A logical reconstruction of Prolog I. J. Logic Prog.,
4:265-288, 1974. '

[26] M. H. van Emden and K. Yukawa. Logic programming with equations. J. Logic Prog.,
1:143-149, 1987.

A Proof of the completeness of LNCy w.r.t. NC

A.1 Proof of Lemma 2
Lemma 2.(lifting lemma for LNCp) Let R be a conditional equational system, G be a goal and

7 be a substitution. If there exists a refutation yG —» Lo NC, O, then there exists a refutation

G —» f NG, O such that 6’ > fv, and whose length is the same as the length of the refutation
[4

’)’G “»LNCo 0.

(Proof) The proof is by the induction on the length k of the refutation of vG. For k = 0,
the result obviously holds. For k > 0, let G be < E,s = t, E', and suppose that we have a
refutation

II: <« ’)’(E,S = t,El) —»LeNCo Q.

We have to consider the following five cases according to the rules used in the first step of the
refutation.

[1](when the first step is [on]) Let s = t be f(s1,...,s,) = t. The refutation II is the
following, in which a new variant f(t;,...,t,) =r < F of a conditional equation in R is used

= ’)’(E,f(51,...,sn) it,El)
[on] <=’)’(E,Sl=t1,...,8n=tn,F,t=’f‘,El) (11)

0
—-)-)LNCO D.
Using the same conditional equation, we have a derivation:
= E,f(S]_, ...,Sn) = t,E,

[on] <= E,s =1,...,5q =tn,F,t=1‘,E,.
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The result follows by the induction hypothesis applied to the refutation starting from the goal
in (11).
[2](when the first step is [v]) Let s = ¢ be s = z. The refutation II is the following.

<=v(E,s=x,E) (12)
_g[v] <~ 07(E’E/) (13)
—»glNCo D,

where, for y = vz, y € Var(ys) and 0 = {ys/y} and 6; is a substitution such that
| b10 = 0. (14)

We see z ¢ Var(s) since otherwise we would have yz € Var(ys), contradicting y(= yz) ¢ Var(ys).

Hence there is a derivation ’
< E,s=x,F J[v] o(E,F),

where ¢’ = {s/z}, which corresponds to the derivation from (12) to the goal < oy(E, F') in
(13). Since o'z = s and oyz = oy = <ys, and for variable z # z, 0’z = z, we have

a > on. (15)

Let
Yo' =0y (16)

for some substitution 4’. By the induction hypothesis, we have a following lifted refutation of
< o/(E, E') corresponding to oy(E, E') —*E‘NCO O:
/ 0
=0 (E,E) —»LNCo O

such that
01 > 617 (17)

Let 6’ be the substitution obtained in the lifted refutation < E,s=z,F —» i"NCO O. We obtain
6’ =610’ Dby definition
> 017'd’ by (17)

= 6107 Dby (16)
= 6y by (14).

[3] (when the first step is [im]) The refutation II is the following.

<=’)’(E,f(51,. '°asn) ix’EI)

—fm] € ov(E,s1=21,...,5 =Tn, E') (18)
[}
—-)-)LIIVCO D7

where 0 = {f(zy,..., z,{‘)}/y}wfgf‘y =z and z1,...,Z, are fresh variables.
We obtain a derivation:

< E,f(s1,...,sn) =x, F'

0" !
[im] U(E,31=$1,...,Sn=xn,E,),
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where o/ = {f(z1,...,Zn)/z}. By the similar reasoning as we had in obtaining (15) in the case
[2], we have ¢’ > ovy. Therefore, by the induction hypothesis applied to the refutation starting

from the goal in (18), we obtain a desired refutation < F, f(s1,...,s,) =z, E' —»Lo;vco O such
that 6’ > 6.

[4,5] (when the first step is [t] or [d]) In these cases the result is obvious.

Finally, in each case, we see that the length of the refutations is preserved on lifting.

A.2 Proof of Lemma 3

Lemma 3.(switching lemma for LNCjy) Let R be a conditional equational system. If there
exists a refutation Il : <« E,s=t,s = t'|E' —”IfNCo O where s = t is selected in the
first step and s/ = t' in the second step of the refutation, then there exists a refutation

< E,s=ts =t E — Lo NC, O, which is the same as II except that the first two selections are
switched, and whose length is the same as the length of the refutation II.

(Proof) When either the first or the second step of II is [on], [d] or [t], the first and the
second steps can be swapped since [on], [d] or [t] does not produce a new substitution. Therefore,
it suffices to consider the following four cases:

1. The first and the second steps are [v].
2. The first step is [v], and the second step is [im].
3. The first step is [im], and the second step is [v].

4. The first and the second steps are [im].

We only prove case 1. Other cases are treated similarly.

(Proof of the case 1) It suffices to consider the case that s and s’ are distinct variables. Let
s=tbexz=tand s =t bey=1t where z # y. We have to consider the following two cases
according to whether y appears in ¢ or not.

[1] (when y € Var(t)) In this case z ¢ Var(t'). The first two steps of the refutation II are

<Ex=ty=t,FE
_a)iv] <= o1(E,y = t’a E’)
_a)fv] <= 0201 (Ea El)y

where z ¢ Var(t), o1 = {t/z}, y ¢ Var(o1t') and oy = {o1t'/o1y} = {t'/y}. We see that
z ¢ Var(oat) since z ¢ Veod(oz) and z ¢ Var(t). Hence let 03 = {o9t/z}. We obtain a
derivation
<Ez=ty=t F

_o;fv] < 0‘2(E,X = t7El)

-gfv] < 0302(Ea E,)
Since o901 = {02t/z,t' [y} = 0302, we see that the first and second steps can be swapped.

[2] (when y ¢ Var(t)) In this case the first two steps of the refutation II are

< Ex=ty=t,F
- «o(By=tE)
_a)fv] < 0201(E, El)a
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where z ¢ Var(t), o1 = {t/z}, y ¢ Var(o1t') and o2 = {01t /o1y} = {o1t'/y}. We see that
y ¢ Var(t'), since otherwise y € Var(o1t') as o1 does not affect the occurrences of y nor intro-
duces y, and this contradicts y ¢ Var(o1t’). Hence let o3 = {t'/y}. We obtain a derivation

< Ez=ty=t F
=l <o3(B,x=t,F)
= < o103(E, E'),

Since o201 = {t/z, 01t [y} = o103, we see that the first and second steps can be swapped.
It is obvious that in both cases the length of the refutations is not changed on switching.

A.3 Proof of Lemma 4

We prove the completeness of LNCy by relating refutations w.r.t. NC to corresponding refuta-
tions w.r.t. LN Cy. Since one step derivation by the narrowing rule [n] is not directly related to
a derivation w.r.t. LNCp, we need the following Lemma 11 which states that one step derivation
by the narrowing rule [n] followed by a refutation w.r.t. LNCj is related to a corresponding
refutation w.r.t. LN Cj.

Lemma 11 Let R be a conditional equational system and G be a goal <= E,s = t, E'. If there
exists a derivation of G and R, w.r.t. NC

G —+"[n]<= o(E,F,slu « r]=t,E')

where a new variant | = r < F of a conditional equation in R is used, and a refutation w.r.t.
LNCy
< o(E,F,slu «— r]=t,F) —»leco 0,

then there exists a refutation of G and R w.r.t. LNCj
0’
G —»Lnc, O
such that ¢ 2 bo.

(Proof) We first define a special derivation to be called quasi-derivation. A quasi-derivation
of a goal G is a combination of the derivation G —n] G’ and the derivation G’ —»pyc, G". We
write G =) G’ —»Lnc, G” as in ordinary derivation. When G” is O, a quasi-derivation of G is
called a quasi-refutation (of G). Let II be a quasi-refutation

< E,s=4,F S« 0B, Fslu — r]=t,E) —g O
———

1 (>1) steps

We associate the pair (u,l) with the quasi-refutation II, where u is the occurrence of a sub-
term at which the narrowing rule [n] is applied in I and [ is the length of the refutation of
< o(E,slu « r] =4t F,E) wrt. LNCjin II. We define an ordering < on the pairs as
follows. For any occurrences u,u’ and any natural numbers 1,7, (u,l) < (', ") iff ugu, or
u =" and I <. Note that this ordering is well-founded. The proof is by the induction on

(u,l).
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(Induction base) For (A,l) such that ! is an arbitrary positive natural number, II is of the
form ’

< E,f(s1,...,8n) =t,E

—m < 0o(E,Fr=1tFE) (19)
0
"'»LINC'O Da
where a new variant of f(t1,...,t,) = r < F of conditional equation in R is used, and o is
a substitution such that os; = ot; for 1 = 1,...,n. The outermost narrowing rule [on] can be

applied to f(s1,...,8,) =t with f(¢1,...,t,) =7 < F, and we obtain a derivation w.r.t. LNCy:
<~ E,f(sl,...,sn) -_'—_t,E’
—on) EEs1=t1,....sn=tn, F,r=tF
—~%yc <« o(E,F,r=tFE) byLemmal
"”glNCo O by the refutation starting from the goal in (19).

Let 6’ be 610, and 6 satisfies the required condition.

(induction step) For (u,!) such that u > A, We have to consider the following five cases
according to the rules used in the first step of the refutation II; : < o(E,F,sfu «— r] =
t, E') —"*leCo 0. By Lemma 3 we may assume that o(sfu « 7] = t) is selected in the first

——
1 (>1) steps '
step of the refutation II;. For simplicity, we consider the case that the prefix of u is 1. Other
cases are treated similarly. Let u be 1.u'.
[1] (when the first step of II; is [t]) In this case quasi-refutation II is

< E,s=t,F
—»U[n] < o(E,F,slu « r]=t,E)
Sy < d(E R E) (20)
—iNe, O.

Since o(s[fu « r]) and ot are identical and u > A, the leftmost symbol of s and ¢ are the same.
Let s be f(s1,...,5,) and t be f(1,...,t,). Then, we have the following derivation

< B,f(s1,...,8n) = f(t1,...,tn), B' <= E,s1=11,...,80 = tn, E'
and quasi-refutation
< E,s1=t1,...,5n=1t,, F' (21)
= <0(BE,Fsilu — r]=ty,s0=12...,8, = tn, E')
= < 0(E,F,sy=t3,53=13,...,5, = tn, E')

-1y < o(E,FE)
—»f‘NCO i by the refutation starting from the goal in (20).
Since u’ < u, by the induction hypothesis the above quasi-refutation is replaced by the refutation
<=E,sy=t1,...,5, =1,, E' —»cho 0, where §' > 6,0. Hence we obtain

o
<« E,f(sl,---,sn) = f(tla"-vtn)aEl P LNCo O
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such that 8’ > ;0.
[2] (when the first step of II; is [v]) In this case, o(s[u < r]) or ot in II; is a variable. Let
s =1t be s =z, and oz be y, where y ¢ Var(o(s[u « r])). In this case I is

<=E,s=xF
—w  <0(E,Fslu « rj=x,E')
~ «po(E, FE)
—»g’ivco 0o,

where p = {o(s[u < r])/y} and 6] is a substitution such that }p = 60;. Let s be f(s1,...,sn).
Then we have the following derivation

< F, f(S]_, o asn) =X, E' _afiim]<= p,(Ea $1 =T1y...,8n = zan’))
where p' = {f(z1,...,zn)/z} and z1,...,z, are distinct fresh variables, and quasi-derivation
¢p,(Evsl=x1"“’5n=$naEl) (22)
—f[n] <op (B, F,s1[u « r]=x1,80 =29,...,5, = &n, E')

—n € mop (B, F,sy =X3,53 =13,...,5, = Tn, E')

S < pn-..p10p (B, F,E) (23)
where p; = {op'(s1[v/ « r])/z1}, and p; = {pi—1...p10p's;/z;} for i = 2,...,n. Note that
since z1,..., Ty are distinct fresh variables, we have p,...p1 = p, U...U p;. Since

Pn...p1opz =pu...p10f(T1,...,Tn) by the definition of p/
=pn...p1f(z1,...,2n) since z1,...,z, ¢ Dom(o)
= f(s1[v/ «~ 7],892,...,5n) since pn...p1 =poU...Upy
> o(slu — 1)
=py by the definition of p
= pox ‘ since y = oz,

we obtain p,...p10p'z > poz. For any variable z(# z), pn...p10p'2 = 0z > poz. Therefore,
we obtain pn ...p10p" > po. Let « be a substitution such that yp, ...p10p’ = po. By Lemma 2,
we obtain a refutation

0’[
< pn...p100 (E,F,E") = ¢, O,

where 6] > 6}y. Combining this refutation with the quasi-derivation (22) we obtain a quasi-
refutation:

<= p(B,s1 =%1,...,8p =z, E')

—?[n] < op/(E,F,si[u' « r]=1z1,80=1%9,...,8, = &, E')
0! pp...p
SN, O (24)

Since u' < u, by the induction hypothesis, corresponding to the quasi-refutation (24), there exists
. 62
a refutation < FE,sy =X1,...,5n = zn, B — ¢, O, where 82 > 6/p,,...p10. Therefore, we
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have a refutation of < E, f(s1,...,8n) = @, E' —inc, 0. We see that 620’ > 0)p, ...p1op >

017pn ... pr0p > 01p0 = b10.

[3] (when the first step of II; is [on]) We have to consider the two cases; the cases that [on]

is applied to the LHS of o(s[u « r]) = ot in I, and that [on] is applied to the RHS.
We begin with the former case. Let s be f(s1,...,5,). In this case II is

< E,f(s1,...,8n) =t,E'
— < 0(E, Ff(sifu’ « 1],s3,...,80) =t,E')
where a new variant | = r < F is used
—on <0o(E,Fsifu — r]j=s,...,sn=5,F,r' =t,E)
where a new variant f(s},...,s,) =1 < F' is used.
—Ivc, O,
Then we obtain the following derivation
< E,f(s1,...,8n) =, B s E,s1=5),...,sp =5, F,r' =t, E'
and quasi-refutation
< E,s;1=58],...,sp =5, Fl,r' =1, F
—g[,,] <o(E,F,s1u « r]=5s),...,sn =8, F v =t,E)
—»ZINCO O by the refutation starting from the goal in (25).
Since u/ < u, by the induction hypothesis we obtain a refutation:
< E,f(s1,...,8n) =t,E'
—>[%r,l] < E,s1=58],....sp =5, F,\r' =1, F
—»INC, O
such that 8’ > 6;0.
In the latter case, let ¢ be g(t1,...,%). In this case II is

< E,s=g(t1,...,tm), E’
—g[n] <= o(E,F,slu « r]=g(t1,...,tm), E)
where a new variant [ =r < F is used
—on) EOo(E,Fti=t,...,tm=1,,F" " =5su « r],E)

where a new variant g(t],...,t,,) =r" < F" is used

o4 O
—PILNCy .
——

-1 steps
Then we have the following derivation
< E,s=g(ty,...,tm), F’ —onj< B, 11 = o stm=t,  F' r" =5, E
and quasi-refutation
<Eti=t,...,tm=t ,F',v"=s F
= €o(Btr=t,..  tm=1,F Fr" =su « r],E)

—»?NCO O by the refutation starting from the goal in (26) and by lemma 3.
N———

1-1 steps
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The length of the quasi-refutation starting from the goal in (27) is shorter than the length of the
quasi-refutation II. Hence by the induction hypothesis, we obtain a refutation:

< E,s=g(t1,.-.,tm), &’
{on] <=E’t1:t{l"”’tmzt'lrn,,F”,r”=s,E’
0’
—»ING, U
such that ¢/ > 6,0.

[4] (when the first step of II; is [im]) In this case o(s[u « 7]) or ot in I is a variable. Let
s =t be f(s1,...,5,) =z and y be ox. In this case II is

< E,f(sy,...,8n) =X, E'
'—’ain] <:o-(Ela-Faf('s'l[’u’l - T],...,Sn)l‘-ft,E’)

where a new variant [ =7 < F is used

—>‘Em] < po(E,F,s1[u «— r]=1=x,...,5, =z, E")
6] i
—»LNC, O,
where p = {f(z1,...,%n)/y} (z1,...,zn are distinct fresh variables) and 6} is a substitution such

that 61p = 6. Let p' = {f(z1,...,2,)/z}. Note that p'(s1/u’) and [ is unifiable with an mgu o
since o(s1/u') = ol and oz is a variable (i.e., y). op'z = poz for z, and 0p’'z = 0z > poz for
any variable z(# z). Hence ogp’ > po. Let v be a substitution such that yop' = po. By Lemma
2 we obtain a refutation

. 0”
< op/(E,F,s1[u «— r]=1z1,...,80 = 20, B') = e, O, (29)
where 07 > 8}v. Therefore, we obtain the following derivation
= E,f(Sl, s aSl’l) =X, E '_)F[)im]c pI(E’ $S1 = ZT15...38p = znaE’)
and quasi-refutation

<=p,(E,S]_ =X15..+48n =$naE,)

—n] < op(E,F,s1[u/ — r]=1z1,...,5, = z,, E')
since op/(s1/u') = ol
—)-)LINCO 0 by (29)

Since u' < u, by the induction hypothesis we have

< E,f(s1,...,8n) =x, E'
0
—[im] <=P’(E,Sl =x1’---’sn=$n7El)
8,
—»LNC, 0O,

where 62 > 0]c. Let 6/ = 63p'. Then we have 6’ = b2p' > 0f0p' > 01vop' = 0\ po = 610.
The case of [d] is similarly treated to the case of [on], hence is omitted.
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Lemma 4. (completeness of LNCy w.r.t. NC) Let R be a conditional equational system and

G be a goal. If there exists a refutation G —»eNc O then there exists a refutation G —» Lg NC, O
such that 6/ > 6.

(Proof) The proof is by the induction on the length k of the refutation Il: G —'”%VC 0. For
k = 0, the result immediately holds. For k > 0, let G be <= E,s = t, E’. We have to consider
the following two cases.

[1](the first step of the refutation II is [f]) In this case II is of the form:

< FE,s= t,EI J{f]c U(E,E,) "*g}VC O
where o is an mgu of s and t. By Lemma 1, we obtain a derivation
< E,s=t E —yc<o(E,E)

The result follows immediately by the induction hypothesis.
[2](the first step of the refutation II is [n]) In this case II is of the form:

<=E,s.+_t,E, .—g[nﬁ: U(E,F,S[’u A T]Zt’E,) _)Q}VC o,

where a new variant | = r < F of a conditional equation in R is used. By the induction
hypothesis, we have

. 6,
< FE,s=tF —>o[n]<= o(E,F,slu — r]=t,E") —N¢c, O,
and 6] > 6;. By Lemma 11, we obtain a corresponding refutation
¢ E’s i t"E, _»LO,IVCO D,

such that ¢’ > 6jo. 8’ > 0l0 > 610 = 0, and we are done.

33



