

ISE-TR-91-95

Globally Determining a Minimum-Area Rectangle Enclosing the Projection of a Higher-Dimensional Set

> by Takahito Kuno

December 2, 1991

INSTITUTE
OF
INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA

Globally Determining a Minimum-Area Rectangle Enclosing the Projection of a Higher-Dimensional Set

Takahito Kuno Institute of Information Sciences and Electronics University of Tsukuba

December, 1991

Abstract This paper addresses itself to methods for finding a rectangle of minimum area which encloses the projection of a given convex set in a higher dimensional space onto the plane of the rectangle. In case the given set is a polytope, a parametric simplex algorithm is proposed for obtaining a global solution, which needs the polynomial number of arithmetics on the average. In case the set is nonlinear convex, it is shown that a successive underestimation method generates an ϵ -global solution in finite time if $\epsilon > 0$.

Keywords nonconvex minimization, global minimization, parametric simplex method, successive underestimation method, computational geometry

1 Introduction

In this paper, we describes practical methods to determine a rectangle of minimum area which encloses the projection of a given convex set $D \in \mathbb{R}^n$ onto the plane of the rectangle. This problem is a generalization of that introduced by Freeman and Shapiro [6] and can be applied in certain packing and optimum layout problems [9,14].

If D is a polytope and its vertices are known, we can solve the problem in $O(N \log N)$ time by using the techniques of computational geometry [3,7,18], where N represents the number of vertices (see Section 4). In more general cases, however, it is much more complicated to find a global solution because the problem has a highly nonconvex structure.

In Section 2, we propose a parametric simplex algorithm for obtaining a global solution of the problem, in which D is given by a system of linear inequalities. The average number of arithmetics needed for the algorithm are polynomial order of the

Figure 2.1: Illustration of the problem in \mathbb{R}^3

size of the linear system. In Section 3, we consider the case where D is a nonlinear convex set. We define a function which underestimates the area of the encasing rectangle. By using the underestimating function we construct a successive underestimation algorithm for obtaining an ϵ -global solution. We discuss some remarks in Section 4.

2 Minimum-Area Rectangle Enclosing the Projection of a Polytope

2.1 Formulation of the problem

Let $D \in \mathbb{R}^n$ be a given polytope defined as follows:

$$D = \{(x, y) \in \mathbb{R}^n \mid A_1 x + A_2 y \le b\},\tag{2.1}$$

where $x \in \mathbb{R}^2$ and $y \in \mathbb{R}^{n-2}$ are vectors of variables and $A_1 \in \mathbb{R}^{m \times 2}$, $A_2 \in \mathbb{R}^{m \times (n-2)}$ and $b \in \mathbb{R}^m$ are constants. We assume in the sequel that D has an interior point. Let us denote by \tilde{D} the projection of D onto the plane of x, i.e.,

$$\tilde{D} = \{ x \in \mathbb{R}^2 \mid (\exists y \in \mathbb{R}^{n-2}) \ A_1 x \le b - A_2 y \}.$$
 (2.2)

Our problem is to find a minimum-area rectangle in the x-plane which encloses \tilde{D} (see Figure 2.1). The set \tilde{D} is a polytope because it is the image of a polytope under a linear transformation from R^n to R^2 (see Theorem 19.3 of [14]).

For any fixed $\xi \in \mathbb{R}^2$ let us consider the following two linear programming problems:

$$P_1(\xi) \begin{vmatrix} \text{maximize} & f_0(x, y; \xi) = \xi^t x \\ \text{subject to} & A_1 x + A_2 y \le b, \end{vmatrix}$$
(2.3)

$$P_{2}(\xi) \begin{vmatrix} \text{minimize} & f_{0}(x, y; \xi) = \xi^{t} x \\ \text{subject to} & A_{1}x + A_{2}y \leq b. \end{vmatrix}$$
(2.4)

Since their common feasible set D is nonempty and bounded, $P_1(\xi)$ and $P_2(\xi)$ have optimal solutions $(x^1(\xi), y^1(\xi))$ and $(x^2(\xi), y^2(\xi))$, respectively. Let us define

$$f(\xi) = f_0(x^1(\xi), y^1(\xi); \xi) - f_0(x^2(\xi), y^2(\xi); \xi).$$
(2.5)

If $||\xi|| = 1$, $f(\xi)$ corresponds to the diameter of \tilde{D} in the direction of ξ . Thus our problem can be formulated as follows:

P minimize
$$f(\xi_1) \cdot f(\xi_2)$$

subject to $||\xi_1|| = ||\xi_2|| = 1$, $\xi_1^t \xi_2 = 0$, (2.6)

where the objective function expresses the area of an encasing rectangle of \tilde{D} .

Theorem 2.1 $f(\cdot)$ is a convex polyhedral function and satisfies the following:

$$f(\alpha \xi) = \alpha f(\xi), \quad \forall \alpha \ge 0.$$
 (2.7)

Proof Follows from the well-known results of linear programming [4,5] and the definition of $f(\cdot)$.

For $\lambda \in [0,1]$ let

$$\xi_1(\lambda) = \begin{pmatrix} \lambda \\ 1 - \lambda \end{pmatrix}, \qquad \xi_2(\lambda) = \begin{pmatrix} \lambda - 1 \\ \lambda \end{pmatrix}$$
 (2.8)

and let us define

$$F(\lambda) = \frac{f(\xi_1(\lambda)) \cdot f(\xi_2(\lambda))}{\lambda^2 + (1 - \lambda)^2}.$$
 (2.9)

Then we have

$$F(\lambda) = f(\frac{\xi_1(\lambda)}{||\xi_1(\lambda)||}) \cdot f(\frac{\xi_2(\lambda)}{||\xi_2(\lambda)||}).$$

by noting (2.7) and

$$[\xi_1(\lambda)]^t[\xi_2(\lambda)] = 0$$

for every $\lambda \in [0,1]$. Hence solving P amounts to locate a global minimum point λ^* of $F(\lambda)$ over the interval [0,1].

2.2 Parametric simplex method for solving P

Let us proceed to the algorithm to find a global minimum point λ^* of $F(\lambda)$ over the interval [0, 1]. Since the projection \tilde{D} of D is a polytope in R^2 , the following theorem [6] is useful to construct the algorithm.

Theorem 2.2 A minimum-area rectangle enclosing a polytope in \mathbb{R}^2 has a side collinear with one of the facet of the polytope.

Proof See Theorem 2 of
$$[6]$$
.

Corollary 2.3 At least one of $P_j(\xi_k(\lambda^*))$, j = 1, 2; k = 1, 2, has multiple optimal solutions.

Each of the linear programs $P_j(\xi_k(\lambda))$'s can be solved parametrically by increasing the value of λ from zero to one. By barring degeneracy, for $P_j(\xi_k(\lambda))$ we obtain a sequence of intervals $[0, \lambda_1^{jk}], [\lambda_1^{jk}, \lambda_2^{jk}], \dots, [\lambda_{p_{jk}}^{jk}, 1]$ such that $\lambda_l^{jk} < \lambda_{l+1}^{jk}$ and the associated sequence of bases $B_0^{jk}, B_1^{jk}, \dots B_{p_{jk}}^{jk}$ such that B_l^{jk} is optimal for all $\lambda \in [\lambda_l^{jk}, \lambda_{l+1}^{jk}]$. Since $P_j(\xi_k(\lambda_l^{jk}))$ has different basic optimal solutions corresponding to the bases B_{l-1}^{jk} and B_l^{jk} , respectively, Corollary 2.3 can be rewritten as follows:

Corollary 2.4 Among λ_l^{jk} , $k = l, ..., p_{jk}$; j = 1, 2; k = 1, 2, is a global minimum point λ^* of $F(\lambda)$ over the interval [0, 1].

Thus we obtain the following parametric simplex algorithm for solving the problem P:

Algorithm A

Step 1 Solve the linear programs $P_j(\xi_k(0))$, j = 1, 2; k = 1, 2. Let B_0^{jk} , j = 1, 2; k = 1, 2, be their respective optimal bases.

Step 2 Solve each of $P_j(\xi_k(\lambda))$, $j=1,2;\ k=1,2$, parametrically by increasing $\lambda\in[0,1]$. Let $[0,\lambda_1^{jk}],[\lambda_1^{jk},\lambda_2^{jk}],\ldots,[\lambda_{p_{jk}}^{jk}]$ be a sequence of intervals generated in the course of computation and $B_0^{jk},B_1^{jk},\ldots,B_{p_{jk}}^{jk}$ be the associated sequences of bases such that B_l^{jk} is an optimal basis of $P_j(\xi_k(\lambda))$ for all $\lambda\in[\lambda_l^{jk},\lambda_{l+1}^{jk}]$.

Step 3 Let

$$\lambda^* \in \operatorname{argmin} \{ F(\lambda_l^{jk}) \mid l = 1, \dots, p_{jk}; \ j = 1, 2; \ k = 1, 2 \}.$$

and let

$$\xi_1^* = \frac{\xi_1(\lambda^*)}{||\xi_1(\lambda^*)||}, \qquad \xi_2^* = \frac{\xi_2(\lambda^*)}{||\xi_2(\lambda^*)||}.$$

After finitely many iterations we obtain a globally optimal solution (ξ_1^*, ξ_2^*) of P by barring degeneracy.

2.3 Average performance of the algorithm

Adler and Haimovich showed in [1,8] that the average number of simplex pivots needed for solving a parametric linear program of the form:

minimize
$$\lambda c^t x + (1 - \lambda) d^t x$$

subject to $Ax \le b$, (2.10)

which is generated randomly, is $O(\min\{m, n\})$, where m and n represent the size of A. Since each $P_j(\xi_k(\lambda))$ solved at Step 2 of Algorithm A is just the same form as (2.10), the expected number of intervals $[\lambda_l^{jk}, \lambda_{l+1}^{jk}]$'s will be no more than $O(\min\{m, n\})$. On the other hand, the problems solved at Step 1 are standard linear programs, which can be solved in $O((\min\{m, n\})^2)$ steps on the average by using the algorithm developed by Todd [16] or Adler and Megiddo [2]. Hence the average number of arithmetics needed for Algorithm A is a lower order polynomial functions of the size of the matrices A_1 and A_2 .

3 Minimum Rectangle Enclosing the Projection of a Convex Set

3.1 Formulation of the problem

Now let us consider a more general case of the problem stated in the previous section, which finds a minimum-area rectangle in R^2 enclosing the projection of a given non-linear convex set in R^n onto the plane of the rectangle. Let D be a given convex set defined by

$$D = \{(x, y) \in \mathbb{R}^n \mid g_i(x, y) \le 0, \quad i = 1, \dots, m\},\tag{3.1}$$

where $x \in \mathbb{R}^2$ and $y \in \mathbb{R}^{n-2}$ and $g_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m, are nonlinear convex functions. We assume that D is compact and has an interior point. The problem is formulated as follows:

Q minimize
$$g(\xi_1) \cdot g(\xi_2)$$

subject to $||\xi_1|| = ||\xi_2|| = 1$, $\xi_1^t \xi_2 = 0$, (3.2)

where $\xi_1, \xi_2 \in \mathbb{R}^2$ are variables and $g(\xi)$ represents the difference of the optimal values of the following two convex programming problems:

$$Q_1(\xi) \begin{vmatrix} \text{maximize} & g_0(x, y; \xi) = \xi^t x \\ \text{subject to} & g_i(x, y) \le 0, \quad i = 1, \dots, m, \end{vmatrix}$$
(3.3)

$$Q_2(\xi) \begin{vmatrix} \text{minimize} & g_0(x, y; \xi) = \xi^t x \\ \text{subject to} & g_i(x, y) \le 0, \quad i = 1, \dots, m. \end{vmatrix}$$
(3.4)

Thus we have

$$g(\xi) = g_0(x^1(\xi), y^1(\xi); \xi) - g_0(x^2(\xi), y^2(\xi); \xi), \tag{3.5}$$

where $(x^{j}(\xi), y^{j}(\xi))$ is an optimal solution of $Q_{j}(\xi)$. We obtain the following theorem in the similar way to Theorem 2.1:

Theorem 3.1 $g(\cdot)$ is a convex function and satisfies that

$$g(\alpha \xi) = \alpha g(\xi), \quad \forall \alpha \ge 0.$$
 (3.6)

As before let

$$\xi_1(\lambda) = \begin{pmatrix} \lambda \\ 1 - \lambda \end{pmatrix}, \qquad \xi_2(\lambda) = \begin{pmatrix} \lambda - 1 \\ \lambda \end{pmatrix}$$
 (3.7)

for $\lambda \in [0, 1]$. Then we need to locate a global minimum point λ^* of a function:

$$G(\lambda) = \frac{g(\xi_1(\lambda)) \cdot g(\xi_2(\lambda))}{\lambda^2 + (1 - \lambda)^2}.$$
(3.8)

over the interval [0, 1].

3.2 Underestimating function of G

Since the denominator $\lambda^2 + (1 - \lambda)^2$ of $G(\lambda)$ is positive for all λ , the slope of $G(\cdot)$ has the same sign as that of the numerator:

$$\tilde{G}(\lambda) = g(\xi_1(\lambda)) \cdot g(\xi_2(\lambda)). \tag{3.9}$$

Hence, it is sufficient to enumerate every local minimum of $\tilde{G}(\lambda)$ over the interval [0,1]. Let \mathcal{H} be a family of functions $h(\cdot;p)$ which has the following form:

$$h(\lambda; p) = [p_1 \lambda + p_2(1 - \lambda)] \cdot [p_3(\lambda - 1) + p_4 \lambda], \tag{3.10}$$

where $p = (p_1, p_2, p_3, p_4)^t$ satisfies that

$$p_1 = x_1^1 - x_1^2; \quad p_2 = x_2^1 - x_2^2; \quad p_3 = x_1^3 - x_1^4; \quad p_4 = x_2^3 - x_2^4$$
 (3.11)

for some x^1 , x^2 , x^3 and x^4 in the projection \tilde{D} of D. Then $\tilde{G}(\lambda)$ is the pointwise maximum of functions belonging to \mathcal{H} over the interval [0,1]. Let

$$\overline{x}_i = \max\{x_i \mid g_i(x, y) \le 0, i = 1, \dots, m\}, j = 1, 2,$$
 (3.12)

$$\underline{x}_{j} = \min\{x_{j} \mid g_{i}(x, y) \leq 0, i = 1, \dots, m\}, j = 1, 2.$$
 (3.13)

Lemma 3.2 Every function $h(\cdot; p) \in \mathcal{H}$ is Lipschitz continuous over the interval [0, 1] with a Lipschitz constant:

$$L = (\overline{x}_1 - \underline{x}_1 + \overline{x}_2 - \underline{x}_2)^2. \tag{3.14}$$

Proof We have

$$\frac{\partial h(\lambda; p)}{\partial \lambda} = 2(p_1 - p_2)(p_3 + p_4)\lambda - (p_1 - p_2)p_3 + p_2(p_3 + p_4),$$

and

$$|\frac{\partial h(\lambda; p)}{\partial \lambda}| \leq \max\{|\frac{\partial h(0; p)}{\partial \lambda}|, |\frac{\partial h(1; p)}{\partial \lambda}|\}$$

for any $\lambda \in [0,1]$. It follows from $(3.11) \sim (3.13)$ that

$$\left| \frac{\partial h(0; p)}{\partial \lambda} \right| = \left| -p_1 p_3 + 2 p_2 p_3 + p_2 p_4 \right|$$

$$\leq |p_1| |p_3| + 2 |p_2| |p_3| + |p_2| |p_4|$$

$$\leq (\overline{x}_1 - \underline{x}_1 + \overline{x}_2 - \underline{x}_2)^2.$$

Similarly, we have
$$\left|\frac{\partial h(1;p)}{\partial \lambda}\right| \leq (\overline{x}_1 - \underline{x}_1 + \overline{x}_2 - \underline{x}_2)^2$$
.

Let us define a piecewise linear function:

$$U(\lambda; \lambda_s, \lambda_t) = \max\{-L\lambda + L\lambda_s + \tilde{G}(\lambda_s), L\lambda - L\lambda_t + \tilde{G}(\lambda_t)\}.$$
(3.15)

Theorem 3.3 For any $\lambda \in [\lambda_s, \lambda_t] \subset [0, 1]$

$$U(\lambda; \lambda_s, \lambda_t) \le \tilde{G}(\lambda). \tag{3.16}$$

Proof Assume the contrary. Then there exists $\lambda' \in [\lambda_s, \lambda_t]$ such that

$$U(\lambda'; \lambda_s, \lambda_t) > \tilde{G}(\lambda'). \tag{3.17}$$

Let

$$\tilde{G}(\lambda_t) = h(\lambda_t; p') \tag{3.18}$$

and assume without loss of generality that

$$U(\lambda'; \lambda_s, \lambda_t) = L\lambda' - L\lambda_t + \tilde{G}(\lambda_t). \tag{3.19}$$

Since $\tilde{G}(\cdot)$ is the pointwise maximum of functions of \mathcal{H} , we have

$$\tilde{G}(\lambda') \ge h(\lambda'; p').$$
 (3.20)

It follows from $(3.17) \sim (3.20)$ that

$$\left|\frac{h(\lambda';p')-h(\lambda_t;p')}{\lambda'-\lambda_t}\right|>L,$$

which contradicts Lemma 3.2.

For the minimum point $\lambda_0 = 1/2$ of $U(\lambda; 0, 1)$ let us define

$$U_1(\lambda) = \min\{U(\lambda, 0, \lambda_0), \ U(\lambda, \lambda_0, 1)\}. \tag{3.21}$$

Then $U_1(\lambda)$ underestimates $\tilde{G}(\lambda)$ for all $\lambda \in [0,1]$ as well as $U(\lambda;0,1)$. In addition, it is a better underestimating function than $U(\cdot;0,1)$, i.e.,

$$U(\lambda, 0, 1) \le U_1(\lambda) \le \tilde{G}(\lambda), \quad \forall \lambda \in [0, 1].$$

Another underestimating function $U_2(\cdot)$ of $\tilde{G}(\cdot)$ over [0,1] would be generated by applying the same operation to (3.21) to either $U(\lambda,0,\lambda_0)$ or $U(\lambda,\lambda_0,1)$ (see Figure 3.1). In this way, we would obtain a sequence of underestimating functions $U_l(\cdot)$'s of $\tilde{G}(\cdot)$ as follows:

$$U_1(\lambda) \le U_2(\lambda) \le \dots \le U_l(\lambda) \le \dots \le \tilde{G}(\lambda), \quad \forall \lambda \in [0, 1].$$
 (3.22)

Figure 3.1: Underestimating functions of $\tilde{G}(\cdot)$

3.3 Successive underestimation method for solving Q

By exploiting the property of $U(\cdot; \lambda_s, \lambda_t)$ the following recursive procedure $B(l, z, \lambda_s, \lambda_t)$ can be constructed, which generate an ϵ -minimum point λ^* of $G(\lambda)$ over the subinterval $[\lambda_s, \lambda_t]$ such that $G(\lambda^*) < z$ if it exists:

Procedure $\mathbf{B}(l, z, \lambda_s, \lambda_t)$

- 1° Generate the underestimating function $U(\lambda; \lambda_s, \lambda_t)$ of $\tilde{G}(\lambda)$ over $[\lambda_s, \lambda_t]$ by using the Lipschitz constant L and both the values of $\tilde{G}(\lambda_s)$ and $\tilde{G}(\lambda_t)$.
- 2° Let $\lambda_l \in \operatorname{argmin}\{U(\lambda; \lambda_s, \lambda_t) \mid \lambda \in [\lambda_s, \lambda_t]\}$. If $U(\lambda_l; \lambda_s, \lambda_t) \geq [\lambda_l^2 + (1 \lambda_l)^2]z$, then return.
- 3° Compute $\tilde{G}(\lambda_l)$ by solving the convex programs $Q_j(\xi_k(\lambda_l)), j = 1, 2; k = 1, 2$. If

$$\tilde{G}(\lambda_l) - U(\lambda_l; \lambda_s, \lambda_t) < [\lambda_l^2 + (1 - \lambda_l)^2] \epsilon, \tag{3.23}$$

then let $\lambda^* = \lambda_l$ and $z = \tilde{G}(\lambda_l)/[\lambda_l^2 + (1 - \lambda_l)^2]$.

4° Call Procedure
$$B(l+1, z, \lambda_s, \lambda_l)$$
 and Procedure $B(l+1, z, \lambda_l, \lambda_t)$.

Choosing an appropriate $\epsilon > 0$, we obtain an globally ϵ -optimal solution (ξ_1^*, ξ_2^*) of Q by the following algorithm:

Algorithm C

Step 1 Compute the Lipschitz constant L by solving the convex programs (3.12) and (3.13). Compute $\tilde{G}(0)$ and $\tilde{G}(1)$ by solving the convex programs $Q_j(\xi_k(0))$ and $Q_j(\xi_k(1))$ (j = 1, 2; k = 1, 2), respectively.

Step 2 Call Procedure $B(0, +\infty, 0, 1)$.

Step 3 For the output λ^* of Procedure B $(0, +\infty, 0, 1)$ let

$$\xi_1^* = \frac{\xi_1(\lambda^*)}{||\xi_1(\lambda^*)||}, \qquad \xi_2^* = \frac{\xi_2(\lambda^*)}{||\xi_2(\lambda^*)||}.$$

Theorem 3.4 Algorithm C is terminate after finitely many iterations if $\epsilon > 0$.

Proof Assume that Algorithm C is infinite for some $\epsilon > 0$. Then there exists a convergent subsequence $\{\lambda_{l_q}\}$ of $\{\lambda_l\}$ such that for every q

$$\tilde{G}(\lambda_{l_q}) - U(\lambda_{l_q}; \lambda_{s_q}, \lambda_{t_q}) \ge [\lambda_{l_q}^2 + (1 - \lambda_{l_q})^2] \epsilon, \tag{3.24}$$

where either λ_{s_q} of λ_{t_q} is equal to λ_{l_q-1} . By noting that $U(\lambda_{l_q-1}; \lambda_{s_q}, \lambda_{t_q}) = \tilde{G}(\lambda_{l_q-1})$, we have

$$\begin{split} &|\tilde{G}(\lambda_{l_q}) - U(\lambda_{l_q}; \lambda_{s_q}, \lambda_{t_q})| \\ &= |\tilde{G}(\lambda_{l_q}) - U(\lambda_{l_{q-1}}; \lambda_{s_q}, \lambda_{t_q}) + U(\lambda_{l_{q-1}}; \lambda_{s_q}, \lambda_{t_q}) - U(\lambda_{l_q}; \lambda_{s_q}, \lambda_{t_q})| \\ &\leq |\tilde{G}(\lambda_{l_q}) - \tilde{G}(\lambda_{l_{q-1}})| + |U(\lambda_{l_q}; \lambda_{s_q}, \lambda_{t_q}) - U(\lambda_{l_{q-1}}; \lambda_{s_q}, \lambda_{t_q})|. \end{split}$$

Let $\tilde{G}(\lambda_{l_q}) = h(\lambda_{l_q}; p')$. Since $h(\lambda_{l_{q-1}}; p') \leq \tilde{G}(\lambda_{l_{q-1}})$, we have

$$\begin{split} |\tilde{G}(\lambda_{l_q}) - U(\lambda_{l_q}; \lambda_{s_q}, \lambda_{t_q})| \\ &\leq |h(\lambda_{l_q}; p') - h(\lambda_{l_{q-1}}; p')| + |U(\lambda_{l_q}; \lambda_{s_q}, \lambda_{t_q}) - U(\lambda_{l_{q-1}}; \lambda_{s_q}, \lambda_{t_q})| \\ &\leq 2L|\lambda_{l_q} - \lambda_{l_q-1}|. \end{split}$$

This contradict (3.24) because $\lim_{q\to\infty} |\lambda_{l_q} - \lambda_{l_{q-1}}| = 0$.

4 Remarks

In case D is a polytope given by its vertices (x^1, y^1) , (x^2, y^2) , ..., (x^N, y^N) , we can solve the problem P in Section 2 with the tools of computational geometry. Let X be the projection of the set of the vertices onto the x-plane, i.e., $X = \{x^j \mid j = 1, ..., N\}$. We can compute the convex hull \overline{X} of X in $O(N \log N)$ time [3,7]. Based on Theorem 2.2, the minimum-area rectangle enclosing \overline{X} can be obtained in O(N) time by using the caliper method [17]. Therefore, the total number of arithmetics needed for this case is $O(N \log N)$ at worst.

The problem Q can be solved by exploiting the following parametric representation of $\tilde{G}(\cdot)$ as well:

$$G'(\lambda;\eta) = \eta g(\xi_1(\lambda)) + \frac{1}{\eta} g(\xi_2(\lambda)). \tag{4.1}$$

By noting that $g(\xi_k(\lambda)) > 0$ for any $\lambda \in [0, 1]$, we have

$$G'(\lambda;\eta) \le 2\sqrt{\tilde{G}(\lambda)}$$

for $\eta > 0$, where the equality holds at $\eta = \sqrt{g(\xi_2(\lambda))/g(\xi_1(\lambda))}$. Therefore, to find a minimum point of $G(\lambda)$ over [0,1] we need to enumerate every local minimum of a function:

$$G''(\eta) = \min\{G'(\lambda; \eta) \mid \lambda \in [0, 1]\}$$

$$\tag{4.2}$$

over $\eta > 0$. Since $G''(\eta)$ is the pointwise minimum of functions of the form $a\eta + b/\eta$, we can utilize a good underestimating function of $G''(\cdot)$ proposed in Kuno and Konno [12] and Suzuki, et al.[15] for multiplicative programming. However, it is not easy to compute the right-hand side of (4.2) because $G'(\cdot; \eta)$ is a nonconvex function. A similar approach is developed in [11] for another problem in the plane.

References

- [1] Adler, I., "The expected number of pivots needed to solve parametric linear programming and the efficiency of the self-dual simplex method," Department of IEOR, University of California, Berkeley (1983).
- [2] Adler, I. and N.Meggido, "A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension," J. of the ACM 32 (1986), 871 – 895.
- [3] Bentley, J.L. and M.I.Shamos, "Divide and conquer for linear expected time,"

 Information Processing Letters 7 (1978), 87 91.
- [4] Chvătal, V., Linear programming, W.H. Freedman and Company (1983).
- [5] Dantzig, G.B., Linear programming and extensions, Princeton University Press (1963).
- [6] Freeman, H. and R.Shapiro, "Determining the minimum-area encasing rectangle for an arbitrary closed curve," Com. of the ACM 18 (1975), 409 413.
- [7] Graham, R.L., "An efficient algorithm for determining the convex hull of a finite planar set," Information Processing Letters 1 (1972), 132 133.
- [8] Haimovich, M., "The simplex algorithm is very good!! on the expected number of pivot steps and related properties of random linear programs," Uris Hall, Columbia University, N.Y. (1983).
- [9] Haims, M.J. and H.Freeman, "A multistage solution of the template-layout problem," IEEE Trans. Syst. Science and Cybernetics SSC-6 (1970), 145 - 151.
- [10] Horst, R. and H.Tuy, Global optimization: deterministic approaches, Springer-Verlag (1990).
- [11] Konno, H. and T.Kuno, "Linear multiplicative programming," Institute of Human and Social Sciences, Tokyo Institute of Technology (1989) (to appear in Mathematical Programming, Ser. A).

- [12] Konno, H., T.Kuno, S.Suzuki, P.T.Thach and Y.Yajima, "Global optimization techniques for a problem in the plane," Institute of Human and Social Sciences, Tokyo Institute of Technology (1991).
- [13] Kuno, T. and H.Konno, "A parametric successive underestimation method for convex multiplicative programming problems," J. of Global Optimization 1 (1991), 267 - 285.
- [14] Maling, K., S.H.Mueller and W.R.Heller, "On finding most optimal rectangular package plans," Proceedings of the 19th Design Automation Conference (1982).
- [15] Rockafellar, R.T., Convex analysis, Princeton University Press (1972).
- [16] Suzuki, S., P.T.Thach and T.Tanaka, "Methods for finding a global minimum of the product of two convex functions," Department of Mechanical Engineering, Sophia University (1990).
- [17] Todd, M.J., "Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems," *Mathematical Programming* 35 (1986), 173 192.
- [18] Toussaint, G.T., "Solving geometric problems with the 'rotating calipers'," Proceedings of IEEE MELECON '83 (1983).

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS UNIVERSITY OF TSUKUBA TSUKUBA-SHI, IBARAKI 305 JAPAN

REPORT DOCUMENTATION PAGE	REPORT NUMBER ISE-TR-91-95
TITLE	
Globally Determining a Minimum-Area Rectangle Enclosing the Projection of a Higher-Dimensional Set	
AUTHOR (S)	
Takahito Kuno Institute of Information Sciences and Electronics University of Tsukuba	
REPORT DATE	NUMBER OF PAGES
December 2, 1991	14
MAIN CATEGORY	CR CATEGORIES
Mathematical Programming	
KEY WORDS	
nonconvex minimization, global minimization method, computation	imization, parametric simplex method, successive onal geometry

ABSTRACT

This paper addresses itself to methods for finding a rectangle of minimum area which encloses the projection of a given convex set in a higher dimensional space onto the plane of the rectangle. In case the given set is a polytope, a parametric simplex algorithm is proposed for obtaining a global solution, which needs the polynomial number of arithmetics on the average. In case the set is nonlinear convex, it is shown that a successive underestimation method generates an ϵ -global solution in finite time if $\epsilon > 0$.

SUPPLEMENTARY NOTES