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Abstract

Consider computing the eigenvalues of a given compact infinite matrix regarded as operating in the
complex Hilbert space I? by computing the eigenvalues of the truncated finite matrices and taking an obvious
limiting process. In this paper, we deal with a special case where the given matrix is complex and symmetric
(but‘not necessarily Hermitian) and where each of its eigenvalues is simple. We give a complete error analysis
where the resolvent functions defined only on a proper closed invariant subspace (the singular resolvent) play
a critical role. In fact, it is proved that the sequence of norms of singular resolvents of the truncated matrices
converges to the norm of the corresponding singular resolvent for the given exact matrix. As an application,
the numerical solution of Jo(z) —iJ1(2) = 0, which appears in the analysis of the solitary wave runup on a
sloping beach, reformulated as an eigenvalue problem for a compact complex symmetric tridiagonal matrix
is given together with a full error analysis. The corresponding results for the case where the given matrix is

Hermitian is concisely presented.
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§1 Introduction and Summary.

Our concern in this paper is a study of spectral and operator approximations for compact complex
symmetric or Hermitian matrix operators in the usual complex Hilbert space 1?2 of all square-summable
complex sequences. In general, a bounded linear operator T' from a Banach space X to a Banach space
Y is compact if for any bounded sequence {f,} in X, the image sequence {Tfn} in Y has a convergent

subsequence.

We first recall a few basic facts from the spectral theory of operators [6, Chap. XIII, §§3-4]. In the
sequel, the generic symbol B(X,Y) denotes the Banach space of all bounded linear operators from a Banach
space X to a Banach space Y. We denote B(X, X) simply by B(X). Given T' € B(X), the set of all complex
numbers A for whitch (T'—AI)~! € B(X) is known as the set p(T') of regular values of T or the resolvent set.
Its complement is the spectrum o(T) of T. In case T is compact and X is infinite-dimensional, 0 is always in
o(T) and each nonzero Ag € o(T') is an eigenvalue of T, namely, there is a corresponding eigenvector z € X
such that z # 0 and (T — AoI)z = 0, where I denotes the identity operator. For A € p(T), the operator
(T — AI)~! € B(X) is called the resolvent of T. For any 0 # Ao € o(T), (T = XoI)~! is not well defined
on the whole of X from the definition of o(T"). However, T — Aol may have a bounded inverse on a smaller
closed invariant subspace, say S, of T. A necessary and sufficient condition for this to be true is that Ag
is not an eigenvalue of T restricted to S. We will call such an operator (T - AoI)™! defined only on S, a
singular resolvent of T, and will be denoted by (T - )\OI)EI in the sequel. It is the theory of the singular
resolvent of the said type and its applications that we wish to investigate in this paper. Our exact working

hypotheses are given as (H1) below (the symmetric case) and (H2) in §7 (the Hermitian case).

(H1) We are given a sequence of compact complex symmetric (but not necessarily normal) matrix
operators {A,}$° in the Hilbert space I?, converging in operator norm to a compact complex symmetric
matrix operator A in [?. We further assume that A has a nonzero eigenvalue A that is simple in the sense

that only one linearly independent eigenvector corresponds to A and no generalized eigenvectors of rank 2
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or more correspond to A, namely, no vectors y # 0 exist such that (4 — AI)?y = 0 and (A - Al)y # 0. Let z
be an eigenvector of A corresponding to A. We assume z7z # 0, '’ denoting transpose.

An éxa,mple of this situation occurs in the appi‘oxima.te solution of Jo(z) — iJ1(2) = 0, as described in
Theorems 1.4 and 1.5 below, where J,,(2) represents the‘ Bessel function of order m and 72 = —1, and where
A, is taken to be that matrix which equals A at the upper-left n x n section and 0 elsewhere.

Our starting point is the following spectral convergence theorem, which is adapted from [7, P.272-274]

in a specialized form suitable to our purpose:

Theorem 1.1. Let A, and A have the same meaning as defined in (H1). We have:

(a) For any eigenvalue A # 0 of A, there is a sequence of eigenvalues of A, vﬂu‘ch converges to A. Conversely,
if a sequence of eigenvalues of A, converges to A # 0, then X is an eigenvalue of A [7, p.272, Theorem
18.1].

(b) If a sequence of eigenvalues A, of A, converges to a nonzero simple eigenvalue A of A, then A, is simple
for all sufficiently large n [7, p.273].

(c) If X # 0 is a simple eigenvalue of A, x is an eigenvector of A corresponding to A and a sequence of

eigenvalues A, of A, converges to A, then there is a sequence of eigenvectors x, of A, corresponding to A,

such that z, — « [7, p.274, Theorem 18.3].

Our first main theorem, Theorem 1.2 below, holds on the strength of (H1) and deals with the inverse

approximation of spectral operators restricted to appropriate subspaces (singular resolvent approzimation):

Theorem 1.2. (First Main Theorem) Assume the hypothesis (H1). Let A, — X and z, — z, where A,
is an eigenvalue of A, and z, is an eigenvector of A, corresponding to A,. The existence of such A, and z,,
is guaranteed by thella.st theorem. The A, are simple for all sufficiently large n, again by the last theorem.
Let deflated subspaces S and S, be defined as the orthogonal complement of span{z} and span{w,} in the
sense of transpose:
S={yel?: sTy=0}, Sa={yel: zTy=0} .
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Note that S depends on A only, since A is simple. Similarly, S,, depends on A, only, for all n such that A, is
simple. Clearly, S and S, are closed subspaces of I* and I? = span{z} ® S and I*> = span{z,} ® S, for all
n such that A, is simple.

Let projections Q : 1> = S and R, : 1> - S, be defined by:

zzT Tpak
Q =1- —TF R,=1- T
'z zlz,

The R,% are well-defined for all n such that A, is simple. One may easily verify that Q* = Q and R? = R,,.
Note further that QQ and R, behave as identity when restricted to S and S,, respectively.

We then have the following assertions:
(1) A, A=, (A= M)3' € B(S)
(2) For all n such that A, is simple, A,, An -1, (A — /\nI)gﬂl € B(S.)
(3) | (An = 2uD)31Bo = (A= 2D)3'Q [l 0
(9 ) (A = 2Dy fls, =1 (A= A |l

Here the symbol (A — )\I)gl denotes the bounded inverse of A — Al restricted to S, and similarly for
(A, — )\nI)g:. These two bounded inverses are a resolvent function of A restricted to § and of A,, restricted
to S,, respectively, each of which we call a singular resolvent in this paper,. The notation of the form

|| T ||x denotes the operator norm of T whose domain is a subspace X.

The proof of Theorem 1.2 is given in §2. The fourth conclusion || (4, — A )™t ||s, =|| (A= A7 ||s
is valuable for the subsequent applications as the proofs of Theorems 1.3-1.5 dgmqnstra,te.
Remark. Let B = (A - M)5'Q € B(?,5) and B, = (4 — M) 7'R, € B(I?,S,), then B and B, are
a generalized inverse of A — Al and A, — A, I, respectively, as one can show by direct computation that
(A=AD)B(A-XI)=A- I
B(A-))B=B
(A-X)B=B(A-))=Q
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(An = A D)By(An = And) = Ay — M1
By(Ay = A\,I)B, = B,

(An = \D)B, = By(A, — A I) = R, .

Part (3) of this theorem then asserts the convergence of gene;‘a.lized inverses B, of A, — A, I to the generalized
inverse B of A — A, where clearly A, — A, — A — Al in {2, For a full, up-to-date treatment of generalized
inverses in a variety of settings, we refer the reader to [10], a recent encyclopedic work on the subject
including an extensive annotated bibliography of 1776 references.

The hypothesis (H1) represents a useful special situation where an appropriately taken generalized
Rayliegh quotient [16, p.179] well approximates, in the sense of Theorems 1.3 below, a given simple eigenvalue

of a compact complex symmetric matrix operator in 2.

Theorem 1.3. (Second Main Theorem) Again assume the hypothesis (H1) and suppose that we are
given a sequence {v, }3° such that v, — z. Consider the generalized Rayliegh quotient u, = v,TAnvn/'ufvn
and take it as an approximation to A, where, as in Theorem 1.2, ), is an eigenvalue of A,, such that An — AL

Then we have the following error estimate for all n such that A, is simple:

1 : -
[ =2 S o 1 (e = D [Pl (A = 2D) s,
n Yn

1
ERED

R

| (An = saD)va |l (A =AD" ||s  for large n.

The proof of Theorem 1.3 is given in §3. Note that, in the last theorem, the error | #n — An | is bounded
by a quantity of order || (An — AnI)vy ||? (ie. the norm of the residual vector Ayvy — Ayvn squared).

The theorem may typically be used in the following context: Sﬁppose we are to estimate A — X,. We
write A — Ay = (A = ) + (ttn — /\n); If it can be shown, as is the case in §5, that | A — u, [>| uy — A, | for
all large n, then we can estimate A — A, accurately by A — u, for all large n. The point is that A — pu, may
be estimated accurately when one has a detailed knowledge on an eigenvector corresponding to the exact
eigenvalue A, as is the case in §5. For instance, if the components ¢; of the eigenvector z = [é1,62,-- T

corresponding to the eigenvalue A are known, one may take v, = [¢1,++,&,,0,0,-- -7 (n=1,2,--) as is
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done in §5, where §, = \/'TLJn(z) with z = 2/

Theorems 1.2 and 1.3 may be applied to the approximate solution of Jo(2z) — 1J1(2) = 0. The equation
is of interest in the analysis of solitary wave runup on a beach with a constant slope [4][13]. It is known [11]
[14] that the infinitely many roots lie in the lower half complex plane (but none in the upper half plane or
on the real axis), symmetrically about the imaginary axis. The first 30 roots with positive real part accurate
up to 8 digits have been computed by Macdonald through the use of the following asymptotic expansion for

the jth root in polar form, also obtained by him [8]:

(2= ppeil/D04]
7+ {1~ doa(1 — an)} o
T4 = JT — 4 - o
A J A A 8j7l'
1 2 3 4 o
{ + 347 [~61 + 26404 — 3600% + 2560 — 480y] + O(j47r4 )
1 a4 1 9 3 Oli
0A = —§7|' - 77-‘-— - 5-6.—73_7['3.[21 - 48CYA +720{A —32(YA] +O(]4?),
1 .
og = 511[(4]’"’),

where the plus sign in the expression for z is taken for the fourth quadrant roots and the minus sign for the
third quadrant roots.

It may be noted that, for large j, r4 = j7 a.nci 0a = —-% - %, indicating that the roots are approxi-
mately 7 apart. It may further be shown a priori that the equation Jo(z) — iJ1(2) = 0 has no roots on the
imaginary axis; for, putting z = —in, where 7 is real and positive, we have Jo(2) —iJi(z) = Io(n)—T1(n) > 0,
since Io(n) > I1(n) for all n > 0 [9, p.151].

In order to apply Theorems 1.2 and 1.3 to the approximate solution of Jo(z) — iJ1(z) = 0, we first

reformulate the equation as an eigenvalue problem for a compact complex symmetric matrix operator in

B(I?) whose eigenvalues are all simple, as done in Theorem 1.4 below.

Theorem 1.4. (Third main theorem) A complex number z is a root of Jo(z) —iJi1(2) = 0 if and only
if 2# 0 and 2/z is an eigenvalue of the compact complex symmetric matrix A € B(1?) defined below. Each

eigenvalue of A is simple and nonzero. An eigenvector corresponding. to the eigenvalue 2/z is given by z
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defined below.

'szzx ,
i fo 0
) .f2 0 .f3 1
A= f2 0 ' fk:_;c?\/k;—l_)’ k=23, ,
0 '-. .-.
|z = [J1(2), V2Ja(2), V3Js(2), - |T € 1% .

For the proof of Theorem 1.4, see §4.

The theoretical basis for the actual numerical procedure for the approximate computation of the eigen-
values of the matrix A defined in Theorem 1.4 is given by the next theorem, Theorem 1.5, together with an
accurate estimate for the relative error associated with the approximate root computed from the approximate

eigenvalue.

Theorem 1.5. (Fourth main theorem) Let z # 0 be a root of Jo(2) — 1J1(2) = 0 and let A, be an
eigenvalue of the n x n principal submatrix A, of A such that A, — A = 2/z. Let z, = 2/, be taken as an
approximation to z. Then, for all large n such that A, is simple and nonzero, the relative error (z, — z)/z,

where | z |>> 1, may be estimated by

Zn — 2

s
= :l:g]n(z)J,,.H(z) y

where the plus sign is for the roots z with positive real part and the minus sign is for the roots z with

negative real part.

The proof of Theorem 1.5 is given in §5.

The theorem is rather remarkable in the sense that the relative error (z, — 2)/z is well approximated
by a simple closed form as given above. Numerical evidence for this’will be given in §6 for a selected set of
values of n and 2, together with further discussion on the implication of the theoretical error estimate given

by Thorem 1.5.

Consider now the actual numerical procedure for computing the A,. The n x n matrix Ay, then xn

7



principal submatrix of A defined in Theorem 1.4, is easily seen to be similar to

1 fa2 0
—f2 0 fs
An =1 _f3 0
. - fn
0 —fn O
Indeed, A, = D;lﬁnDn, where
1 0
1
i2
Dn = i3
0 "

Hence, the computation of the A, and 2z, = 2/}, may be effected through the use of a QR algorithm for
computing all eigenvalues of a real tridiagonal matrix, for example, the one implemented as the FORTRAN
subroutine HQR in the EISPACK package [12].

Finally, we briefly consider the Hermitian case, i.e., the case where AR = Aand AH =4, (n=1,2,--")
in (H1), "H' denoting conjugate transpose. With the definitions of §, S,, @ and R, (n =1,2,---) in Theorem
1.2 modified by replacing 'T’ by 'H’, Theorems 1.2 and 1.3 hold exactly as they stand, where in the latter

"H»  The proofs of these two theorems run in parallel to those of Theorems

theorem, 'T" should be replaced by
1.2 and 1.3 with minor modifications and are omitted. It only remains for us to mention the validity of the
following two relations which one can prove by exploiting the well-known facts that a compact Hermitian
matrix operator in 2, of which 0 is not an eigenvalue, has a complete orthonormal system of eigenvectors

(see, for example, [6, p.256]) and that 0 is the only possible accumulation point of the spectrum of the

compact operator (see, for example, [6, p.376]):

- 1
| (A=AD)7" |Is

min | A=A
A€o (A), A'#A
- 1
| (An = 2aD)7" |ls,

min [ A= 2s |
A'€a(An), M#Aq

For the sake of comparison, we should mention the following result which is valid for a normal complex

matrix B (BBH = BH B) of finite dimension, say, m:

| (B =D ||?
Il

_IB=ADv | 1

IM—A'S B-—)\I_1 M=
1(B=AD™ | Tl

min [ A =)
M€ (B), N#



where p = v Bu/vHv, 0 # v € C™, Ais a simple eigenvalue of B a.nd M denotes the orthogonal complement
of the eigenvector corresponding to A. The proof of the inequality is similar to that of Theorem 1.3. For
the proof of the equality, we use the fact that an orthonormal basis for C™ exists that consists solely
of eigenvectors bf a given normal matrix. In fact, the normal matrices are precisely those which can be
diagonalized by a unitary similarity transformation, the fact that is not necessarily valid for matrices of
infinite dimension.

We should also mention the well-known inequality closely related to the last one that hold under the

same setting [16, p.173]:

€2 2
&=
e-a 1 /- 5)

where a = | X —p]and e =|| (B —ul)v| /| vl provided that p is close enough to A.

min
AMEs(B), A'#EX



§2 Proof of Theorem 1.2.

We use the notation already established in Theorem 1.2.

Proof of Part (1), Theorem 1.2. To prove A € B(S), it is enough to show that A = AT, Az = Az and
zTy = 0 implies 2T Ay = 0. Indeed, T Ay = 2T ATy = (Az)Ty = AaTy=0. From A € B(S), A-)I € B(S)
follows easily.

To prove the last assertion of Part (1), (A - A5 € B(S), it is enough to prove by [6, p.375, Theorem
I} that A is not an eigenvalue of the restriction As of A to the closed subspace S. To prove this, it‘suﬁices
to show that Ay = Ay and 2Ty = 0 implies y = 0. Suppose y # 0. By the simplicity hypothesis for A, we
have y = az for some scalar a # 0. Multiplying 7 from left, we have 0 = 2Ty = azTz, hence a = 0 since
Tz # 0 from (H1), and y = 0, a contradiction.

Part (2) of Theorem 1.2 may be similarly proved.

Proof of Part (3), Theorem 1.2. The proof will be done in 6 lemmas, Lemma 2.1-2.6 below.
Lemma 2.1. The sequence {|| (An — AxI)™! ||s,} is bounded, where n > ng (say) and X is simple for
all n > no.

Proof. Proof by contradiction. Assume the contrary and we would have a sequence ng < n; < ng < ---
of positive integers such that || (An, — Az, I)™" ||s,, > k, k = 1,2, .. This implies the existence of un, € Sn,

with || up, [|= 1 and || (An, = Aa, 1) un, |ls,, > ks k=1,2,---. Let 24, = (Aq, —/\nkI)gjk Uy, and we have

Z. U
1 (A, = Ap [)i—t— = 2k
W e Pl P

Solving this for z,, / || 2, ||,

Zny 1 Zn U, 1 Zn,

Tone 1 M o 1 Mo 1T 3 e =]

By compactness of A4, we may assume, by extracting a subsequence of the sequence {z,, } if necessary,
that the sequence {Azy, / || zx, ||} converges, where || z,, ||> k remains valid. Letting ¥ — oo in the last

equation, we find 24, / || 2n, ||= w (say), since || An, — A||— 0 and Ay, = A # 0. Clearly || w||= 1.
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Again letting k¥ — oo in (1), we have
(2) (A= XDw = 0.

On the other hand, =T (zn,/ || 2a, ||) = 0, since 2,, € S,,. Letting k — oo again, we have
(3) eTw= 0,

since z,, — . The two relations (2) and (3) are incompatible, since the first implies that w would be a
nonzero scalar multiple of z, say, w = ax, a # 0, by the simplicity of A, and thus the latter gives azTz = 0

despite the assumption 7z # 0 made in the hypothesis (H1). Thus we arrived at a desired contradiction. [

Lemma 2.2. For all large n, (QuRy)5" € B(S), where the domain of Ry, is understood to be restricted
to S, and (RnQn)E: € B(S,), where Q,, denotes the restriction of Q to S, (for the definition of Q and R,,

refer to Theorem 1.2).

Proof. With the convention just made for @, and R, in the above, it is clear that Q, R, € B(S) and

R, Q. € B(S,).

We first prove (Q, R,)5' € B(S). To this end, compute for any given y € S (ie., 2Ty = 0),

T T T T
_ Tz Tnl _ (Azy)y z' Az, _
(1) QuBny=(I - m)(f - mgv—x:)y =y- W(A% - T z), Azy=z,—7x ,
whence,
| Az, |I? Il = |”
2 @uRy —Is ||s= sup Quly — Is)y||< 1+ .
@ I Quf —ls o= b M (@B = I NS o, 0+ ey

Letting n — oo, we find || @uRy — Is ||s— 0, since Az, — 0 and z, — z. Then, by [7, p.210, lemma
15.2], we conclude that (Q.R,)35" € B(S) for all sufficiently large n.

To prove (RnQn)g"1 € B(S,), we proceed similarly. Indeed, for any given y, € S, (i.e., 7y, = 0),

zpal zzT (Az,)Ty zI Az
2@n¥n = (I — =t - n = Yn — = n = > n
R, Quyn = ( p oy I me)y y T (Az Tz Zn)
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and

I o 17

| el 2

2
| Ru@n — I, |15, < 1222l
B

hence, || Rn@n — Is, ||s,— 0, and [7, p.210, lemma 15.2] again allows us to conclude (RnQn)E: € B(S,) for

1+ l)

all sufficiently large =. i

Lemma 2.3. For all large n, R;! € B(Sx,S), where R, is restricted to S as in the last lemma. We also

have || Ry — Is ||ls— 0, || Rz* = Is, lls, = 0, || Bn lls— 1 and || B [ls,— 1.

Proof. We will prove R;! € B(S,,S) by showing the existence of a left inverse X € B(S.,9)
of R, and a right inverse Xg € B(S,,S) of R,. Indeed, letting X = (Qan)ngn € B(S.,5) and
Xg = Qu(RaQn)s) € B(5n,5), where, by the last lemma, (QnR.)5! € B(S) and (RoQu)s. € B(Sy) for
all sufficiently large n, we can easily see X R, = Is and R, Xgr = I for all sufficiently large n. Hence,

Xz =XR=R;:1.

T
To prove || Ry — Is ||s— 0, where R, = Is— Ta: € B(S, Sy ), compute, for every y € S (i.e., Ty =0),
T T
Tn® (Azn)'y
R, -1 - Ry == ,
( s)y zTz, aTa, "

where Az, = &, — & as in the last lemma. The conclusion follows from this, since Az, — 0.

To prove || R;! = Is, ||ls,— 0, let w = R'y € S, where y € S, (i.e., 21 y = 0). We will show

- Az
w—y:(Rnl—Isn)y_(———fn)—y T
Ty
T
Indeed, using the definition of R, and w, we have y = R,w = w — az,, where o = . Multiplying 2T
n
from left, we find zTy = aTw — azlz,. But w € S, so 7w = 0. Hence, eTy = —axT:l:n. Substituting

z = z, — Az, into the left-hand side and noting xfy = 0, we have (Aa:n)Ty = azTz,. Then

_ o (Bza)Ty
W—Y=0Tp = 77— Tn »
'l z,
as required. It is now clear that
_ Ay |
R;'-Is, |ls,= sup Rly—y S” =
1B =T lls,= s Ry =yl el
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whence the conclusion follows since again Az, — 0 and z, — = (we recall zTz # 0 from the hypothesis
(H1) in §1).
The fact that || R, ||s— 1 and || B;! ||s,— 1 now follows easily from the assertions || Ry — Is ||s— 0

and || R;! - Is, |ls,— 0. W

Lemma 2.4. For all sufficiently large n such that A, is simple, Ro(Ay — Apl) = (An — Anl)Ry =
A, — A\ I € B(I%,5).

T
Proof. Using the definition R, = I — o ¢ B(1%, 5), Au@s = Ay and AL = A4,, the lemma follows
T, T

nvn

immediately. |
Lemma 2.5. || Ba(A— A3 = (A= AD)3! |ls— 0 and || RaQ — Ry, [ — 0.

Proof. The first convergence is obvious from the fact that || R, — Is ||s— 0 (Lemma 2.3).

zz?  zpozl zzT .
To prove the second, compute R,Q — R, = R,(Q — I) = -+ e which converges to 0
2Tz zlz, 2Tz

since &, = z asn — 0. i

Lemma 2.6. || (An = AnI)5 RnQ — Ra(A - AZQ |li=— 0, where the existence of (Ay — AnI)5" for

all large n and of (A — AI)g" is guaranteed from the already proved Parts (1) and (2) of Theorem 1.2.

Proof. Compute
(Ap — )\.,LI)E:R%Q -R,(A- /\I)ng = (4, - /\nI)gj{Rn(A = M) = (4, = X\ I)Ry}s(A - A3 Qp

Taking norm, we have

| (An = 2a D)5 RaQ = Ba(A = ADF'Q

<l (An = 2 D)7 [Is, |l Ba(A = AD) = (An = A D)Ra Il (A =AD" 511 @ [l
The first term on the right is bounded by Lemma 2.1. The second term converges to 0 by Lemmas 2.4 and
2.5 and by the fact that || A, — A [;z— 0 and A, — X by the hypothesis (H1). The last two terms are

independent of n. The lemma now follows. |
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Part (3) of Theorem 1.2, || (An — AuI)5' Ry — (A — AD)5'Q |hz— 0, now follows from the last two
lemmas.

Proof of Part (4). This will be done with the aid of two lemmas below, Lemmas 2.7 and 2.8.

Lemma 2.7. ||| (An = AuD)3 Ru |ls = || (A= A7 ||s|— 0

Proof. It is clear from Part (3) and from the definition of the operator norm that || (4, — )\nI)gﬂan -
(A= 2D5'Q ||s— 0. The lemma follows from this. |

Lemma 2.8. | || (4, — )\nI)g:Rn s = I (An = A1)~ |5, |— O.

Proof. Let X, = (A, — ,\n)gj € B(Sy)and Y, = (4, — /\.nI)g:R,, € B(S, S,) for all sufficiently large
n. We must prove || Y, ||s — || Xx ||s,— 0. For all sufficiently large n, R, € B(S,,S) exists by Lemma

2.3, 50 X, = Y,R;! € B(S,). Taking norm, we find
| Xa lls. <l Ya llsll B2 s, <Nl X lls, |l Be llstl B2 s,
whence

0 <l Yo llsll B2 lls = I Xn lls, <I Xn lls, (Il Ba llsll B Ils, —1)) -

But, by Lemma 2.1, {|| X, ||s,} is bounded, and, by Lemma 2.3, || R, ||s— 1 and || B;! ||s,— 1. Using
these in the last inequality, we conclude || Y, ||s — || X ||s,— 0. B
The proof of Part (4) is obtained by combining Lemmas 2.7 and 2.8. The proof of Theorem 1.2 is now

complete.
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83 Proof of Theorem 1.3.

We use the same notation as in Theorem 1.3.

We will prove the first inequality in the theorem, i.e.,
1) pin = An |€ —F— ToTon | (An = AaD)vn [Pl (An = 2 D)7 I,

for all sufficiently large n. Indeed, using the definition of ., ‘

vl (A, — And)vy

T
Vp

Bn — Ay =

Up,

By Theorem 1.2 (2), (A, - /\nI)gnl € B(S,) for all sufficiently large », whence

1 -
o = dn = —— U (An = AuI)(An = X D)5 (An = Aoy,

n

7 [(An = A D)va]"(An = 2 D)5)[(An = AaD)ua]  (by AT = 4,)

rI(A, - /\,,I)glrn
= o *—, where 7, = (4, — A D)v, € S,
vI v,

Application of the well known Cauchy-Schwarz inequality gives the inequality (1).
We will next show that (An — ppl)vn = 7o + gn with || g, ||= O( || 7s ||? ), where || 7, ||— 0. For,
gn = (An — D)o — 15 = (Ag — pnDvn — (A — Anl)vy = (An = pin)vy. Taking norm,

lan [I=1 An = pn | [l vw || < ToTo ] Il (An = AnD)vn [Pl (An = Aad)™ s, | va || (using Part (1) )

R

[T l7a [Pl (A= 2D |ls|]| 2 || (for all larg n, by Theorem 1.2 )

=0([Im ) -
Hence, for all large n, we may be justified to replace v, by =, (An — MnI)vn by (An — pnl)v, and Il

(An = 2aD)™Y||s, by || (A = AI)~!||s to obtain the second estimate for | 4o — Ay | in the theorem.
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84 Proof of Theorem 1.4.

We use the same notation as in Theorem 1.4. We will prove Theorem 1.4 using a series of lemmas.

Lemma 4.1. For any z # 0, the following matrix equation in 1% holds:

¢ .fZ 0 Jl(z) Jl(z) Jo >Z - 2J1 z
fo 0 f3 V2J5(2) 9 | V2Ja(2) ® 0 )
£ 0 | |VBB()| =3 V3Is(2) | — 0 ’

(1) .

1

where fk = -\/T—(—k——:-l—i,

k=1,2,---, (recap.),

or

2 .
Az = Pl [Jo(z) — iJ1(2),0,0,-- 7,
where A is a compact complex symmetric operator in B(I*) and 0 £ x € 2,

Proof. The relation (1) may be verified directly by using the well-known three-term recurrence relations

[3, p-93]:
2k
(2) Jo—1(2) + Jr41(2) = —;Jk(z), k=1,2,---

or rewriting,

2
(3) fkyk-—l +fk+1yk+1 = 'Z'ykv k=23, where Yk = \/EJk(z)$ k= 1,2,---

The matrix A is obviously complex (i.e., non-real due to the presence of i as the first diagonal element) and
symmetric. Compactness of A follows from the fact that a band matrix B = [b;;] (i.e., bij = 0 forall i and j
such that | 1 — j |> r for some fixed positive integer 7) is compact, if and only if . }Enw a;i; =0 [2, p.59]. The
fact that = € I2 can be seen from the well-known behavior of the Ji's: (2k/2)(Jp(2)/ Tr-1(2)) = 1 (k — o).
Since no two consecutive J's, i.e. Jp(z) and Je41(2) for k = 1,2,--+, vanish at any 2 # 0 [3, p.105], it is

clear that z # 0 for any z # 0. i

Remark. By direct computation, one can show that AAE £ AH A ie., that A is not normal.
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Lemma 4.2. If Jo(z) —iJ1(2) = 0, then z # 0, and 2/z is an eigenvalue of A with a corresponding

eigenvector [J1(2), V2J3(2), -+ |T € 2.

Proof. Since Jo(0) = 1 and J1(0) = 0, z = 0 is clearly not a root of Jy(z) — 1J1(2) = 0. Hence, if

Jo(z) —iJ1(2) = 0, then Lemma 4.1 implies that 2/z is an eigenvalue of A with a corresponding eigenvector
[1(2), V2J2(2),-- T € 2.
Lemma 4.3. For a given complex number z # 0, an arbitrary solution of the three-term recurrence

relation
2 .
(1) Feyr—1 + fod1¥k41 = ~ Yk k=23,

satisfying the condition yg — 0, has the form yz = cVkJi (2), k=1,2,.--, for some constant c.

Proof. From (3) in the last proof, y; = \/IZJk(z), k=1,2,--., obviously satisfy the recurrence relation
(1). The fact that y; — 0 was noted there also.

Conversely, if yx (k=1,2,---) satisfies (1) and y; — 0, then the y;’s represent a minimal solution of (1),
i.e., a second solution wy of (1) exists such that g /wy — 0 (e.g., wp = \/EYk(z), where Y;(z) is the Bessel
function of second kind of order k) [5, p.25]. Since the minimal solution is unique up to scalar multiplication

[5, p.25], the lemma clearly holds. |

Lemma 4.4. If ) is an eigenvalue of A, then A # 0 ,and only one linearly independent eigenvector cx

corresponds to A, where c is a nonzero constant and z is as defined in Theorem 1.4. Moreover, z = 2/)is a

root of Jo(z) — iJ1(2) = 0.

Proof. To prove that 0 is not an eigenvalue of A, suppose the contraly and let Ay = 0-y = 0 for some
y = [y1,92,- -] € I?, where y # 0. Expanding Ay = 0, we can derive y; = (=" "kyy, k=2,3,---. Since
y # 0, we conclude y; # 0. But then, | yx |- 0o as k — oo, a contradicton to the fact that y € I2.

Let A be an eigenvalue of A. To prove that only one linearly independent eigenvector corresponds to

A let Ay = Ay, 0 # y = [y1,¥2,-- -] € 1% Suffices to show that y = cz for some ¢ # 0, where z = 2/), a
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well-defined number, since A # 0 as proved above. Expanding Ay = Ay, we obtain the same relation as (1)
in the last lemma, where y; — 0 since y € I?. Then, Lema 4.3 applies, and ¥ = C\/EJk(Z), k=1,2,--
for some constant ¢, namely, ¥y = cz.

Again, let ) be an eigenvalue of A and y be a corresponding eigenvector, then y = c[J; (2),V2J2(2), -+ 1T
for some constant ¢ # 0, as proved above, where z = 2/A. Then, consideration of the identity (1) for this
particular z in Lemma 4.1 gives Jo(2) — 4J1(2) = 0, as required. |

Lemmas 4.2 and 4.4 prove the first and third assertions of Theorem 1.4. It only remains to prove the

second assertion. In view of Lemma 4.4, it suffices to prove that A has no generalized eigenvectors of rank

2. We will do this in two lemmas below.

Lemma 4.5. The function f(2) = Jo(z) — iJ1(2) has no multiple zeros, namely, if f(z) = 0, then
f1(z) #0.
Proof. We prove that f(z) = f'(z) = 0 leads to a contradiction. The derivative f'(z) at z # 0 is given
by
f'(2) = Jo(2) —iJ1(2)

(1) = —J1(z) — i{Jo(2) - %Jl(z)}, by Ji(2) = Jk=1(2) — -SJk(z) Jk=1,2,--- [3, p.93]

(=) {Jo(2) = ih (2} + T (2) = ~if () + 2 h(2)
If f(2) = f'(z) =0, then clearly z # 0 and (1) implies Jl(z)vz 0. But then, f(2) = 0 gives Jo(z) = 0. This

is a contradiction, since Jo(2) and J1(z) do not vanish simultaneously [3, p.105]. i
Lemma 4.6. The matrix A has no generalized eigenvectors of rank 2.

Proof. Suppose the contrary and let w be a generalized eigenvector of rank 2 corresponding to an

eigenvalue A of A, i.e., let

(A-Mw=u#0

(1)
(A= )Pw=(A=M)u=0,

18



hold for u, w € I>. We will derive a contradiction. To this end, consider again the identity (1) in Lemma 4.1,
which holds for any z # 0. For convenience, we rewrite it in the following form:

(A= 20a(z) = £(2)-1,0,0, 1,
2) | | £(2) = Jofz) — i 2)

z(z) = [1(2), V2Ja(2), - ],

where the vector denoted previously by « is written as z(z) to emphasize its dependence on z. Differentiation

gives
) Za(e)+ (A= 2D'G) = £E)-1,0,0,+ 7,
where
#(2) = Vi), VATY(), - 17 = 5 10o(2), VBR(2), -1 = Wa(e), VBda(a), - A7} € 1,

since Ji(2) = (1/2{Jk-1(2) — Je41(2)}, k= 1,2,--- [3, p.93].
From the second equation of (1), u is an eigenvector corresponding to the eigenvalue A. Lemma 4.4

shows that A # 0 and u = cxz(z1), where z; = 2/}, f(z1) = 0 and c is a nonzero constant. Then, the first

equation of (1) leads to

4) —cz(z1)+ (A= M)w = 0.
Eliminating #(z;) from (3) with z = 21, and (4), we obtain

(5) (A= 2D (@) + ) = FE)-10,0- 17, wherew =

Write '(21) + w1 = ¢ = [p1,92,--]T € 2. Expanding (5), we find the k** component (k = 2,3,---) given
by

2
fk(Pk——1+fk+1(Pk+1 = z_(pky k:2a37"‘7
1

where ¢ — 0, since ¢ € 2. Then, Lemma 4.3 applies, and we conclude ¢ = c'z(z;) for some nonzero

constant c'. Since u = cx(21), we see that ¢ is a scalar multiple of u. Then, the second relation of (1), ie.,
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(A-XDu=(4- z—zl-I)u =0, gives (A — %I)(p = 0. Using this in (5), where z'(21) + w1 = ¢ as defined
earlier, we find 0 = f'(2,)[-1,0,0,---]T. Hence, f'(z) = 0.

On the other hand, f(2;) = 0 as has been shown. Hence, f(21) = f'(21) = 0, a contradiction of Lemma
4.5. 1

This complets the proof of Theorem 1.4.
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§5 Proof of Theorem 1.5.

Let 2z # 0 be a root of Jo(z) — iJ1(2) = 0. Then, by Theorem 1.4, A = 2/ is a simple eigenvalue of the
compact complex symmetric matrix A € B(I?) defined in Theorem 1.4 with the corresponding eigenvector

z = [J1(z), \/§J2(z), -+-]T € 2. Let the infinite matrix A, be defined by

1 fo 0
fa. 0 f3 0 )
.' p—1t An 0 = ..
(1) An = fa 0 - fu = ( o 0), n=1,2-,
0 o fa O
0 0

whose n x n principal submatrix equals the n x n principal submatrix A, of A, and whose components are

zero elsewhere.

Lemma 5.1. The hypothesis (H1) in §1 holds for the particular chéice of {A,}°, A ,)\ and z defined
above.

Proof. What we have already stated in this section, it only remains to prove that || An — A ]jz— 0 as

n — 0o and ¢z # 0. The first is clear from the inequality

B 1 B
D) T hrDery T,

(2) | An — ANES 2240 + fla+ 00 = %

For the proof of 27z # 0, we may use the following summation formula [15, p.152]:
- 1
(3) Z(m + 2k)J2 L op(2) = ZzQ{Ji_l(z) = Jm—-2(2)Jm(z)} for any m, real or complex.
k=0
Hence we find

g = JHz) + 2J2(2) + - --

= {J1(2) +353(2) + -} + {203(2) + 4T3 (2) + -}

(4) ) )
= 77{5() = @)} + 32HIE () = o) a(2)}

Z .
= 5 ’ ng(Z) ’
where in the final equality, Jo(2) —4J1(z) = 0, J_1(2) = —Jy(2) and the three-term recurrence relation

Ja(2) = (2/2)J1(z) — Jo(z) are used. Now, z # 0 from Theorem 1.4; also Jo(z) # 0, for otherwise
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Jo(z) = 1J1(2) = 0 would imply Ji(z) = 0, a contradiction of the fact that Jo(z) and Ji(z) do not van-
ish simultaneously [3, p.105]. It follows that (2/2)-iJ3(2) # 0, i.e., ez #0.

Theorems 1.1 and 1.2 now apply. In particular, Theorem 1.1 (a) and (b) guarantee the existence of a
sequence {)\,} of eigenvalues of A, such that A, — A(# 0) and such that ), is simple and nonzero for all
large . These nonzero eigenvalues are clearly those of A,. In fact, A, ié nonsingular, as the next lemma

shows.
Lemma 5.2. For eachn =1,2,--+, 0 is not an eigenvalue of fin

Proof. For each n, detA, # 0 since

(=f2)(=f2_5) - (—f3), m:even
detz‘in:
(=f2)(=f2_5) - (=f3)-i, mn:odd ®

Let z, = 2/X,. We must prove

Zn — % T

=~ 4 2 Jn(Z)Jn+1(z)

(5)

z

for all sufficiently large n, with the compound sign + chosen as indicated in Theorem 1.5.

The proof may be effected with the catalytic aid of the generalized Rayliegh quatient

T
v, Apvn _
(6) o = ———UZ’U", R

where
(7) vy = [J1(2), V2Ia(2), -+ V/1du(2), 0,0, T € 12

It is clear that | v, — z ||= 0 (n — 00). It may now be seen that the hypothesis for Theorem 1.3 is fully

satisfied. And hence, the following estimate for | g, — A, | holds asymptotically as n — oo: k

1
(3) | g — A |< g [| (An — pnd)vn [?8 forlarge n ,

where 8 =|| (A - A)7!||s, a constant depending only on A and A.
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Consider now A — A,. We decompose this as the sum of A — g, and g, — A, (it is here that u, plays a
catalytic role):
(9) A=dn = (A= tn) + (tn = An) -

We will show that the first term on the right-hand side is the dominant term for large n so that A — A, may

be effectively estimated by.
(10) A=Ay 2 A —pu, forlargen .

Consider computing the first term A — p,,.

Lemma 5.3.

In(2)dnt1(2) _ Ju(2)Jn+1(2)
oz, 22 2n
2i3() - ST + P (o) -

A - Hn = T
vV +1
"t Ju(2)n+1(2)}

z

) o Ta(an(2)

for large n .
~ig3(2)

Proof. It may be directly verified from the relation Az = Az (A = 2/z) in Theorem 1.4 that
(12) (4, = M), = -[0,0,---,0, %J,ﬂ.l(z), 0,0,--%, (the nonzero component is at the nth position)
Multipling »I from left,
(13) vanvn — Ml v, = —/ndy(2) - %Jn+1(z) = =Ju(2)Jnt1(2) .

Dividing through by vTv, and recalling the definition (6) of p,, we find

_ Jn(z)Jn+1 (Z) )

vFu,

(14) fp — A =

We next evaluate vl v, in the denominator in the last expression. We find
vpvn = a7z = {(n+ DI (2) + (n+ 2)T745(2) + -}

(15)

2n+1

2
z. z
= Lin3(e) - S + @) - 2 @)
invoking (3), (4) and the recurrence formula Ji_i1(z) — (2k/2)Ji(2) + Jr+1(2) = 0 with k¥ = n,n + 1.
Substitution of (15) into (14) gives Lemma 5.3. |
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Lemma 5.4. If Jo(z) —1Ji(2) =0 and | z [>> 1, then

—i%, Re(z) > 0
(16 A=l T
i;, Re(z) <0

Proof. For large j, the j'* root z of Jo(z) — 4J1(2) = 0 in the fourth quadrant is given by the following

formula quoted in §1 from [8]:

a7 R L ST R PO 2 S %In(lm) ‘
On the other hand, Jo(z) for large | z | is given from [1, p.364, 9.2.1] by

(18) Jo(z) = \/g{cos(z - iw) +em@O(| 2™}, Jargzl|< ™

From (17) we find, for large j, z = jx — ia4 so that (18) gives

2 1
J2 ~ " 20, _ _ =
5(2) w(jw—iaA)cos (jm —iag 47r)
2 1, oa—ic +is
. A — 11— — Q4 11—
19 = — 1Y = 4 412
(19) (™ T T e )
- w(gw—iaA)(-sz)_ Yr

An arbitraly third quadrant root 2/, being the reflection of some fourth quadrant root 2 about the

imaginary axis, has the form z' = —z. Hence,

(20) J2(2) = JE(=2) = JE(z) = z% n

Using the last lemma in (11), we obtain, for a fixed root z of Jo(2) — tJi(2) = 0 with | z |[>> 1,

o In(2)an1(z)

21) A= lin
( Si73(2)

~ :h;]n(z)Jn_,_l(z) , forlargen ,

where the plus sign is for z with Re(z) > 0 and the minus sign for z with Re(z) < 0.

We return to the estimate (8) for | pn — An |.
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Lemma 5.5.

(22) 1 (An = sn Yo 2] Juss(2) | [V for large n .
Proof. Wé take the decomposition

(23) (An = poD)vn = (An = M)vp + (X = pn)vn -

The first term on the right-hand side is given by (12); and A — py in the second term may be estimated by

Lemma 5.3. Hence,

|| the second term || | A = pn | || va ||
|| the first term || || (An — AD)vg ||
_ 1@ 1 Jnga(@) [l on |/ [ vrvn |
(24) | Tnt1(2) | [V
VL@ e VAL

[Ty, | | vn || ———F—7— |l z| for large »

| 2Tz |
= O(\/'r;Jn(z)) =0 (n— o)

Hence, (24) implies
| (An = s Dvn (|1 (A = M)vn [|I=] Juta(2) | [/ for large n

proving the lemma. i

Using the last lemma in (8), we find

L | Jani@) P g 7l Jna(2) 7
8=
| 2Tz | n |z]|n

(25) | o = 2a |< A (B=ll(A=-AD7"s)

where, in the last approximate equality, (4) and Lemma 5.4 are used under the assumption that | z [>> 1

with n taken correspondingly large.
We now have the estimate (21) for A — u, and the estimate (25) for 4, — A,. Taking the ratio,

7l () P
|ﬂ'n_‘)‘nl< Izln :|Jn+1(z)|
(A= | = 2 () | | aaa(2) | 72

NIV IV SR
B =g =007

(26)

| 2|
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It follows that | s — A |<<| A — py | for large n. Hence, the claim A — A\, & X — u, is justified for large n

(see (10)), and
(27) A=A XN =y ian(z)Jm(z)

by (21). Substitution A = 2/z and A\, = 2/z, and the approximation z, = 2 for large n finally proves

Theorem 1.5.
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§6 Discussions on Numerical Computation.

For this section, we have two things in mind.

We will first give the numerical values for a selected set of roots of Jo(z) — iJi(2) = 0 in the fourth
quadrant, computed from the n x n matrix A, according to the procedure stated in §1, where n is to be
taken large enough in accordance with the prescribed relative accuracy . Table 1 below gives the numerical

values of the first 10 roots in the fourth quadrant, correct to 15 digits.

Secondly, and in the remainder of this section, our discussion centers on the relative error (20 — 2)/2

and its estimate +(7/2)Jn(2)Jn+1(2). (We keep the same notation as in Theorem 1.5 in §1.)

To begin with, we will give a sample numerical comparison to verify the degree to which the two
quantities under consideration agree. See Table 2 below, where the values of the relative error (zn — 2)/2
associated with the approximate root z, are tabulated against its estimate (7/2)Jn(2)In41(2) for the first and
second roots z in the fourth quadrant and n = 4, 8,12, 16, 26 and for the fifth root and n = 12, 18, 20, 24, 28.
It may be seen from the table that the two quantities agree to about one digit for large n, even for the roots
near the origin, the fact that is quite satisfactory for all practical purposes for estimating the correct number

of digits of a given approximate root.

We next consider the related problem of finding the minimum value of n, the size of the truncated
matrix Ay, such that the k™ root for a given k is guaranteed to be computed correctly to a given number
of digits. To this end, we first note, with the aid of numerical computation, that, for a given value of n, the
estimate (7/2)Jy (2)Jy+1(2) has smaller modulus for the root 2 with samller modulus. This implies that the

smaller | z | is, the smaller » may be sufficient to give the desired accuracy.

In fact, if we let N, denote the number of approximate roots z, computed from the n x n matrix fin,
having the prescribed accuracy € (counting all those in the third and fourth quadrant), it may be observed

that Ne is roughly proportional to n and is rather insensitive to e. See Fig. 1 below. The observation we
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just made may be roughly explained as follows. Using the known asymptotic expansion [1, p.365, 9.3.1]

Ju(2) ~ —1—(%)" (z fixed, n — 00),

Vann

we find

T 1 2 o

This indicates that the quantitiy on the left-hand side rapidly decreases when | ez/2n | decreases past 1.
This would in turn imply that those z, the roots of Jo(2) —1J1(z) = 0, which satisfy | ez/2n |< 1, would give
those whose approximate values computed from A, have the prescribed accuracy e, unless € is not too small.
Since the roots of Jo(z) — #J1(2) = 0 distribute approximately = apart as stated in §1, a rough estimate for

N, would be

This roughly confirms the actual situation that Fig. 1 shows, where the actual slope of the curves shown
varies from 0.5 to 0.6, approximatery.
All computations were performed in double- or quadruple-precision floating-point arithmetic (14- or

98-digits in hexadecimal) on the FACOM M-780/20 system at University of Tsukuba.
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Real

Imaginary

W W~y UL W -

—
o

.29803 82414 79049 x 10!
61751 53070 95484 x 10!
.93419 60983 46134 x 10!
.12498 50706 39585 x 102
.15650 10438 53098 x 102
18798 91168 36963 x 102
.21945 97998 43811 x 102
.25091 88576 39076 x 102
.28236 97314 53980 x 102
.31381 46098 96480 x 10?

—.12796 02540 29915 x 10!
—.16187 14384 47149 x 10!
—.18188 72787 77295 x 10!
—.19614 59538 01999 x 10!
—.20723 09817 83076 x 10!
—.21630 10983 27459 x 10!
—.22397 72492 27609 x 10!
—.23063 12806 67550 x 10!
—.23650 36120 66197 x 10!
—.24175 86986 36241 x 10!

Table 1. The first 10 roots of Jo(z) — ¢J1(2) = 0 in the fourth quadrant.

For the first root:

(za — 2)[2 (7/2)Jn(2)Jnt1(2)
n Real Imaginary Real Imaginary
4 —0.181 x 10791 —0.385 x 1072 —0.213 x 10791 —0.498 x 10702
8 +0.262 x 1079 —0.867 x 107% +0.267 x 107% —0.543 x 107Y7
12 | —0620x10-7°  +0.393x 10~ | —0.651x 10°°  40.297 x 10~"°
16 +0.111 x 10720 —0.101 x 10~%0 +0.121 x 102 —0.820 x 10~21
20 —0.245 x 10™%° +0.366 x 10=° —0.320 x 10~ +0.293 x 10™2°

For the second root:

4 —0.216 x 1019 —0.561 x 10%%° +0.584 x 107%0 +0.163 x 1070
8 —0.482 x 10792 —0.147 x 10793 —0.576 x 10792 +0.288 x 10793
12 +0.428 x 1079 +0.305 x 107% +0.439 x 1079 +0.335 x 10796
16 —0.234 x 10712 —0.318 x 10711 —0.584 x 10713 —0.326 x 10~11
20 —0.197 x 10717 +0.158 x 1017 —0.209 x 10~17 +0.147 x 10717

For the fifth root:

12 +0.116 x 10799 —0.360 x 10799 +0.177 x 10799 +0.306 x 10799
16 —0.741 x 109 —0.219 x 10791 —0.151 x 10791 —0.392 x 10701
20 —0.146 x 10793 +0.648 x 10794 ~0.173 x 10793 +0.941 x 1079
24 +0.290 x 10797 +0.908 x 10~%¢ +0.350 x 10797 40.103 x 10708
28 +0.110 x 10710 —0.409 x 10712 +0.120 x 10710 —0.436 x 10712

Table 2. The relative error (z, — 2)/z v.s. its estimate (/2)J,(2)Jn+1(2) for the first, second and fifth
roots z in the fourth quadrant: n = 4, 8,12, 16, 20 for the first and second roots and n = 12, 16, 20, 24, 28 {or

the fifth root.
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60 |~

10

20

Fig. 1. The number N, of approximate roots with relative error € or less, computed from the n x n

matrix 4, v.s. n, for € = 1078,10712,10716,1072°, 10~2¢4, The number attached to each curve indicates

10g106.
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