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- Abstract

The reorthogonalization is a significant problem in the Lanczos algorithm. Some sat-
isfactory reorthogonalization methods have already been developed in the simple Lanczos
algorithm. However, there are few reorthogonalizations in the block Lanczos algorithm.
In this paper, two reorthogonalization methods PRO and RIC for the simple Lanczos
algorithm are extended for the block Lanczos algorithm. Numerical results show that
RIC gives satisfactory results, while PRO is supenor to RIC in the computation time but
inferior in the reliability. :

1 Introduction

When we solve the following eigenvalue problem of a symmetric n X n
matrix A | |
| Az = Az, | SR ¢
we transform A to a tridiagonal matrix. For this purpose, the Householder
transformation and the Givens method are usually applied. When the matrix
is large-and sparse, the Lanczos algorithm is effective. However, the orthog-
onality among Lanczos vectors is lost as the Lanczos steps proceed, since the
Lanczos algorithm is sensitive to roundoff error. Therefore the Lanczos algo-
rithm needs some reorthogonalizations.

For the simple Lanczos algorithm, SO (Selective Orthogonalization) (3],
PRO (Partial Reorthogonalization) [4] and RIC (Reorthogonalization with
Improved Convergence-Check) [1] are proposed. When A has multiple eigen-
values, however, the simple Lanczos algorithm will fail even with these re-
orthogonalizations. The block Lanczos algorithm has been developed to com-
pute multiple eigenvalues [2]. Of course, the block Lanczos algorithm also
needs some reorthogonalizations. SO in the simple Lanczos algorithm has
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been extended and applied to the block Lanczos algorithm [2]. However, it
needs rather long computational time and it does not give satisfactory results
in the reliability. Therefore, we will extend PRO and RIC in the simple Lanc-
zos algorithm to the block Lanczos algorithm. In the section 6, we show the
superiority of our methods compared with SO.

2 The simple Lanczos algorithm and the reorthogonal-
izations
2.1 The simple Lanczos algorithm

The simple Lanczos algorithm is given as follows.
(i) Choose a starting vector vy (||v1 || = 1), and set uy = Av; .
(ii) Compute o and S iteratively as follows.

(j =1,2...)

o = uiv,
Ty = U — oy,
B = Il r: Il
Vjiy1 =
ﬂ:
Ujyr = Avjyr — Biv;

where {v;};=1,2,.,n are Lanczos vectors which are mutually orthogonal.
The procedure (ii) is called the j-th Lanczos step. After the j-th Lanczos
step, A is transformed to a trldlagonal matrix T '

(o B
| B aa P 0
R ﬂj-‘.l
0 B e

. The R.it,zk va.lu'es {6;}i=1,..; and Ritz vectors {y;}i=1,.,; are defined as fol-
lows. . |

Tish = 60lst, yl = [vi...v)sl .



If j =n then Ritz values and Ritz vectors coincide with the eigenvalues and
eigenvectors of the original problem eq.(1) respectively.

2.2 ReorthogonAalizations

The Lanczos algorithm is so sensitive to roundoff errors that the orthog-
onality among Lanczos vectors is lost as the Lanczos steps proceed. This loss
of orthogonality causes the redundant copies of Ritz pairs, therefore some
computed eigenvalues are not true. To relax the sensitivity to roundoff errors
the reorthogonalization of Lanczos vectors is carried out. Matrices used in
the Lanczos algorithm are usually large, full reorthogonalization(FRO) is not
practical. Hence some partial reorthogonalizations have been introduced.

2.2.1 Selective Reorthogonalization(SO)

The loss of the orthogonality at the j-th step is monitored by

Bii = Bjlajil

o=l Ad =g, 1<i<i,
where o;; is the j-th component of s}. If Bii <+E | ( € is the machine epsilon),
then the ¢-th Ritz vector is considered to be converged. This indicates that
the Lanczos vectors have lost the orthogonality in the direction of the i-th

Ritz vector [2]. Therefore r; is reorthogonalized to the i-th Ritz vector. Thus
S0 is carried out as follows [3].

rie—ri— X (rid)yl,
v i€L(j)

where - - L
| LG) = {i | 1<i<i, Bu<vE).
2.2.2 Partial Reorthogonalization(PRO)

The orthogonality of the Lanczos vectors

— T
Wei = VL0,

satisfies the following recurrence formula. It is derived by taking into account
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the roundoff error in the Lanczos step.

Wk() =07wk,k=1a (1.<_kS.7+1),

1]

wei-1 = Pe,  (22k<)),
b = en(B)T, TeN(0,06),

1
Wryri =  =—BiWkitr + (@i — ap)Wr,

ﬂk
+B;i-1Wk,i—1 — Pr-1Wk—1,i] + Pk,i
2<k<j,1<i<k-1),
dri = (B +06:)®, @®eN(0, 03).

Here N(:,-) is a set of normal random numbers. The loss of the orthogonality
at the j-th step is monitored by wj41; . If | wj41i|> /€, then the i-th
Lanczos vector is chosen for the reorthogonalization. Thus PRO is carried
out as follows [4]. |

ri—ri— Y (rjvl)ol,
ieL(j)
where

LG) = {i | 1<i<j, |wipi|>ve}.
After the reorthogonalization has been carried out, we set

wjp1; € N(0, 1.5)e .

2.2.3 Reorthogonalization with Improved Convergence-Check(RIC)

The loss of the orthogonality is monitored by w;41,; as in PRO. If

| wiy1i |> +/Z , then the convergence check of the Ritz values is carried out
by comparing the Ritz values {A!}{_; at the j-th step with those It
at the (j — 1)-th step ( see Figure 1 ). The Ritz vectors which correspond to
the converged Ritz values are chosen for the reorthogonalization. Thus RIC
is carried out as follows [1].

rj—ri— 3 (rfu)ydl
ieL(s)
where
LG) = {i | 1<i<i~1, [N =M< or
2<i<j, | NI -NI<7}.



Here 7 is a tolerance.

(j—1)—thstep X™' N7 ... A AT
L L

4 —th step M oA Mg X

Figure 1: Correspondance for convergence check

3 The block Lanczos algorithm and the reorthogonal—
ization SO

3.1 The block Lanczos algorithm

The block Lanczos algorithm is carried out as follows by replacing each
“Lanczos vector vy in the simple algorithm by an n X p orthogonal matrix V;.
Here p denotes the block size [2]. :
(i) Choose a starting matrix V; (V;IVi =1, ), and set

U1 =A%

(ii) Compute M; (pxp) and B; (pxp, upper triangle ) iteratively as follows.

(7 = 1,2,...)
M; = UV,
R = Uj - ViM;,
Vis1B; = R; (the QR factorization of R; ),
Uiy1 = AVjp — V}TBJ- .
After the j-th block Lanczos step, A is transformed to a block tridiagonal
matrix Tj :



Mo B
B, M, Bf
T; =
BT
0 B;_y M;

3.2 The reorthogonalization SO

The block Lanczos algorithm is subject to the same loss of orthogonal-
ity as the simple Lanczos algorithm. The reorthogonalization SO described
earlier are available in the block Lanczos [2]. The loss of orthogonality at the
j-th step is monitored by |

Bii = |l Biwoj;i |l » 1<i<y,

where o,, is the vector whose elements are the last p elements of s, If
Bji < +/€ , then the i-th Ritz vector are chosen for the reorthogonalization.

TJ <_TJ, %:)(7‘, yj)yi ) (m=1,25'°'¢p)5
i€

where ,
R = (rj1...Tjp),
L(j) = {i | 1<i<j, Bii<+e}.

4 The extendéd recurrence formula

In this section reorthogonalizations PRO and RIC are extended for the
block Lanczos algorithm. First, the recurrence formula for the simple Lanczos
algorithm is extended as follows. The p X p matrix

Wk,i = V}?M )



is defined by the following recurrence formula.

Y

Wio = 0y, Wap = L, (1<k<j+1),
Wig-1 = T, (2<k<7),
Wiri = (BE) (Wit Bi + WiiM,
+Whii1Bio1 — MWy — Bl_Wi_1;)
+0O4,i ,
(2<k<], 1<z<k—1),

~

(2)

( the elements of ¥ € N(0, 0.6) ),
Or; = E(Bk-l-Bs‘)\I’
(the elements of W € N(0, 0.3) ) , |

where W..,0.: and I'. are p X p matrices, I, is a unit matrix and, 0, is a zero
matrix. ¥ and @ are p X p matrices whose elements are adequate random

numbers.
This recurrence formula is derived as follows. Taking.into account the
roundoff errors, the k-th Lanczos step is written as

Vit1Be = AVi—ViMy — Vi BY., — F | | (3)

where the n X p matrix F} stands for the roundoff errors in the k-th step.
From eq.(3), we have |

BiVinVi = WAV — MyVifVi — B ViE, Vi - FLV; . (4)
For k =t , eq.(3) becomes
VinBi = AV, - ViM;-V,_,BL, - F;.

Then
| AV; = Vi Bi+ ViMi + Ve BY | + F - (5)



Substituting eq.(5) into eq.(4), we have

BiViaVi = VIV B + VEViM;
+VIVie,BL, + VTR — MyVTV; (6)
_Bk—l‘/]g.-'_lvg" - FEV, .

Eq.(6) can be rewritten as

Wit = (BE) Y (Wi Bi + Wi iM; + Wi i1 By
— MWy — BY_ \Wieai + Ok
(2<k<j, 1<iLk-1),

where
0 = (B)NViF.—fiVi).

5 Reorthogonalization in the block Lanczos algorithm

Making use of the recurrence formula introduced in the section 4, we
propose two reorthogonalization methods for the block Lanczos algorithm. -

5.1 The algorithm of block PRO

(i) Carry out a block Lanczos step .
(ii) Compute Wj41,( 7 =1,...,7 ) using the recurrence formula (2) and let
@;4+1, be the largest absolute value of elements of W41 .

(iii) Reorthogonalize R; = (rj1...r;,) using the Lanczos vectors
Vi = (vi1...v;p) as follows.
14 T '
ijn A Tj,'n - E E (Tj,nvi,"t)vi,m, (n = 1, PR ,p)
ieL(j) m=1
where

L) = {1 | 1L4<§, @i>e}
(iv) After the reorthogonalization has been carried out, elements of Wj1; are
set the elements of eN(0,1.5) . |



5.2 The algorithm of block RIC

(i) Carry out a block Lanczos step.

(ii) Compute Wiy (4 =1,...,5 ) using the recurrence formula eq.(2) and
let @;41,; be the largest absolute value of the elements of Wi,y .

(iii) Check the convergence of the Ritz values only when @;,, ; becomes greater
than /¢ for some i.

(iv) Carry out the convergence check of the Ritz values by comparing the Ritz
values at the j-th step with those at the (j — 1)-th step(see Figure 1).

(v) Reorthogonalize R; = (rji...rj,) using the Ritz vectors which corre-
spond to the converged thz Values as follows.
Tim = Tin= ¥ (iadll,  (n=1,...,p)
ieL(y)
where

L) = {i | 1<i<ix(p=-1), [N =XN]|<7or
| Cp<iZixp | NI-M|<7T}.

Here 7 is a tolerance. We have used throughout the value 7 = 10-8 .

6 Numerical result

6.1 The sparse matrices used in the numerical computations

Matrices used here are obtained by discretization of the two dimensional
Laplace operator which is defined in the rectangular domain and is subject to
the homogeneous Dirichlet boundary condition. As for these matrices exact
eigenvalues are given as follows.

)\,-,j=4{sin2(2(I ))+sin(2(J ))}
i=1,...,0, j=1,...,J,

where (I +1) and (J + 1) are division numbers of the rectangular domain
along the z-axis and the y-axis respectively. The degree of the matrix is

n(=IxJ).



6.2 The loss of the orthogonality

The loss of the orthogonality among the Lanczos vectors in the blockPRO
and the block RIC are examined ( see Figure 2. Figure 3 ). Here, circles denote

— T .
H; = max vj+1’kv,,m ,
and squares denote

H; is the true orthogonality among Lanczos vectors and H ; is the orthogo-
nality computed by the recurrence formula. These figures show that the loss
of orthogonality can be monitored by the recurrence formula.

6.3 Numerical results in the case of multiple eigenvalues

Numerical computations by the Lanczos algorithm with the reorthogo-
nalizations SO, PRO and RIC are carried out for the matrices which have
multiple eigenvalues.

The simple Lanczos algorithms with SO, PRO and RIC are extremely
inaccurate(see Table 1). While the block Lanczos algorithms give good re-
sults (see Table 2), provided that the block size is larger than or equal to the
largest multiplicity.

Otherwise, in the case that the block size is smaller than the la.rgest mul-

Table 1: Simple Lanczos,N=225(1=3,]=75),
the largest multiplicity =3.

error(average) | cpu time(sec) |

SO 0.175E-3 234.392
PRO 0.159 | 6.664
RIC 0.126E-3 187.671




1.000E-6
1.000E-71

1.000E-8+

1.000E-9

1.000E~104

1.000E-114

-

1.000E- 124

1.000E~13

1.000E~ 1 44

1.000€E-15
0

Figure 2: The orthogonality (PRO)
N=120, block size=3, the largest multiplicity=1
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Figure 3: The orthogonality (RIC)

N=120, blocksize=3, the largest multiplicity=1
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Table 2: Block Lanczos, N=225(1=3,J=T75),
block size=3, the largest multiplicity=3.

error(average) | cpu time(sec)
SO 0.219E-13 97.652
PRO 0.220E-13 - 5.202
RIC 0.223E-13 79.611 |

tiplicity, the accuracy becomes considerably bad (see Table 3). In the practical
problems, the information about multiplicity is unknown. This means that
the block Lanczos algorithms with PRO and SO are not useful. While the
block Lanczos algorithm with RIC indicates reliable eigenvalues among the
computed eigenvalues, even if the block size is smaller than the largest multi-
plycity (see Figure 4). Of course, in the pratical problems exact eigenvalues

and relative errors are not outputted.

The computations tlme of PRO is remarkable throughout numerical re-

sults.

Table 3: Block Lanczos, N=225(I=15,J=15),

block size=3,the largest multiplycity=15.

error(average) | cpu time(sec)
 SO| 0.923E3 | 126.301
| PRO 0.314E-1 4.865




RIC
N=225 p=5

CPU TIME 88.9707269999999956

Largest 61 and smallest 61 eigenvalues are reliable.

s%6%  LARGEST 61 sskksirx

Computed
7.92314112161271263
7. 80932962582888007
7. 80932962582882636
7.69551813004495961
7.62450978541139886
7.62450978541135578
7.51069828962752566
7.51069828962747632
7.37578412317942035
7.37578412317937976

Exact
7.92314112161292200
7.80932962582903419
7.80932962582903419
7.69551813004514637
7.62450978541155093
7.62450978541155093
7.51069828962766312
7.51069828962766312
7.37578412317955491
7.37578412317955491

( The rest is omitted.)

. xex SMALLEST 61
Computed

Kk ok kkK
Exact

Relative Error
0. 263993805775857942E~-13
0. 197326740195849637E~13
0. 266135200033595445E-13
0. 242660090699904322E-13
0. 199197737353973948E-13
0. 255986565985589323E-13
0. 182999775984089147E-13

0. 248335721852398841E-13

0. 182433526168012690E-13
0. 237825883948399381E-13

Relative Error

0. 768588783870802903E-01 0. 768588783870781536E-01 0. 278065379986437350E-13

0. 190670374170970935
0. 190670374170979948
0. 304481869954862357
0. 375490214588450393
0. 375490214588465310
0.489301710372341299
0.489301710372353123
0.624215876820449545
0.624215876820457945

0.190670374170965514
0.190670374170965526
0. 304481869954852911
0. 375490214588448475
0. 375490214588448475
0.489301710372335835
0.489301710372335835
0.624215876820443830
0.624215876820443830

( The rest is omitted. )

0.283130480060802185E-13
0.756227683247232366E-13
0.310388710451724452E-13
0.517427676570348322E-14
0.448314122628451832E~13
0.111747992708182397E-13
0. 353395936330952460E-13
0.911626478657739988E~-14
0.226103031413395523E~14

Figure 4: Output of the block RIC,

N=225, block size=5, the largest multiplicity=15 .



7 Conclusions

PRO and RIC for the simple Lanczos algorithm are extended for the block
Lanczos algorithm. The block SO and the block PRO are not reliable when
the block size is smaller than the multiplicity. Even in this case, however, the
block RIC indicates reliable eigenvalues among computed ones. Therefore,
the block RIC is found useful for practical problems.
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