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Abstract

The obstacle tag game is studied in a special reduced space. We describe a parametric representation
of the domain, where geodesic evasion strategy is non-optimal, and using the tenet of transition solve
the game inside the singular domain. We provide equations the roots of which are parameters of the
optimal trajectories of players for particular initial states. Itis proved that in realistic space the solution
contains a focal line, and the optimal paths approach this line tangentially.



Introduction

The simple pursuit game with a circular obstacle (obstacle tag, pursuit around the hole) was posed by
R.Isaacs [1]. J.Isbell outlined a solution of the game in [2]. In present paper we give a detailed solution
in the case when the line segment joining players intersects the obstacle. The presence of an obstacle
changes the topology of the playing space compared with the simplest pursuit game [1]. But the
optimal strategy of pursuer is essentially the same. Namely, pursuer must shorten as much as possible
taken-along-a-geodesic-line distance apart at any instant of the game.The situation is different with
regard to evader. Geodesic evasion strategy, i.e. making the most to lengthen current distance apart,
can be non-optimal because it can lead to the positions where current geodesic line is not continuation
of the former ones (see [1],p.152), and hence the predected catching time along an initial geodesic line
is not guaranteed.

We describe a parametric representation of the outer boundary of the domain S where geodesic
evasion strategy is non-optimal. Then using "the tenet of transition" [1], we study properties of the
value of the game in S and provide some numerical results.

The problem

The state z = (zp, zg) of the game varies with passing time ¢ > 0 according to the following differ-
“ential equation

(1)
z° = (zp,2p),

where
z € Ro = {z = (zp,zg)| ||2zp — z|| > R,||zz — z|| > R},

Ro is the playing space, z; = ( 2z, ziy), § € {P, E}, are the coordinates of players, z. = (2., 2¢,) and
R are the center and radius of the obstacle, u = (up,ug) is the control vector,

u|'=(uiz’ut'y)1 1E{PyE}’

”uP” < 1’
lugll < B < 1.

The game terminates when z£ = zZ, and the payoff equals 7. We shall only study the game in the
domain of the playing space where the line segment PE intersects the obstacle. We employ two
reduced spaces R; and R, with the state variables as in Fig.1. In R; a state is described by P’s
abscissa zp and by E’s coordinates (g, yg) in the coordinate system zQOy
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Rzg+ zp(yg — R) >0,
24+ (yg— R)* > R.

In R, a state is the vector (, 8, s) of the parameters of the geodesic line joining players
r>0,

0 <6<tan 'R/r+m/2,

s>0, if 0<6<tan 'R/,
0 < s < Rcot(8 —tan™'R/r), otherwise.

Geodesic pursuit and evasion

We define strategies of geodesic pursuit for P and geodesic evasion for E as strategies of travers-
ing at the maximal speed a geodesic line between P and E and its tangential straight continuation
respectively.
Let (1%, 6%, s) ,t > 0, be the states in R, along the geodesic pursuit-evasion trajectory started at
(r,8,s). First of all we cut down the trivial cases where geodesic evasion strategy is optimal.
Proposition 1. If in R, '
6 < tan 'R/, (2)

or otherwise if
s* < Rcot (9 - tan’lR/'rt) , t€[0,r — Rcotb], (3)

where rt = r — t, s = s + t, then geodesic pursuit and evasion étrategies are optimal, and the value
Vo is described by the formula
+ RO+
Vo9 = L ®
Proof 1. Introduce one more realistic space with the state variables as in Fig.2 where PKpKpFE
is a geodesic line between P and E. If along trajectories corresponding to up and ug E does not cross
the continuation of the line segment joining P and C then dependences of ', §*, 4*, f* upon up and
uj are described by differential equations with smooth right-hand parts. For instance, if I!, f* # 0,
we have the following state equations

—d—l - —upg(lcos § + Rsin 8) + upy(lsin § — Rcos §)
dt l ’
i6= p Sin 8 + Upy COS &
dt l ’

d  —upgsiny+ ug,Cosé
@ 7 ’

d . _ up(fcosy+ Rsinqy) + ug,(fsiny — Rcos )
dt f )



and Isaacs’ equation

YW — RV)? + PV . By (Vy — RVp)? + f2V;
(1-At T-Af

Using those dependences we can backward verify Proposition 1 at first for initial states [ = 0,8+ >
0, f > 0, and the terminal manifold [ = 0,6+~ =0, f > 0, where the value equals /(1 — 3), and
then for initial states { > 0,6 + v > 0, f > 0, with the terminal manifold /= 0,6+ > 0,f > 0,
where the value equals [ R(6 + v) + f1/(1 — B) [2]. The fulfilment of (2) or otherwise (3) exactly
prevents crossing above-mentioned straight lines.</

Let S denote the manifold of the playing space where (6 — tan~! R/r) € [0, m/2] and (3) is not
fulfiled. Let L denote the surface of colinear positions of P,C and E. Let D denote the part of the
outer boundary of S where along geodesic pursuit-evasion trajectories equality in (3) definitely takes
place one time.

Proposition 2. In R two-dimentional surface D has the following parametric representation

+1=0.

Ip = —p,

zg = g(p,§) cos{ + Rsin ¢, (5)
ye = g(p,&) sin{ + R(1 —cos §),
where
p 2 po,
§o(p) <€ < &ilp),
V=B,

po ="

1 R

VB(* + R2)

1 .(l_ﬂ_*_ Sin_l 2\/BR ’
Be VB0 + (1+ )2 R

Mp£)=—ﬁp+0ﬂ1%Ran§+%%§,

1

&o(p) =tan™ %+ sin™

§1(p) = tan™

and the value Vp on D is described by the formula
p+ RE{+9(p,©)

Vo(p,6) = =3 (6)
Proof 2. Fix state variables r and 8 in R, as parameters
r=p, 6=¢.



The value of the state variable 3 = 3(p, ) corresponding to the position (p, &,3) in R, on D is the
minimal root of the equation with respect to s

AD(p)E’s) =07 (7)
where Ap is the discriminant of the quadratic equation
Bt* + [s— Rcot § — B(p— Rceot £)1t + R(rcot £+ R) — s(p— Reot ) =0,

describing the difference between the maximal admissible and the actual value of s along geodesic
pursuit-evasion trajectories. From (7) and (4) we get the expression for g and (6).<7

Proposition 3. Making use of geodesic pursuit and evasion strategies leads a state of the game
from an initial position on the surface D to the position on the curve F with the following parametric
representation in R

Ip = —p,
x5 = /Bp, (8)
ye=(1+ /AR,

where p > po, and the value Vr on F is described by the formula

p+ B(sin™ ket an™ B 4 /B2 — (1 - HF?

-8

Proof 3. At a state on F equality in (3) takes place at the instant ¢t = 0. Hence on F we have

Vr(p) = (9

R
p—W—RCOtE=O,
and VBR
9(&,p) = Sin € + Rcot €.

Substituting the expression of g in (5) and (6) we get (8) and (9) respectively. 7
Projections Sp,Lp,Dp,Fp of S,L D F in R, for three positions of P at zp = —5,—2.5,—10 are
sketched in Fig.3, 8 = 0.5, R = 1. Noteworthy that Dp is tangential to the obstacle as well as to Lp.

Analysis

Our goal now is to fill up S with optimal paths in R;. If an initial state is in S, then in order to catch
evader, P must approach the obstacle first. We assume that P does it using geodesic pursuit strategy.
For sufficiently small [zp| S shrinks to zero. Besides that the state can leave S only through the curve
F because L is impenetrable as well as the rim of the obstacle.

Proposition 4. In R; along an optimal trajectory starting in S the state cannot reach F neither
directly from inner points of S nor along D.



Proof 4. Suppose that an optimal trajectory reaches F or another point of D from within of S
directly avoiding L. In any that case we can rewrite the payoff as

l'r+R(6'r+,7'r) +f'r
(1-p5) ’

where 7 is the first instant of reaching D. In the subsidiary game with payoff (10) there are no state
constraints, and geodesic pursuit and evasion strategies are optimal. But according to the definition
of S making use of these strategies leads to reaching a cohnear to C position of the players before
reaching D . This is a contradiction.sy -

Thus from any inner position in S the state must definitely reach F along L. Hence in R; the
value Vg for an inner position of S can be rewritten as

(10)

Vs(zp,xE,yg) = —xp + p" + Vr(—2p™), (11)

where 77 = 77 (xp, TE, yE) is the first instant of reaching F along L . Left-hand side of (11) is a mono-

tonic increasing function of —z ™. It means E must try to maximize the abscissa g™ of position on

F (see (8)). From within of S E reaches projection of L along a straight line and then continue along

L, because a temporary leaving L leads to the resulting decrease in z 5™ and hence in the payoff. Let

o = a(zp,zg, yr) denote the optimal angle of E to the z—axis at the state (zp, g, Yg) -
Proposition 5. In S & is the maximal root of the equation with respect to «

Ds(zp,zp,yp, @) =0, ' (12)
where Ay is the discriminant of the quadratic equation
(Bsin @)™ —[R—yg — B(zpsina+ Rcos a)]7+ [R(+z5 — zp) + zpyr] = 0. (13)

Proof 5. The minimal positive root of (13) determines the instant of reaching L along the straight
line at an angle o from initial position (zp, zg, yg) € S. The less value of « brings the less value of
the payoff. Indeed, the greater o leads to the sooner reaching of L and to the greater y at the instant
of reaching L. Along L at any instant ¢ E must play at an angle of

=1 ye' — R -1 R
SV Ly AR e LES A o
It means that from the begining of the game until reaching F the angle of the motion remains greater
for the greater value of . As a result, yg on F is the less for the greater ow. The minimal value of «
with which F still reaches L corresponds to the maximal solution of (12). Note that coefficients of
(13) are the same for all positions along corresponding straight line.<y
Fig.4 shows the initial part of the optimal trajectory of E started at the position zp = —10,25 =
15,yg = 1,in S, 8 =0.5,R = 1. In the reduced space R, the optimal trajectories of E started
in S both approach Lp along straight lines (see Proposition 5) and leave Lp at positions on Fp (see
Proposition 3) tangentially. In realistic space positions of S N L \ F constitute a focal line (FL) [3].
The other part of L is a dispersal line (DL) (see Proposmon 1) [1]. L is a locus of discontinuity of
the value gradient. At each point of L there are two different ways of the optimal play. Along the FL.
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E faces a perpetuated dilemma [1]. Making use of geodesic pursuit strategy at positionson L \ F P
may switch at will between "southern” and "northern” paths. To respond optimally, E must know P’s
decision instaneously. If let E play that way the obtained pair of strategies is an upper saddle point
[3]. To approximate the discriminating strategy by ordinary one, E' may never reach projection of the
FL from within of S, but only its one-side e-neighbourhood, or respond with time-delay €. In both the
cases the resulting decrease in the g on F tends to zero as e — 0 [1,4].

Fig.5 and 6 show the pieces of the projections of the value and the upper part of & (a) and cross-
sections of these surfaces (b) in the neighbourhood of L (y'-axis in Fig.1), z, = -5, 8=0.5,R = 1.
The difference between two values of the optimal angle along /' -axis equals

2sin-1—YE_ 1t
BVzp? + R?
for the FL, and
2 sin~! R

\/ﬂ«‘% + (yg— R)?
for the DL, where (zp, Zg, yg) is the state in R;.

Conclusion

We have described some properties and an algorithm of calculation of the solution of the simple pursuit
game with an obstacle between players. We have focused here only on the investigation of the "local"
features of the value in the domain of the playing space where the segment joining players intersects
the obstacle. On the whole, our solution agrees with the Isbell’s scheme [2]. We have not dealt with
such questions as (in the fashion of [4,5])

e proof of optimality of the solution using the "viscosity condition";
e inclusion of rundom velocity errors in (1);

e perturbation of the shape of obstacle.
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Fig.1. State variables in the reduced spaces.

Fig.2. State variables in the realistic space.



Fig.3. Projectionsof S,L,D,F inR;.

Fig.4. An example of the optimal trajectory of F in R for the initial state from S.



Fig.5a. Surface of the value projection.

Fig.5b. Cross-sections of the value projection.
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Fig.6a. Surface of the upper part of & projection.

Fig.6b. Cross-sections of & projection.
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