ISE-TR-90-86

On the Efficiency of an SOR-like Method Suited to Vector Processor

by

Masaaki Sugihara, Yoshio Oyanagi, Masatake Mori and Seiji Fujino

October 4, 1990

INSTITUTE
OF
INFORMATION SCIENCES AND ELECTRONICS

UNIVERSITY OF TSUKUBA




On the Efficiency of an SOR-like Method Suited to

Vector Processor *

Masaaki Sugihara
Department of Economics, Hitotsubashi University
Kunitachi, Tokyo, 186 Japan
Yoshio Oyanagi
Institute of Information Sciences, University of Tsukuba
Tsukuba, Ibaraki, 305 Japan
Masatake Mori
Faculty of Engineering, University of Tokyo
Bunkyo-ku, Tokyo, 113 Japan
Seiji Fujino
Tnstitute of Computational Fluid Dynamics
Haramachi 2-1-4, Meguro-ku, Tokyo, 152 Japan

October 1990

Abstract

A simple implementation on vector processors of the SOR method for solving linear
system of equations arising from the discretization of partial differential equations makes
the SOR method into another, which, though, looks like the SOR method. In this

paper, the efficiency of this SOR-like method (pseudo-SOR method) is investigated.
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For the Poisson equation in a rectangular region, in both five-point and nine-point
discretization, we prove analytically that the optimal acceleration parameter is smaller
and the optimal convergence rate is lower in the pseudo-SOR method. Comparison
on several vector computers was made between the SOR method vectorized with the
hyperplane technique and the pseudo-SOR method. It turned out that the hyperplane
SOR is superior to the pseudo-SOR method although the latter is easily vectorizable on
vector processors. We also tested an example of Poisson equation descretized in a curved
coordinates in a region bounded by two eccentric circles and found numerically that
the optimal acceleration parameter becomes small and the convergence becomes slow in
the pseudo-SOR method, while the optimal acceleration parameter in the SOR method
does not change appreciably. The genuin SOR method is superior to the pseudo-SOR

method.

1 Introduction

Various vectorization techniques have been proposed to improve the computational speed
on vector processors. The essential ingredients are to remove recursion in loops and to make
the vector length as long as possible. We will consider the vectorization of the SO R(Successive
OverRelaxation) method for two-dimentional partial differential equations.

The following discussion holds for general linear second-order elliptic partial differential
equations. For simplicity, however, we will start with the Poisson equation in a rectangular
region D = {(z,y) | 0 <2< 1,0 < y < 1},

u 0%

Au=‘éﬁ+£§=00n,pa u(may)=¢(m:y) on 9D. (1)

Discretization of the second derivatives of (1) by five-point or nine-point finite differences

on an (N + 1) x (N + 1)-grid with grid spacing h = 1/N leads to a set of linear equations:

Uicj+ Uiprg + Uijea + Uijr — 40 = 0 (2)

or
(Ui + Uipr + Uijo1 + Ui ) + Uirr o1+ Uirran + Uicajoa + Uiy — 20055 = 0 (3)
fori,j =1,2,...,N — 1, which form a system of linear equations for the solution vector U.
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Eqgs.(2) and (3) can be solved with the polular SOR method. We will show here a program

for the five-point case:

DO 10 J=1, N-1
DO 20 I=1, N-1 :
U(I,J)=U(I,J)+0MEGA*(0.25%(U(I,J-1)+U(I,J+1)+U(I-1,D)+U(I+1,1))-U(I,]))
20  CONTINUE
10 CONTINUE

Here, OMEGA(w) is the acceleration parameter. Running with 7 and j from 1 to N — 1, two
neighboring grid points of (7, j), (i — 1, ;) and (3,7 — 1) have already been updated, so that
U; ; is computed with these new values and old values of U;4; and U, j41. The SOR method,
therefore, is recursive in both i- and j-directions. This data dependency makes this loop
hard to be vectorized.

There are some well-known techniques to vectorize the SOR method [1]. We will consider
here a so-called hyperplane method [2], which essentially reorders the numbering of the lattice

points without changing the algorithm. The program will be as follows:

DO 10 k=2, 2*(N-1)
*VOPTION NODEP(U)
DO 20 J=MAX(1,K+1-N), MIN(N-1,K-1)
I=K-J
U(I,1)=0(I,J)+0MEGA* (0.25%(U(I,J-1)+U(I,J+1)+U(I-1,3)+U(I+1,3))-U(I,]))
20 CORTINUE
10 CONTINUE

This program is methematically equivalent to the SOR method. The inner loop has no
recursion and the access to the array U is with only constant strides. However the hyperplane
SOR method involves short average vector length (N — 1)2/(2N — 3) & N/2 and ordinary
vectorizing compilers cannot recognize that there are no data dependencies, so that we have
to insert a directive, *VOPTION in this example, to the compiler. For soine vector computers,
access with stride more than one may cause a decrease in the data transfer rate from memory
to vector registers and shorter vector length may increase relative start-up time. Nine-point
discretization can also be processed by a hyperplane method, but with a{/erage vector length
~ N/3.

A more naive implementation of this loop on a vector processor is to modify the program

as



D0 10 J=1, N-1
DO 20 I=1, K-1
V(I)=U(I,J) + OMEGA*(0.25%(U(I,J-1)+U(I,J+1)+U(I-1,1)+U(I+1,J))-U(I,]))
20 CONTINUE
DO 30 I=1, N-1
30 U(I,I=v(I)
10 CONTINUE

In this program the data depéndency in the SOR method is removed so that the loops
can be successfully vectorized. The program involves only stride one access to the memory.
Obviously this is a different algorithm, since U;_ ; on the right hand side comes from the old
iteration level in contrast to the SOR method. We will call it the pseudo-SOR method. The
pseudo-SOR method is sometimes used as a simple vectorization technique in computational
fluid dynamics.

In the next section, the optimal acceleration parameter w and the rate of converngence of
the two methods for five point discretization is discussed. Similar arguments for nine-point
discretization are given in section 3. Numerical results on various vector processors are shown
in section 4, including one for curvilinear coordinates. In section 5, we will conclude that the

hyperplane SOR is superior to the pseudo-SOR method.

2 Comparison of SOR and pseudo-SOR Methods for
Five-Point Discretization

2.1 Matrix Formulation

Equation(2) forms a system of liner equations with matrix As for the solution vector u. If

we order the elements in the solution vector lexicographically as

(U1,1, U125y UL, N=1,U2 1, U22,. -+, U2 N=1y- -+, UN—1,N—1),

the coefficient matrix Ag is,



with

Bs

[ 1

I
N

0

|
I

L

[ B, C,
Cs By Cs

Cs

1
-3 1

The iteration in the SOR method is written as usual,

Ut = LIORY™ b = (I — LM (1 — w)] + wUFOR)ulm) + ¢

where

SOR __
Ly~ =

and

On the other hand, the iteration in the pseudo-SOR method is formulated

( _BL

, 0

~-C; —BE

—Cs —By |

UgOR — (LgOR)T.

) = £2750Ry(m) 4 = (T — wIZ™5OF) (1 = w)I + WU M) 4 b

where

p—SOR __
Li =

(10)



and

((-BE-BY) -G 0

(—Bg —By) —Cs

Ug—SOR —
(-B{-B)) -G

0 (—Bf - BY) |

with BY = (BE)7.

2.2 Acceleration Parameter w and the Spectral Radius

The order of convergence of Eq.(6) and Eq.(9) is determined by the spectral radius of £5°%

S0
2°%)

and £27°9F respectively. As an illustration, p(£ and p(L25°%) are numerically esti-

mated for N = 6 and shown in Fig. 1. The result shows:

1. The optimal acceleration parameter w,, for the pseudo-SOR method is substantially

smaller than that for the SOR method.

2. The rate of convergence of the pseudo-SOR method using the optimal acceleration

parameter is worse than that of the SOR method.

3. The region of the acceleration parameter which ensures the convergence of the iteration

is narrower for the pseudo-SOR method.

In the next subsection, we will generalize the results to arbitrary N.

2.3 Analytic Determination of the Optimal Acceleration Param-

eter of the SOR and the pseudo-SOR Methods

The optimal acceleration parameter of the SOR method for our case and the corresponding
spectral radius is given by Varga [3]:
2

Wopt = ﬁ;ﬁ@’ Aopt = P(LECH (Wopt)) = Wepe — 1. (12)
Asymptotically,
2w 1 2T 1
wopt=2—-1_v_+0(m)))‘0pt= 1- -JV-I.O(W) (13)



On the other hand, we will later show that the optimal acceleration parameter for the
pseudo-SOR method w,, and the corresponding spectral radius A, are given as the solution

of the following equation with respect to w and A:

{ 1-(1~- %cos(%))w —A= —%cos(%)am/x (14)

A= (14 3cos(F))w — 1.
The asymptotic estimates are:

4 1
- §(N)2+0(W)’ Aopt = 1= (

T

N

Wopt =

ol =

P+ 0(=7). (15)

We note that the optimal spectral radius A, approaches unity in O(N~!) in the SOR
method, while in O(N ~2) in the pseudo-SOR method. The observation for N = 6 given iﬁ
the‘previous subsection also applies to large N.

In order to derive Eq.(14), we will find all the eigenvalues of £2~°°# by solving the secular

equation. We note the following equality holds:

det(L2~°%F(w) — AI)
= det((I — wLZ %F)7((1 — w)I + wUE5R) — A )) (16)
= (det(I — wIZ™F)) ™ det((1 — w — NI + IwLf ™% 4 wUE=5O"),

We have only to solve the equation
det((1 — w — NI + AwLZ™5OF 4 ,ur=S0R) = ¢, (17)

The matrix in the parenthesis is a block triangular matrix:

( )

E F 0
AF E F
0 A E

N - lvblocks /



with
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We will show the following lemma.

and F = 2.
4

Lemma 1 Let B and C be square matrices of order n, the following identity holds.

B C 0
A B C
det
AC B C
0 \C B
\\ m blocks J/

det

I] det(B+ 85;VXC), withé; = 2 cos(

s=1

. 0

B VAC
VAXC B VAC

vAC B VAXC

vIC B

mj
m+ 1)' (18)

Proof Since the first equality is self-evident, we will prove the second one. The following

matrix of order m with null diagonal elements is diagonalized by an orthogonal matrix P.

b1
b2

0

6m-—1

0

P (19)

Om

Replacing each element a;; with a block a;;V/AC and adding B to the diagonal blocks, we



have the following relation between blocked matrices of order nm.

( B ic 0\ [ B+evic 0
vaxc B V)Xc B+ é6,/AC
=P P
\ 0 vie ) \ 0 B +6nV/C

(20)

where P is a matrix of order nm extended from P, where pi; is replaced with a block, p;;7,.
Estimating the determinants on both sides, we obtain Eq.(18). Q.E.D.
We apply this lemma to Eq.(17) and find that the equation is equivalent to the system

of equations:
det(E + 8;VAF) =0, 6; = 2cos(7r—]é)
for j=1,...,N — 1. Since F + 5J'\/):F is again a tridiagonal matrix, applying this lemma

again, we find that Eq.(17) is equivalent to the sysmtem of equations for A:

6 .
1—u+%w—x=f¢h G=1... . N—Lk=1,..,N=1) (1)

The following proposition holds:

Proposition 1 The absolute values of the solutions of the equation (21) is smaller than or

equal to

o The largest absolute value of the solutions for 1— (1~ 3 cos(%))w—A = =1 cos(L)v)w

or
. |1 + 2 cos(F))w — 1'.
If this proposition is proved, it is straightforward to show that w,, is given as the solution

of Eq.(15).
Proof Eq.(21) can be expressed as the family of quadratic equations for X,

lmow—X_ £V, witha > 8 > 0. (22)

We will first discuss the case for # > 0. Figure 2 shows that Eq.(22) has two real solutions

for 0 < w < w; and two complex solutions for w; < w with the absolute value aw —~ 1, where



w; = 2/(a + +/aZ = F?). For real solutions, the larger one monotonically decreases as w
increases and the absolute value of complex solutions increases as w increases.

It can easily be understood that the absolute value of the complex solution of Eq.(22) is
smaller than or equal to (14 $2cos($))w — 1, where 2cos(%;) is the maximum value of 6.

Let us consider the real solutions. Figure 3 shows the curves for two sets of equations
with the same o and different 8, B, > ;. If the equation with f; has real solutions, the
equation with ; has also real solutions whose larger value is greater than that for 5;. Figure
4 shows the curves for two sets of equations with the same # and different «, oy > 4. It
can easily be seen that, if the equation with o5 has real solutions, the equation with oy has
also real solutions whose larger value is greater than that for a,.

From these observations the absolute value of the real solution for Eq.(22) is always

smaller than or equal to the larger solution for Eq.(22) with the smallest o and the largest
B. The real solution of Eq.(21) is no greater than the larger solution of

1-(1- -;—cos(-]%))w -A= —%cos(%\/xw).

This completes the proof for 5> 0.
If =0, Eq.(22) is a linear equation. The same arguments hold if real and complex
solutions are understood as positive and negative solutions, respectively. Q.E.D.

The numerical results of w,p; and A,y are shown in Table. 1.

3 Comparison of SOR and pseudo-SOR Methods for
Nine-Point Discretization

In this section we will analyse the SOR and pseudo-SOR method for the nine-point
discretization of Poisson equation, Eq.(3). In the SOR method, U;; is computed with four
new values U;_i;, Ui—1j-1, Uij—1 and U; 41, while in the pseudo-SOR method three new
values U;_y j—1, U j-1 and U; ;4 are used, so that we expect the degradation in using pseudo-

SOR method may not be so large as in the five-point discretization.
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3.1

Matrix Formulation

For the nine-point discretization, the linear equation is described in the matrix form,

with

I

Agu = b, Ag =

( B, c,

Cy By Cy

Co

(1

(S8

Ot
Trj=

\ 0

1
-1

0

)\ 0

0\

By Cy
Co By |

(23)

(24)
i _1
20

1

5

5
1
20

/

We note that Cy is not a diagonal matrix in contrast to Cs. The iteration in the SOR

method is,

umtD) = LRy b = (T — wL3 ") 7((1 — w)I 4+ wUSOR) ™ 4

where
.
-Cy —B¥
LQSOR _
—C, -BL
\ 0 —Cg
and

—Bé’/

UéS'OR — (LgOR)T.

(25)

(<8 [

(27)

On the other hand, the iteration of the pseudo-SOR method for nine-point discretization

is formulated in the same way as for five-point discretization,

Ut = LB 4 b = (I — wLESOF) (1 = w)I + wUE~5OR)y(m) 4

11

(28)



where

~Cy 0
[E50R ’ (29)
—Cy O
\ 0 ~Co 0 )
and
((-Bi-BY) G 0
(-Bf - Bf) G
Up—SoR = .. . . (30)
(-By —Bg) -G
. 0 (—By — Bf) |

3.2 Acceleration Parameter w and the Spectral Radius

First we estimated numerically the spectral radia of £5°%(w) and £5~°%(w) for N = 9. The
results are shown in Fig. 5. The same statements holds as in Section 2.2. Although three
new values are used to update U; ;, the pseudo-SOR method is considerably inefficient. We

will discuss the convergence of these two methods for general N.

3.3 Analytic Determination of the Optimal Acceleration Param-

eter of SOR and pseudo-SOR Methods

In a similar manner to the five-point case, we have to solve det((1 —w— M)+ Ang()R +
wUFOR) = 0, to obtain the eigenvalues of L%, Using Lemma 1 twice, the problem is

reduced to a set of equations,

1 — w2 = 8{w/5)VA = 8(w/BW (= (/9VN)(1 = (6,/9V2) =0, (31)

forj=1,...,N—1,k=1,...,N—1. Based on our numerical experience, we conjecture that
the optimal acceleration parameter wey is given by the w for which the largest real solution
coincides with the absolute value of the complex solution of the quartic equation with respect

to A,
(1—w— \)*—26%(8+ 62)(%)2>\(1 —w—A2+ 58(%)4 +
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1664(%)3)\0\ +1)(1—w=2A) - 456(%A(>\ +1)2=0. (32)

Assuming this conjecture, we calculated w,: and Ao, numerically for N < 1000 and found
an approximate formula:
6.63 5.61
Wopt A 2 — -'YV——, )‘opt ~1l—-—. (33)

N

On the other hand, in a similar manner to the five-point case, the optimal acceleration
parameter and the corresponding spectral radius for the pseudo-SOR method are determined

in terms of the set of equation:

1-(1- gcos(%—))w A= —gcos(l)(Q + cos(-z))\/x

5 5 N N
2 T
A=(1- gcos(ﬁ))w -1 (34)
Asymptotically,
_ 10 85 7., 1 3Ty, 1 '
Wopt = 7 98 N) +0(N4)7 )‘Opt_ 1 2(N) +0(N4) (35)

Table 2 shows the numerical values for w,y; and A,. We can see that the optimal accelera-
tion parameter for the pseudo-SOR method is substantially smaller than that for the SOR
method and the rate of convergence of the pseudo-SOR method using the optimal acceleration

parameter is worse than that of the SOR method.

4 Numerical Results on Vector Processors

We have seen that the pseudo-SOR method is inferior to the original SOR method in
terms of the convergence ratio for both five-point and nine-point discretization, so that the
former method requires more number of iterations than the latter. On the other hand, the
pseudo-SOR method is very suited to vector supercomputers, since it involves only stride
one access and has longer vector length than the hyperplane SOR. We will implement those

method on various supercomputers and compare the CPU time for solving the problem.
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4.1 Dirichlet Problem on a Rectangular Mesh

As an example, we will consider a Dirichlet problem on the unit square with the following

boundary conditions:

U(0,y)=0, U(l,y)=0 (0<y<1)
U(z,0)=0, U(z,1)=05-]|z—0.5. (0<z<1)

4.1.1 Numerical Verification of w,, for N =6

As a numerical test, we discretized the square by six in one direction (N = 6) and solved the
equation. We show in Figs.6-9 the behavior of convergence for SOR method and the pseudo-
SOR method for both five-point and nine-point discretizations in terms of the L;-norm of
the residual vector. The initial vector u(® is a zero vector. The calculations were performed
in the double precision. Figures (a) are for w < we,; and (b) for w > w,y. The theoretical
optimal acceleration parameters w,,; for N = 6 are given in Table 1. Those figures show that

the predicted wey is actually optimal.

4.1.2 Performance on Vector Computers

In order to make a realistic evaluation, we have tested the same problem with more grip points
and measured the performance on various vector supercomputers. We only applyed the five-
point discretization. We tested ten cases with N = 45,63,77,89,99,109,119,127,135, 141.
The acceleration parameter is fixed on the thgoretica,l optimal value. The initial vector is
null and the computations were done in the double precision. The convergence criterion is

that the L,-norm of the residual is less than 107%. The computers used are,

Vendor  Model Max. Speed
a) Fujitsu  VP-200 570 MFLOPS
b) Fujitsu VP-400E 1700 MFLOPS
c) Hitachi $-820/80 2000 MFLOPS
d) NEC SX-2 1300 MFLOPS
e) Convex C-1 XP 20 MFLOPS
f) Ardent TITAN 16 MFLOPS
g) Stellar  GS1000 40 MFLOPS
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The CPU time spent till the convergence is shown in Fig.10 as a function of the number
of grid points. The hyperplane vectorized SOR is superior to the pseudo-SOR for all the

supercomputers tested here.

4.2 Dirichret Problem on a Curved Mesh

In general curved coordinate (¢,7), the Laplacian contains a cross term 9%u/8¢0n, which
is discretized in terms of (Uiy1,j41 + Uic1,j-1 — Uig1,j—1 — Ui=1,541), so that the discretized
equation is a nine-point difference formula in general [4]. We test here two cases, a) where
the numbers of grid points in two dimensions are the same, and b) where thé number of grid
points in the horizontal direction is larger than the one in the vertical direction.

a) The domain is shown in Fig.11. The boundary values are 20 on the top, 50 on
the bottom and have interpolated values on the right and left sides. The igrid points are
46%,622, 782,902, 1022, 1102, 1182, 1262, 1342, 1422. The initial value is all 0 and the conver-
gence condition is that the L,-norm of the residual vector be less than 107°. Since the optimal
acceleration parameter is not known theoretically, we searched the optimal one in step 0.02.
The CPU time for the SOR and pseudo-SOR methods is shown in Fig.12. The hyperplane
vectorized SOR method is much faster than the pseudo-SOR method even in the nine-point
discretization.

b) In this case a horizontally long domain with curved boundaries is treated(Fig.13). We
tested three types of grids, 40x82, 40x 162,40x322. Other conditions are same asin a). Table
3 shows the CPU time for VP-200 and S-820/80. Although a long vector length is favorable
for the pseudo-SOR method, the result in this table indicates, the larger the number of grid
points, the faster the hyperplane SOR method as compared to the pseudo-SOR method.

4.3 Mixed Boundary Problem on a Circular Mesh

In this subsection we will discuss Poisson equation

9z ' Byr ‘
in regions bounded by two eccentric circles, as shown in Fig.14. We tested six kinds of

grid with different eccentricity and concentricity [5]. Such grids are used in calculating
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the étrea,m around a circular cylinder. Two kinds of boundary conditions are assumed: a)
Dirichlet contition on all boundaries, and b) Dirichlet on the inner boundary and Neumann
on the outer boundary. The size of the grid is 16(r-direction) x 50(f-direction). The analytic
solution is u = sin(z) sin(y).

The optimal acceleration parameter and the corresponding spectral radius are searched
numerically in step 0.02. The results are shown in Table 4 for the six kinds of grid in Fig.14.
The optimal acceleration parameters in the hyperplane SOR method are stable for both
Dirichet and mixed conditions with respect to the eccentricity, while those the pseudo-SOR
method changes appreciably. In the case of hyperplane SOR method, the optimal acceleration
parameter for the mixed condition is larger by 0.12-0.18 than that for Dirichlet condition,
while in the case of the pseudo-SOR method, there is no difference.

Moreover, the spectral radius for the optimal acceleration parameter for the mixed con-
dition is larger than that for Dirichlet condition. Especially, the spectral radius for the
pseudo-SOR method is nearly 1.0, the convergence limit. Fig.15 shows the numbers of iter-
ations for different acceleration parameters. It is to be noted that the pseudo-SOR method
is very critical, in the sense that an acceleration parameter slightly larger than the optimal
value may cause divergence of the iteration. On the other hand, the convergence region for

the hyperplane SOR method is large.

5 Conclusion

We have analysed both theoretically and numerically the performance of the genuine

SOR and pseudo-SOR. Our observation is as follows.

1. For the rectangular region, in both five-point and nine-point discretization, the asymp-
totic convergence rate is 1— C/N for the SOR method, while 1—C’/N? for the pseudo-
SOR method. Although the latter is easily vectorizable, the overall efficiency of the

former is higher.

2. Even when the aspect ratio of the grid is large, which case is favorable for the pseudo-

SOR method, this method is inferior to the hyperplane SOR method.

3. In the curved mesh discussed here,

16



(a) As the eccentricity increases, the optimal acceleration parameter becomes small
and the spectral radius approches unity in the pseudo-SOR method. On the other

hand, the optimal acceleration parameter in the hyperplane SOR does not change

appreciably.

(b) In the pseudo-SOR method, acceleration parameter slightly larger than the opti-

mal value may cause divergence.

(c) When the outer boundary is with Neumann condition, the spectral radius for the

pseudo-SOR method is nearly unity.

We conclude the pseudo-SOR method is less than the genuin SOR method in efficiency
on vector supercomputers, although the former is easily vectorizable with unit stride. The

rate of convergence should be most respected in the vectorization of an algorithm.
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Table 1 wyp,: and Ay for five-point discretization

SOR method | pseudo-SOR method
Wopt /\opt Wopt )\opt

N =6 133333 0.33333 | 1.23431  0.76878
N =10 | 1.52786 0.52786 | 1.29285  0.90764
N =20 | 1.72945 0.72945 | 1.32259  0.97584
N =50 |1.88183 0.88183 | 1.33158  0.99606
N =100 | 1.93909 0.93909 | 1.33289  0.99901
N = 1000 | 1.99373 0.99373 | 1.33332  0.99999

Table 2 w,y; and A,y for nine-point discretization

SOR method | pseudo-SOR method
Wopt Aopt Wopt Mopt

N = 1.31393 0.37071 | 1.26184  0.69896
N =10]1.50902 0.56335 | 1.35459  0.86991
N =20 | 1.71627 0.75377 | 1.40799  0.96425
N =50 | 1.87542 0.89351 | 1.42517  0.99411
N =100 | 1.93567 0.94529 | 1.42772  0.99852
N = 1000 | 1.99337 0.99439 | 1.42856  0.99999

Table 3 CPU time in sec for the optimal acceleration

grid 40 x 82 40 x 162 40 x 322
pseudo-SOR 0.49 2.55 17.2
hyperplane SOR | 0.27 0.72 3.29
(VP-200)
grid 40 x 82 40 x 162 40 x 322
pseudo-SOR 0.17 0.82 9.08
hyperplane SOR | 0.08 0.27 1.69

(S-820/80)
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Table 4 w,,; and p,,: for an eccentric double circle

mesh pseudo-SOR | hyperplane SOR
Wopt  Popt Wapt Popt
Fig.14 (a) | 122 0.971 | 1.68  0.720
Fig.14 (b) [ 1.12 0.971 | 1.70 0.717
Fig.14 (¢) | 1.00 0.977 | 1.70 0.782
Fig.14 (d) [ 1.20 0.970 | 1.68  0.720
Fig.14 (e) | 1.14 0.975 | 1.72 0.766
Fig.14 (f) | 1.02 0.975 | 1.72 0.766

a) Dirichlet condition on both boundaries

mesh pseudo-SOR | hyperplane SOR
Wopt  Popt Wopt Popt
Fig.14 (a) | 1.26 0.991 | 1.84 0.840
Fig.14 (b) [ 1.16 0.993 | 1.88  0.856
Pig.14 (c) | 1.02 0.994 | 1.82  0.953
Fig.14 (d) | 1.26  0.998 | 1.88 0.900
Fig.14 (¢) | 1.16 0.998 | 1.88  0.913
Fig.14 (f) | 1.00 0.997 | 1.80  0.924

b) mixed boundary conditions
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10.

11.

12.

13.

14.

15.

Figure Captions

. Spectral radii of £5°%(w) and £27°%(w).

Parabola :i:ﬁ\/X and lines (1 — aw — \)/w) with w < wy, w =w; and w > w;.
Line (1 — aw — \)/w) and parabolas £Bv/X for (81 < B2).

Parabolas 5,V and lines (1 — aw — A)/w) for (e < o).

Spectral radii of £5°%(w) and L25R(w).

Convergence behavior of the SOR method with five-point discretization.
Convergence behavior of the pseudo-SOR method with five-point discretization.
Convergence behavior of the SOR method with nine-point discretization.
Convergence behavior of the pseudo-SOR method with nine-point discretization.

Comparison of the CPU time on several vector computers (five-point discretization).
The horizontal axis is the number of grid points and the vertical axis is the CPU time

in seconds.
The domain for analysis.

Comparison of the CPU time on several vector computers (nine-point discretization in

curved mesh).
The domain for analysis.
The grid systems of eccentric double circles.

The number of iterations needed for convergence as a function of the acceleration pa-
rameter for (I) pseudo-SOR and (II) hyperplane SOR method. The boundary condition
is Dirichlet and the grid systems are (a), (b) and (c) in Fig. 14.
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