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Abstract.

We‘introduce a data reduction algorithm for general plane
curves without losing visual acceptability.Plane curves general-

ly include not only planar curves but also complex =zig-zag
lines such as coast-lines or frontier lines between countries.

Although several data reduction methods were already given
to date, their application is limited to planar curves or small
amount of data. |

Our new algorithm is applied for a large quantity of data
which constitute geometrical lines andvcoast—lines. The results
show that the algorithm is practical and effective on both planar

curves and complex curves.:

l.Introduction

In usual graphic systems, plane curves are represented by
sequences of connected line segments and the data of curves are
given in the coordinates of knots. In some cases such as digital
map, a great many data are provided in order to be adapted to
any computer graphic system. Too many data for systems of low
resolution, however, need a large amount of storage in a computer
and require a long time to display. Then it is necessary to
reduce the number of data without losing visual acceptability of

the display image.



Many data reduction algorithms have been already developed.
One of them is Agqui's'' algorithm in image processing. This uses
the quasi-coding method for figqures based on the fractal
dimension. Another algorithm by Tomek®*’ generates line segments
in the polygon which enclosing original lines.In these algorithms
. the reduced data are not subsets of original data. However,in
Sato's algorithm?®’ and Roberge's one®’ respectively, reduced data
are included in their original data. The former is suitable for
curves of small amount of data such as alphabéts, and the latter
is only for planar curves.
| The curves obtained from the reduced data must resemble
closely original curves, and the data reduction must be carried
out correspondingly to a graphic system.
In the paper we propose a new data reduction method which
satisfies the following four conditions.
l. To be reduced as a subset of original data.
2. To be useful for plane curves, not only for planar but also
for complex zig-zag curves.
3. To be a pre-processing of original data instead of sending
them directly to display packages(Fig.l), but to be practical
in computing time.

4. To be easily applicable for the user who knows only a number

of data.

2.New optimum data reduction algorithm

2.1 Definition of data reduction

In a digital map system, coast lines and frontier lines are



given as an assemblage of unbranched curves. Each in this

assemblage is called a chain curve.

Let P be a chain curve. The plane curve is represented by a

sequence of points (po,p:,pz...,pn)}

—

po: the first point of the chain curve P,

—

pr»: the last point of the chain curve P,

n: the number of line segments formed using points pi-1 and
Pi-.

For the original curve P = (po,pP:,Pzs+-sPis--,Pn), 'Data

—

reduction' means to create a new curve Q = (do,gi1,dzs+sdis e s1qm)
according to some criterions(Fig.Z).»Hére, the set Q = {dgo,q:,
dz,...,9dm} is a subset of P = ’{po,p1,pz,.g.,pn} ;m = n.

In usual case, certain scheme f(p:) is defined for a point

pi.{(For example f(p:) expresses a degree of the curve bending at
pi.)
Data is selected as follows:
if f(p:) =2 =« , pi is preserved,and
if f(pa) < T, pi is omitted,
where a tolerance value T is given beforehand. By this procedure .
for all points of P, a subset Q = {Qo,Ji1,dz,s--.,dm} ©of P is

selected, and data reduction is carried out.
2.2 Our algorithm

We present here a new optimum algorithm of data reduction.

The algorithm consists of next two steps.



Stepl.

First,take an appropriate tolerance value ¢ . and then select
data points according to the following scheme in the order of
Po,P1+P2/+++sPn.

The first point po:preserved.

For a point p: (0 < i < n ),take the point p. which is the

last preserved ,and define d: as

d: =8S./¢ ..

Where S; is twice of the area of triangle A pwspipi+1 .

¢ i is the length of line segment popPi+1.

If di > © 1. pi is preserved,and if d: = t ., p:i is omitted.

The last point p.:preserved(Fig.3).

Preserved points are renamed as do(=po),qi1,dz,...,dm(=pa) in
serial order. By the procedure,the subset Q = {Qo,ql,qz,...,qm}
of P is selected.

Step?2.

Take an appropriate wvalue t : as another tolerance and
consider omitted points pr+:1,pPr+2,Pr+3,...,Pr+t-1 between qi (=p:)
and qi+1{(=pr+¢)2:(i=0,1,2,...,m—1).There are two cases.

I The case thét there are three or more successive points

lie in one side of the line qgqigi+1,

I the other case.

For the case I no procedure is applied. In the case I the
following procedure is applied for all points pr+s (0 < s < t )
(Fig.4).

a) Define h. as the distance between the segment gigi+: and

the point pr+s,and let M. be the foot of the perpendicular

from p.+s to the line qiqi+:1. That is,



for the case that M. is between g: and gi+1: h: = pr+:Ms,

for the case that M: is on the g: side of gqigi+::

hs = pr+sqi‘

For the case that M. is on the gqi+:. side of gqigi+1:

hs = pr+sQi+1.
b) Let h. be the longest of h:(s=1,2,...,t-1).
If t . > t =2 , the point pr+ is picked up.Then reset
di+1 = Precsdi+z = Qi+15++,0i+m+1 = Ji+m,m = m+l,and return
to the step a).
c) Reset i = i+l,and if i < m then return to the step a)
By carrying out this procedure, the final subset Q is obtained.
In the step 1, we intend to remove the point p: from which
the length of the perpendicular to the line popi+1 is smaller
than t :. Then,points on a strongly irreqular line are surely
choosen.
By the stepl only,too many points are reduced in a case in
Fig.5. The step 2 is added to improve this defect, and some

points are retaken appropriately.

4., Determination of the tolerance and evaluation of the degree of

approximation

In this chapter, we consider the degree of approximation
between original and reduced image, and then we treat how to
determine the tolerances t ; and t : introduced in the step 1 and
the step 2 of section 2.2.

For two images generally the feelings 'being largely



different' or 'being far' come from an areal difference or a gap
between them.

First we consider the areal difference between an original
and its reduced image. For example, two areal differences are the
same for casei and ii in Fig.6. But the change of shape by data
reduction seems more remarkable in case i . So,it is adequate to
evaluate that the degree of approximation in case i 1is smaller
than in case il . The step 1 is devised so that points in case i
may be picked up, and points in case ii may be omitted. So the
smaller t , is specified ,the better approximation is obtained.

For a gap between original image and reduced one, ‘as shown
in case ii , Fig.6,t z is considered to be an upper bound. The
smaller © = 1is specified, the narrower gap is obtained. As
mentioned above,the degree of approximation can be evaluated with
two tolerances t , and =t z.

We show here how to determine two parameters t i1 and zt =.
Finding the optimum t© : and t z is generally very difficult.Even
for cases that equal number of points are reduced, there are a lot
of combinations of t ; and t z. Obtaining an image of good
approximation depends greatly on the choice of tolerances =t i1 and
T 2.

In general case,n,the number of original points and m, an
expected number of retained points, are known in advance.Then,it
is desirable to determine t ; and =t : from n and m only.

At first we consider the best proportion of the points to be
reduced or to be supplied through the step 1 and the step 2,
respectively.

After many experimental compdtations, we reached the conclusion



that in the step 1 points should be made to 0.6m and the number
of points supplied in the step 2 should be 0.4m .

1) how to determine =t ;

The empirical formula for : ; is obtained as

t 1 = € (-1.423 + 0.856 ( 2.775 - log (0.6m/n) )'7%),
where ¢ is the mean interval of successive two points in the
original data.This formula is obtained from the relation
between the number of omitted points and t . , using 1971 data
péints of digital map in Tohoku district, Japan . The usefulness
of the formula is confirmed by other applications.

2) how to determine =z

For retaining m points exactly , the determination of =t : by
an empirical formula as t© i is impossible, t z is therefore de-
termined with the method of trial and error. First we choose an
‘appropriaﬁe © z (for example © =~0.17 ). After applying the
procedure of the step 2 , fewer points are supplied,then t = has
to be increased and vice versa The procedure is repeated until

the intended number of points is retained.

4 .Numerical examples
4.1 Examples of application

We show here some applications of our algorithm.
Example 1.

As an example of application to irregular lines, our
algorithm isvapplied to Rias coast-line in Sanriku,Japan(Fig.7).
It consists of 351 data points.We carried out two cases,the first
case that m is a half of n and the other case that m is a quater

of n. In these cases,



t ;= 0.0042 ,and T oz 0.006 c...for m 0.5n
t 1= 0.0063 ,and T 2= 0

.018 ....for m 0.25n

,here the mean interval ¢ is 0.0148.
Example 2.

As an example of application to planar line,our algorithm is
applied to a coastline of Aomori prefecture(Fig.8).It consists of
350 data points.We carried out two cases ,one that m is half of
n and the other case that m is a quater of n. In these cases,

¢ 1= 0.0056 ,and t z= 0.0045 ....for m = 0.5n

It
It

t 1= 0.0084 ,and <t z= 0.012 «e..for m 0.25n
,here the mean interval ¢ is 0.0197.
Example 3.

As an example for low precision data, the shoreline of
Australia is chosen. This example shows that our algorithm is
independent of data precisons by normarizing ¢ i using the mean
interval of successive two points. It consists of 1337 data which
are 1/10 lower precision than previous examples. Fig.9 shows one
case that data reduction is done to a quarter of the original.
Determinded values for t© . and t =z are

a

0.0679

A
-
i

I

0.0106 .

T 2

And the mean interval is 0.159.
4,2 Comparison with other methods

In this section, we compare our method with the following
three methods, that is Sato's®' ,Roberge's®’ and ODYSSEY's*®?

methods.



The Sato's method is an algorithm for small amount of data.
It needs 10° times of distance calculations in the cases that 117
original points are reduced into 25.0ur method needs calculations
only 117 times. So,Sato's method is not practical when the number
of data points is large.

The second is Roberge's method. This is usually called ESA.
ESA is a little better than ours for spiral curve. Fig.1l0 shows
the comparison of two methods. The upper image is by ESA and the
lower by ours. Here 1000 points spiral are reduced to 26 points.
However, for an unit circle two methods are equal level. In the
case of shore line consist of planar and complexed curve, our
method is better than ESA. Fig.ll shows the result by ESA. Ours
are already given in Fig.8 in the same condition , that is 350
data are reduced into a quarter of original ones , where the
tolerance d = 0.0168.

The third method is included in the generalization command
in ODYSSEY map system.This is prepared to reduée the number of
points to describe boundaries in ODYSSEY system . This system is
georgraphic information processing system produced by "Laboratory
for COmputer Graphics and Spatial Analysis".The result by the
generalization command is shown in Fig.1l2. In this case, the
tolerance 0.0208 is used and 350 data points are reduced to 92.

This method is the worst of three.
5.Conclusion

By many numerical experimentations, we come to a conclusion

that our algorithm is practical and effective for complex curves,



not to mention for planar curves.
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Fig.l.

Graphic system with data reduction of plane curves.
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Fig.2.
Illustration of data reduction.P is the original curve and

.
Q is the reduced curve under some criterions.

The set P 2 Q .
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@ Preserved
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Fig.3.
Determination of gq: using the step 1 algorithm.

The reduced subset is Q = {po,P:1,Pz,Pa,Ps} -«
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Fig.4.

to the segment gqiqgi+1.

Definition of the distance from pr+s
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Q- PRESEREVED

(@ SIOTTEee OMITTED

Fig.5.

Illustration of defects of the algorithm in step 1.
By the step 1 reduced curve_b = (po,ps,ps) is far from the

original curve P. By the step 2 , ps is selected again.



CASE U1

f 0.16 = [77—dz__ _ 0. 025459
0125$§+1 - 1 26x +1 B ’

Prec

Qi

CASE i

Fig.6.

Meaning of the tolerances ¢ ; and rt -
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ORIGINAL

N= 351

REDUCED TO 50 ¢, | REDUCED TO 25 °/,

Fig.7.
The example of application to irregular Rias coast-lines.
The original data are consist of 351 points,the middle are 175

points,and the right are 87 points.



REDUCED TO 50 % 8 -1

REDUCED TO 25 %, 8 -2

Fig.8.
The example of application to planar curves.

A fine 1line represents the original data and a heavy line

represents the reduced data.
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ORIGINAL

NZ 1337

REDUCED

Fig.9.
The example for low precision data. This example means that

our algorithm is independent of a precisionkof data.
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REDUCTION BY ESA

REDUCTION BY OURS

Fig.10.
Comparison between ESA algorithm. and ours for spiral curve.
A-fine line represents the original 1000 points and a heavy line

represents the reduced to 26 points.
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REDUCED TO 25% BY ESA

Fig.1ll.

Reduction of planar shore lines by ESA. Reduction 350 data to

88 points

_21_



N~ [
/
\ \ f
w\- ' SN
\ b N

REDUCED TO 92 POINTS BY ODYSSEY

Fig.12.

Reduction 350 data to 92 points by the generalization command in

ODYSSEY system.
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