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Abstract This paper addresses itself to methods for finding a rectangle of minimum area
which encloses the projection of a given convex set in a higher dimensional space onto the
plane of the rectangle. In case the given set is a polytope, a parametric simplex algorithm is
proposed for obtaining a global solution, which needs the polynomial number of arithmetics on
the average. In case the set is nonlinear convex, it is shown that a successive underestimation

method generates an e-global solution in finite time if € > 0.
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1 Introduction

In this paper, we describes practical methods to determine a rectangle of minimum
area which encloses the projection of a given convex set D € R™ onto the plane of the
rectangle. This problem is a generalization of that introduced by Freeman and Shapiro
[6] and can be applied in certain packing and optimum layout problems >[9.,14].

If D is a polytope and its vertices are known, we can solve the problem in O(N log N)
time by using the techniques of computational geometry [3,7,18], where N represents
the number of vertices (see Section 4). In more geheral cases, however, it is much
more complicated to find a global solution because the problem has a highly noncon-
vex structure.

In Section 2, we propose a parametric simplex algorithm for obtaining a global
solution of the problem, in which D is given by a system of linear inequalities. The

average number of arithmetics needed for the algorithm are polynomial order of the
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Figure 2.1: Tllustration of the problem in R?

size of the linear system. In Section 3, we consider the case where D is a nonlinear
convex set. We define a function which underestimates the area of the encasing rectan-
gle. By using the underestimating function we construct a successive underestimation

algorithm for obtaining an e-global solution. We discuss some remarks in Section 4.

2 Minimum-Area Rectangle Enclosing the Projection of a Polytope

2.1 Formulation of the pfoblem
Let D € R™ be a given polytope defined as follows:
D ={(z,y) € R"| A1z + Ay < b}, | (2.1)

where z € R? and y € R"? are vectors of variables and 4; € R™*? A, € Rm*(n=2)
and b € R™ are constants. We assume in the sequel that D has an interior point. Let

us denote by D the projection of D onto the plane of z, i.e.,

D={z € R|(3ye€ R"?) Az <b— Ay} (2.2)



Our problem is to find a minimum-area rectangle in the z-plane which encloses D (see
Figure 2.1). The set D is a polytope because it is the image of a polytope under a
linear transformation from R" to R? (see Theorem 19.3 of [14]).

For any fixed £ € R? let us consider the following two linear programming problems:

maximize fo(z,y;§) = 'z
P1(¢) . (23)
subject to Az + Ay < b,

minimize  fo(z,y; ) = 'z
P2(¢) , (2.4)
subject to A;z + Ay < b.

Since their common feasible set D is nonempty and bounded, P;(£) and P,(£) have
“optimal solutions (2(€), y*(€)) and (2%(€), y2(€)), respectively. Let us define

£(6) = fol2*(€), 5 (); €) — folz?(€), 43(6); 6). (2.5)

If ||€]] = 1, f(€) corresponds to the diameter of D in the direction of £&. Thus our

problem can be formulated as follows:

minimize  f(&) - f(&)

(2.6)
subject to [[&]| =|&|l =1, £1& =0,
where the objective function expresses the area of an encasing rectanglé of D.
Theorem 2.1 f(-) is a convez polyhedral function and satisfies the following:
flaf) = af(€), Va2>0. (2.7)

Proof Follows from the well-known results of linear programming [4,5] and the def-

inition of f(-). | a

For A € [0,1] let

' A : A-1
(1) ew=(7)
1-X A

and let us define



F()\) = ! (ilz(’y?(i’:(%)(;\)). (2.9)

Then we have

&N
& (M

by noting (2.7) and

£(2)
&M

R = f() A,

[&: (NI [&(A)] =0

for every A € [0,1]. Hence solving P amounts to locate a global minimum point A* of

F () over the interval [0, 1].

2.2 Parametric simplex method for solving P

Let us proceed to the algorithm to find a global minimum point A* of F()) over the
interval [0, 1]. Since the projection DofDisa polytope’in R?, the following theorem

[6] is useful to construct the algorithm.

Theorem 2.2 A minimum-area rectangle enclosing a polytope in R? has a side col-

linear with one of the facet of the polytope.

Proof See Theorem 2 of [6]. a

Corollary 2.3 At least one of P;(&(X*)), j = 1,2; k = 1,2, has multiple optimal

solutions.

Proof Immediately follows from Theorem 2.2. m|

" Each of the linear programs P;(£x(A))’s can be solved parametrically by increasing
the value of A from zero to one. By barring degeneracy, for P;(£x(A)) we obtain

a sequence of intervals [0, AJ¥], [A2%, \3F],. .., [\* 1] such thatA)\‘{'k < /\{_]:1 and the

Pk’

associated sequence of bases Bék,B{k,...Bgfk such that B/* is optimal for all A €
A5 A% 1. Since P, (& A7%)) has different basic optimal solutions corresponding to the
1 A+l j 1 P 8

bases B,’fl and B{k, respectively, Corollary 2.3 can be rewritten as follows:
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Corollary 2.4 Among /\{k, k=1 .‘..,pjk; 71 =12k =12 1s a global minimum
point A* of F\(X) over the interval [0,1]. |

Thus we obtain the following parametric simplex algorithm for solving the problem

Algorithm A

Step 1 Solve the linear programs P;(£:(0)), 7 = 1,2; k = 1,2. Let B i =12

k =1, 2, be their respective optimal bases.

Step 2 Solve each of P;(&(A)), j = 1,2; k = 1,2, parametrically by increasing A €
[0,1]. Let [0, A3"], [{*, A2¥], ..., [A%,] be a sequence of intervals generated in the
course of computation and BJ* BI¥ .. Bgfk be the associated sequences of bases

such that B?* is an optimal basis of P;(&(N)) for all A € [A¥, /\ff_l .

Step 3 Let
A* € argmin{F(/\{k) [l=1,...,pj5; 7 =1,2, k=1,2}.

and let

£1(A7) £2(\)

g=rtiim 6= i

[FIES I P OT

a

After finitely many iterations we obtain a globally optimal solution (£f,£%) of P by

barring degeneracy.

2.3 Average performance of the algorithm

Adler and Haimovich showed in [1,8] that the average number of simplex pivots needed

for solving a parametric linear program of the form:

minimize Acfz + (1 — A\)d'z
(2.10)

subject to Az < b,



which is generated randomly, is O(min{m, n}), where m and n represent the size of A.
Since each P;(£x())) solved at Step 2 of Algorithm A is just the same form as (2.10),
the expected number of intervals [AF, A{'_:l]’s will be no more than O(min{m,n}). On
the other hand, the problems solved at Step 1 are standard linear programs, which can
be solved in O((min{m, n})?) steps on the average by using the algorithm developed by
Todd [16] or Adler and Megiddo [2]. Hence the average number of arithmetics needed
for Algorithm A is a lower order polynomial functions of the size of the matrices A;

and A,.

3 Minimum Rectangle Enclosing the Projection of a Convex Set

3.1 Formulation of the problem

Now let us consider a more general case of the problem stated in the previous section,
which finds a minimum-area rectangle in R? enclosing the projection of a given non-
linear convex set in R™ onto the plane of the rectangle. Let D be a given convex set

defined by
D ={(z,y) € R"| gi(z,y) <0, i=1,...,m}, (3.1)

where ¢ € R2 and y € R" 2 and g; : R® — R, i = 1,...,m, are nonlinear convex
functions. We assume that D is compact and has an interior point. The problem is

formulated as follows:

minimize g(&) - g(&2)
subject to ||&]l = |l&ll =1, £1€2 =0,

(3.2)

where &3, &, € R? are variables and g(£) represents the difference of the optimal values

of the following two convex programming problems:

maximize go(2,y;§) = &'z

Qu(€)

subject to gi(z,y) <0, i=1,...,m,

minimize go(z,y; €) = 'z
Q,(¢) . | (3.4)
subject to gi(z,y) <0, i=1,...,m.




Thus we have

9(€) = go(z'(€), ¥ (£);€) — 90(2°(€), ¥*(£); 6), (3.5)

where (z7(£), ¥’ (£)) is an optimal solution of Q;(£). We obtain the following theorem

in the similar way to Theorem 2.1:

Theorem 3.1 ¢(-) is a convezr function and satisfies that

g(ag) = ag(£), Vo >0. (3.6)

As before let

A A-1
w-() ()
1-2A A

for A € [0,1]. Then we need to locate a global minimum point A* of a function:

9(&(A)) - g((A))
A2+ (1=X)2 | (3.8)

G\ =

over the interval [0, 1].

3.2 Underestimating function of G

Since the denominator A? 4+ (1 — A)? of G(]) is positive for all ), the slope of G(-) has

the same sign as that of the numerator:

G(A) = g(&(N)) - 9(&(N)- | (3.9)

Hence, it is sufficient to enumerate every local minimum of G{(\) over the interval [0, 1].

~ Let H be a family of functions A(-; p) which has the following form:
h(A;p) = [pid + pa(1 = A)] - [ps(A — 1) + psA], (3.10)

where p = (p1, pa, p3, ps)® satisfies that

— 1 2. — a1 2. — 3 4, — 3 4
P1=T1— T P2 =Ty — T P3=T] Ty Py = TH— T (3.11)



for some 2!, 22, 2% and z*! in the projection D of D. Then G()) is the pointwise

maximum of functions belonging to H over the interval [0,1]. Let

Ej = max{mj | gi(m’ y) < 0: 1= 1; SRR m}) .7 = 1)2) (312)
z. = min{z,; | gi(2,y) <0, i1 =1,...,m}, j=12. (3.13)

=J

Lemma 3.2 Every function h(-;p) € H is Lipschitz continuous over the interval [0,1]

with a Lipschitz constant:

L= (T — 2, +F2 — ;)% (3.14)

Proof We have

Oh(A;

__(8_:\—3)_ = 2(p1 — P2)(Ps + Pa)A — (P1 — p2)ps + pa(ps + pa),
and

AOh(\; Oh(0; Oh(1;

PRD ¢ 1y 22052),  ORLR))

for any A € [0,1]. It follows from (3.11) ~ (3.13) that

0h(0; p)

hada Nl ) B 9
| ) | | — p1ps + 2p2ps + Papsl

IN

Ip1l|ps] + 2|p2|lps] + |p2||pal
< (T —2y+7% — z,)°.

h(1; p)

Similarly, we have |a I | < (@1 — 21+ T2 — 25)% | o

Let us define a piecewise linear function:
U A, Ae) = max{—LX + LA, + G(A,), LA — LA, + G(Ao)}. (3.15)
Theorem 3.3 For any A € [A,, A] C [0,1]

U(X; Ay Ae) < GON). | (3.16)



Proof Assume the contrary. Then there exists A" € [A,, A;] such that

UN;A0, M) > G(X). (3.17)
Let

G(A) = h(ip) | (3.18)
and assume without loss of generality that

UN;A, M) = LN — LA, + G(Ay). (3.19)
Since é() is the pointwise maximum of functions of H, we have

G(X) > h(X;p). (3.20)

It follows from (3.17) ~ (3.20) that

R(X;p") — h(As; P')

S U W R 2

which contradicts Lemma 3.2. O

For the minimum point Ay = 1/2 of U(;0, 1) let us define
U1(A) = min{U (X, 0, Xo), U(X, Ao, 1)} (3.21)

Then U;(A) underestimates G()) for all A € [0,1] as well as U(X;0,1). In addition, it

1s a better underestimating function than U(-;0,1), i.e.,
U(A0,1) <U(A) <GV,  VYaelo1].

Another underestimating function Us(-) of G(-) over [0,1] would be generated by ap-
plying the same operation to (3.21) to either U(}, 0, Ag) or U(X, Ao, 1) (see Figure 3.1).
In this way, we would obtain a sequence of underestimating functions U;(-)’s of G()

as follows:

LA ST, <---<U(A)<-- <G, Vaeo,1]. (3.22)



S e E PR )

Figure 3.1: Underestimating functions of G{(-)

3.3 Successive underestimation method for solving Q

By exploiting the property of U(-; A, A¢) the following recursive procedure B(l, z, A,, A¢)
can be constructed, which geherate an e-minimum point A* of G(\) over the subinterval
[As, A¢] such that G(A*) < z if it exists:

Procedure B(l, z, A, \;)

1° Generate the underestimating function U(X; A, A¢) of G()) over [A,, A¢] by using
the Lipschitz constant L and both the values of G(},) and G(\y).

2° Let )\ € argmih{U(x\; Ao Ad) [ A€ P, Ad} EUAG A A) > A+ (1 — A2z,

then return.

3° Compute G()\;) by solving the convex progrzims Q,;(&(N),i=1,2k=1,2. If
G\ — UM A, M) < A2+ (1= N)%e, (3.23)

then let A* = ) and z = G(\)/[A? + (1 = \)?

10



4° Call Procedure B(I +1, z, A,, A;) and Procedure B(I + 1, z, \;, A;). a

Choosing an appropriate ¢ > 0, we obtain an globally e-optimal solution (&}, £3) of

Q by the following algorithm:

Algorithm C

Step 1 Compute the Lipschitz constant L by solving the convex programs (3.12) and
(3.13). Compute G(0) and G(1) by solving the convex programs Q,(£x(0)) and
Q;(&x(1)) (7 =1,2; k = 1,2), respectively.

Step 2 Call Procedure B(0, +o0,0,1).

Step 3 For the output A* of Procedure B(0,+o0,0,1) let

& (A7) e = £2(A7)

4= = TGOIT

P eIl

Theorem 3.4 Algorithm C is terminate after finitely many iterations if € > 0.

Proof Assume that Algorithm C is infinite for some € > 0. Then there exists a

convergent subsequence {A;,} of {\;} such that for every ¢
G = Ui Ay A) 2 D, + (1= APl (3.24)
where either \,, of A, is equal to A;,_;. By noting that U(X;—1; A, As,) = G(N,—1),
we have
1G(A,) = U (A5 Aeyps A, )|
= IG(/\lq) = U(Nig=15 A0, Aey) + U(Aigm15 Asps Ary) — U (A5 Ay, Aty
< G(A,) = Gumt)] + U (Nig; Asgs Aey) = U (Aty=15 Asg Ar, -
Let G(Ay,) = h(X\,;p"). Since h(Ni,—1;p') < G(\i,-1), we have
1G(A,) = U (Agi Asgs A, )|
< R PY) = A1 D)+ [U (A5 Asgs Aey) = U(Aiy—15 sy Ae, )|

< 2L\, = Apal.

11



This contradict (3.24) because limg.c | A, — Aig-1| = 0. O

4 Remarks

In case D is a polytope given by its vertices (z!,3'), (22,%?%), ..., (¥, y"), we can
solve the problem P in Section 2 with the tools of computational geometry. Let X be
the projection of the set of the vertices onto the z-plane, 1.e., X = {z2]j=1,...,N}.
We can compute the convex hull X of X in O(N log N) time [3,7]. Based on Theorem
2.2, the minimum-area rectangle enclosing X can be obtained in O(N) time by using
the caliper method [17]. Therefore, the total number of arithmetics needed for this
case is O(N log N) at worst.

The problem Q can be solved by exploiting the following parametric representation

of G(-) as well:

G'(x7) = ng(6:(N) + }l-g@z(/\)). (4.1)

By noting that g(&x(A)) >0 for’any Y= [0, 1], we have

G'(Am) <2V GV

for 5 > 0, where the equality holds at 7 = \/g(fz(/\))/g(ﬁl(/\)). Therefore, to find a

minimum point of G(X) over [0, 1] we need to enumerate every local minimum of a

function: -
G"(n) = min{G'(A;n) | A € [0, 1]} (4.2)

over 17 > 0. Since G"(n) is the pointwise minimum of functions of the form an + b/,
we can utilize a good underestimating function of G” () proposed in Kuno and Konno
[12] and Suzuki, et al.[15] for multiplicative programming. However, it is not easy
to compute the right-hand side of (4.2) because G'(-;7) is a nonconvex function. A

similar approach is developed in [11] for another problem in the plane.
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