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Abstract

We study a coplanar model of the successive pursuit of two evaders with unlimited turn-rates of all
players and a restricted detection domain of pursuer. We describe two guaranteed pursuit strategies
that include a two-stage strategy to shorten to a specified quantity the distance to the nearer evader, and
a two-stage strategy to search and capture the other. The strategies are distinguished by their search
plans. First coalition is pursued as a whole. Then pursuer approaches the first evader using the strategy
of successive pursuit with unmoved second evader at the last observed position. Subsequently pursuer
moves directly to that position of the second evader or, according to the more complex plan, alternates
between traversing a straight line and turns of logarithmic spirals, and after detection captures the
remaining evader using the simple pursuit strategy. We also provide some numerical results for a set
of parameters of the game.



Introduction

The problem of pursuit of two evaders in succession is very complex indeed. So far merely the models
in the frame of differential games with perfect information have been investigated (see, e.g., Refs.1-4).
We describe here a game of the coplanar successive pursuit with imperfect visibility of pursuer. We
assume that

e turn-rates of F;,F,,P are unlimited;
e FE, ,E,’s identical maximal speed is less then P’s;

e P knows a certain evader’s position only if the evader is somewhere inside the disk of a finite
radius centered at P;

e FE, and E; continuously know P’s position;

e P’s gdal is to shorten to a specified quantity the distance to E; and then to capture E,, and
coalition { £, E, } strives to escape.

Even starting with both evaders inside the detection domain and having the advantage of being faster,
P can not retain them there for a long time. At boundary states where P still succeeds the following
information stages might arise:

1. P knows instantaneous positions of both evaders;

2. P knows instantaneous positions of F; and only the last observed position of E;;

3. P knows the last observed position of E; and searches for new detection;

4. P knows instantaneous positions of F, again.
We set up the problem as a game of kind and study it for the boundary initial states backwards. At
the last stage P’s behaviour is quite obvious. At the stage 3 we make use of the guaranteed strategies
described in Ref.6. Then we prove that in a subsidiary game of degree at the stage 2 the optimal
pursuit strategy is the same as in the game of successive pursuit P — E; — E, with fixed E, at the
last observed position (see Ref.3). Finally, we set up a subsidiary game of the stage 1 and study it in
the same manner as the game of successive pursuit of three evaders in minimum total time (see Ref.4).
We also provide some numerical results for a set of parameters of the game.

The problem
We study the game of kind with the state equation
z=1, (1

and initial condition
2(0)=2°, %eD, (2)

where !

v= ] = 4/v2 + 2 if D = (v, vy).
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e z = (2,2, %,) is the state vector;

o z; = (2i,2y),1 = 1,2,p, are cartesian coordinates of players in a plane;

e %= (%,12,Tp) is the control vectorand ux < B,k =1,2, u, <1, B<1;

e D={z°| R< |2} —2| < |2} —z)| < r} is the admissable set of initial states,0 < R < r.

Let Uy, Uz, Up and {z;(t, 2%, U1,U2,U,),t > 0},1=1,2,p, be strategies and corresponding trajec-
tories of players. 2 If there exist the instants t = t; and t = ¢, that

0 <t <tz < +oo,
Izl(tl; 20; UlyUz’Up) - Ep(tl; 20; Ul,UZ,Up)l = R, (3)
22(t2; 2% Ur, Ua, Up) = Zp(t2; 2% Ut U, Up), (4)

then P’s cost function G(Zo; Uy, Uz, U,) equals 0, otherwise 1. The game is assumed to be zero-sum,
so that coalition { E;, E» } has G as the gain function.
For the boundary initial states where P still succeeds the game can be divided into the four stages:

1. P knows instantaneous positions of both evaders and approaches coaliton as a whole;

2. P knows instantaneous positions of E; and only the last observed position of E, and
shortens to R the distance to Ei;

3. P knows the last observed position of E, and searches for new detection inside an ex-
panding disk;
4. P knows instantaneous positions of E; again and captures her.
The stage 1 ends at the first instant ¢ = ¢, when
7~z =, (5
and P seeks to get the best position for the following actions using a strategy
U = U (21,2, %) .
The stage 2 continues until the first instant ¢ = t; when (see (3))
R, (6)
and P not only captures E; but also maximizes the chance to detect E, afterwards using a strategy
| UP = UP (21,25, %) -

2~ 2| =

At the stage 3 P forms a search plan
U;SS) = Ués) ( zgr’ zp: - t'r) )

to shorten to r the distance to E, taking into account the last position of E, observed at the stage 1
and the elapsed time. At the last stage P captures E, (see (4)) using a strategy

)= =
U® =UP(22,32).

2 Further we’ll ommit some arguments in the notations if the functions don’t depend upon them.
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Analysi§

We analyse the problem backwards, from the fourth to first stage.
Staged. P captures E; in a finite time using, for example the simple pursuit strategy (see,e.g.,Ref.5)

Us? = (22 = 2) /122 — .

Stage 3. The optimal search plan in an expanding disk is unknown, but there are two guaranteed
strategies described in Ref.6. According to the first plan US® P simply traverses the straight-line

segment P4 Ey | and if
(t1 —tr + |25 — 2(t1; 2 U, UP) ) /r < 1/B, (7

then P detects E; without fail because the set of accesible positions of F, is covered by the detection
domain by the instant of arrival P at E¥ (see Fig.1).

The other search plan is more complex. Let U, g be the following two-step strategy from Ref.6:

1. Traverse the straight-line segment P% EYr until the instant ¢ = ;. of internal contact of r-circle
centered at P and B(t — t,)-circle centered at Ex (see Fig.2a).

2. Choose a direction (clockwise or anticlockwise) and traverse the turn of the logarithmic spiral
with radial projection of the velocity equal 3 (see Fig.2b).
U(3) consists of traversing the straight-line segment P* E. until the instant ¢t = ¢, of external contact
of the r— and B(t — t,) —circles, and successive applications of U, g. If

(t1 — b, + |25 — 2,(t1; 25 UPP, UP) D /r < £(B) /B, (8)

where f(B) = 1+ 2 /[exp(27B/4/1 — 5?) — 1], then detection of E, is guaranteed (Ref. 6).

Stage 2. Success of both above-mentioned search plans depends on the value of the coinciding
left-hand parts of (7) and (8). So that for the boundary states a guaranteed pursuit strategy can be
found as a solution of the subsidiary zero-sum game of P and E; with the state equation (1), initial
condition satisfying (5), P’s gain function

GO (2 U, Up) = (41 — t, + |35 — 2,(t1; 273 Uy, Up) ) /r

and terminal condition (6).
Proposition 3.1. The optimal strategy of P in the subsidiary game of the stage 2 is the same as in
the game of successive pursuit of two evaders in minimum time with fixed E, at the point EY, and

the value V' of the game is described by expression
vz = (3", 9,
where 1, is a solution of the equation F(z*, ;) = 0
C(Z", 1) =sin(¢1 + o — o+ )/ sin 41,
‘o =R/ — 2|,




o = sin™! o sin ¢y,
p = sin™! Bsin ¢y, 9
Y2 =291 + p,
cosy = (2§ — 2kr) - (5 — 28 /(rlzy — 25,
|2 — 25| sin (91 — ) sin 291 —
F(GE" ) = rsin(y; — @) sin(¢p —a+) VLD #0,

p—a+ny otherwise.

Proof. Let &; and &, be unit vectors parallel to the instantaneous velocities of Ey and E, and €, be
the unit vector directed from P% to E¥. It follows from the main equation that &; and &, are parallel
to V;(lz) and —V;(PZ) correspondingly, and

BIVE?| = V2| +1=0

Furthermore it is easy verify that V;(z) and —V3? are constants and
y y 1 Zp

z:} = 5 — Rey,
[ViPler + & — [ViP e, = 0.

Therefore, if the direction from zr to zir — Re, is adopted as the angular reference and 11, %2 + T, ¢
denote the angles of €1, &2, &, (see Fig.3),then p = sin~! Bsin ;. and ¢, = 214)1 + . These relations
coincide with the relations for corresponding angles in the game of successive pursuit (see Refs.1-2
for R = 0, Ref.3 for R > 0). So that we can use the results of Ref.3 to get remained dependencies of
9.

Fig.4a and 4b show the surface of V(? and its cross-sections in a reduced space for fixed EY, P,
| P E¥r| = 10, and various EY" inside the annulus 1 < |[P¥E}| < 10,8=04,R=1,r=10. Ei’s
polar coordinates ( p1, p21) are given in the system with the pole at P and the polar axis directed to
EY,ie. p; = |PE'| and py; is the angle that P Ei" makes with P E%.

Stage 1. To find out a guaranteed pursuit strategy at this stage, we study one more subsidiary
game of degree of P and coalition { E1, E, } with the state equation (1), initial condition (2), P’s gain
function '

GV U, U2, Up) = VO (2,

and terminal condition (5). Let V{D(z%) be the value of the game and £(2°, ;) be an expression
for VP containing the variable 1; (see Proposition 1). Let 3 = (31, 52, 35,, Sy,) be a vector of the
parameters and
z1 = 81,
2 =5+ re(sz),
%, = 5p,

"/)1 =S¢y
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be a parametric representation of the terminal manifold (see Fig.5), where 3
F(3, Sp+ re(sz2), Sp, S¢1) =0

Letv(3) = £(51,3p+71€(s2), 5p, 8¢, ) be the value at the terminal points, and o1, &3 , &, be the optimal
angles measured from the direction from P° to E? (see Fig.5).
Proposition 3.2. o4, a2, o, are constants satisfying the following system of equations

(Vs — Vsy Fa [ Fyy)

|vs, — Vs,,,lfz,/f¢1| ’

Vsy (Fz, + F3,) [ Fyy — v, + d28(2)

|[Vay, ( Fa, + F,) [ Fyy — vs, + dp&(cv2) [

B(|vs, — s, Fa, [ Fyy | + d2) — |vsy (Fz, + F3,) [ Fyy — vs, + d28(02)[ =0

é(ay) =

e(ap) = (10)

where

dp = (vs, — Vs, [Fy€1(52) - Fp,) [(r€1(52) - 8(2)),
and all the functions are estimated at the terminal point corresponding to the chosen angles.
Proof. The main equation for £ is

min max S (&5 — Fabp/Fu) -6i=0. (11)

U {8182} =12
Hence the optimal directions are parallel to &5, — F3.8y, /Fy,, b = 1,2, and —(&;, — F. €y / Fyy)
correspondingly, and

Z BKEk—fEkE%/fWI_|€Ep_f2p€¢1/f¢1|=0- (12)

k=12
Functions &, / Fy, and &, — F;.£y4,/ Fy, 4 = 1,2, p, do not vary along the optimal trajectories, so that
61/’1 = d"/’l F, Y15
EE;' = d’l/)lfzi + (zb 1= 1:2)p:
for some constant dy, , dy,dy, c_l,, The transversality conditions for (11) are

vs, = dg, Fs, + d1, (13)

vs, = 181(82) - (dy, Fs, + ), (14)
vs, = dy, Fz, + dp + dy, Fs, + dp, (15)
Usy = d¢1.7:',/,1. (16)

Expressing dy, from (16) and d, from (14) and substituting them into (13),(15),(12) we get (10).

Corollary 3.1. Along the optimal trajectories of the subsidiary games of the first two stages E,
traverses the same straight line.

Fig.6a and 6b show the boundaries of the regions where P guarantees successive approach of two
evaders using the four-stage strategies with two different search plans, U¢® and U$® (dashed line),
for fixed EY, P°,|P°E?| = 7, and various E inside the annulus 7 < |[P°E}| < 10 B=04,R=
1,r =10. In Fig.6a E»’s polar coordinates ( p1, p12) are given in the system with thc pole at P° and
the polar axis directed to E?, i.e. p, = |P®ES| and ¢, is the angle that P° EJ makes with P°E?.

3 We use the following notations for some unit vectors: &(0) = (cos 0,sin #) and &, (0) = (—sin 0, cos 0).



Conclusion

We have investigated here a model of successive pursuit of two evaders by pursuer with imperfect
visibility. We have described two four-stage guaranteed strategies distinguished by their search plans
to approach the nearer evader and then capture the other. In order to refine the model, one might want
to avoid such assumptions as, for example

e at initial moment both evaders are inside the detection domain;
e P does not observe E» ’s positions right after the moment ¢ = ¢, (see (5)).

We have studied the game merely for the boundary initial states where P still succeeds. For some
parameters of the game and initial states the structure of the strategies can be different. There might
also exist the situations where P retains F, inside the detection domain during approaching Ej.



Bibliography

[1]

[2]

(3]
(4]

(3]
6]

Breakwell,J.V., and Hagedorn,P., Point Capture of Two Evaders in Succession, Journal of Opti-
mization Theory and Applications, Vol.27,No.1,1979.

Abramyants, T.G., Maslov,E.P,, and Rubinovich,E.Ya., Elementary Differential Game of Alternate
Pursuit, Automation and Remote Control. Vol.40, No.8,1980.

Shevchenko,I.1.,Successive Pursuit, Automation and Remote Control. Vol.42, No.11,1981.

Shevchenko,l.1.,Successive Pursuit of Three Evaders, Automation and Remote Control. Vol.44,
No.7,1983.

Isaacs,R.,Differential Games, John Wiley and Sons, New York, New York, 1967.

Zenkevich,N.A.,An Estimate for Simple Search in a Plane, Vestnik Leningradskogo Univer-
siteta,N0.19,1981. (In Russian.)



v N\ At - PtT,_tyl)

Fig.1. Guaranteed detection in case B(t1 — t, + |[PHE™|) < r.



Fig.2a. Strategy Upg, : traversing P% EX until internal contact of the r- and B(t — t,)-circles.

Fig.2b. Strategy Up,, : traversing a turn of the logarithmic spiral.



Fig.3. Optimal directions in the subsidiary game of the stage 2.
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Fig.4a. Surface of V(?.

Fig.4b. Cross-sections of V(?.
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Fig.5. Geometry of the optimal pursuit in the subsidiary game of the stage 1.
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Fig.6a. Boundaries of the regions with guaranteed successive approach in the reduce space.
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Fig.6a. Boundaries of the regions with guaranteed successive approach in the realistic space.
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