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Abstract

We consider computing a prescribed number of least positive zeros of Bessel
functions and of their derivatives of a prescribed order within a prescribed
relative error. We also consider an inverse problem of computing the order
of the Bessel function that has a zero of a prescribed order at a prescribed
positive value. The case of Bessel functions of real non-integer order less than
-1 is also discussed. Our emphasis in this paper is on algorithm construction
and convergence analysis that will be needed for the construction of software

for solving the stated problems.
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§1 Introduction.

In this paper we are concerned with the construction of software that will solve the following

problems:

Problem I. Given m > —1,¢ > 0 and an integer N > 0, compute the N least positive zeros of the Bessel

function Jm(z) within the relative error e.

Problem II. Given 8> 0,¢> 0 and an integer k > 0, compute m > —1 such that 3 equals the k*h positive

zero of Jy,(z) within the relative error €.

Problem III. Given m > 0,¢ > 0 and an integer N > 0, compute the N least positive zeros of the first

derivative of Jy,(z) within the relative error e.

Problem IV. Given 8> 0,¢ >0 and an integer k > 0, compute m > 0 such that 8 equals the k** positive

zero of J), (z) within the relative error €.

Problem V. Given m < —1 (m#integer), ¢ > 0 and an integer N > 0, compute all complex zeros and the
N least positive zeros of Jy, () within the relative error . (There exist precisely 2[|m|] complex zeros, where

[Im]] denotes the largest integer not exceeding |m|.)

It appears that software for the stated purposes is not known. It is not available from
the IMSL library [15]. Our emphasis in this paper is to lay theoretical foundation, including
algorithm construction and convergence analysis, that is needed for solving Problems I - V.
A paper by Grad and Zakrajsek [5] is our starting point.

Tn §2 we consider Problem I. The basis of our work, as in [5], is the fact that the
problem of computing the zeros of Bessel functions can be reformulated as that of computing
the eigenvalues of an infinite real tridiagonal matrix that is obtained from a well-known
reccurrence relation among Bessel functions and that may be regarded as a compact operator
in the Hilbert space of infinite column vectors with square-summable components. For m > -1
the infinite matrix is symmetric as well. See Theorem 2.1. In Theorem 2.2, one of the main
theorems of this paper, we give coﬂvergence analysis.

Tn §3 we consider Problem II, an inverse problem to Problem I. We derive an efficient
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formula for computing djm,x/dm, the derivative of the k** positive zero of J,, (z) with respect to
m, in Theorem 3.1. Theorem 3.2 is a theorem on positive definiteness ,which, in particular,
is interesting in the sense that it gives a matrix-theoretic proof éf the fact that j,, ; is an
increasing function of m. Theorems 3.1 and 3.2 enable us to solve Problem IT with Newton’s
method.

In §4 Problems ITI-V are briefly discussed. In particular, we will show that Problems
ITI and IV may be solved in the same manner as for Problems I and II. For Problem V we
simply indicate a method of solution that is Again similar to the preceeding ones.

All computations were performed in double- or quadruple-precision floating-point arith-
metic (14- or 28-digits in hexadecimal) on the FACOM M-780/20 system at University of
Tsukuba.

§2 Probiem L

The solution method of choice is the matrix method used in [5]. We will review their
technique briefly before we present our results. Take the well-known three-term reccurrence

relation among Bessel functions

Jo(2) 2Jp42(z) Jota(2) 4

1) Gt ) T e+ | Gromrs) 2

which holds good for any = and =, real or complex, excluding z =0 and n = —1,-2 or -3.
If we let n take the values » = m, m+2,..., where m > —1, and write these relations in

matrix form, we obtain

(2.2) Mu = %U+UO
[ = (m+2k—1)2(m+2k+1)‘ k=12
e T —11)(m+ ) FT e
(2.3) { mapes = (muk)(;“kﬂ), E=1,2,..,
4 = [Jng2(2), Imsa(z), . 7,
| % :[—(m—ﬁ‘-)%z—w)-,o,o, T
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Here M represents an infinite real tridiagonal matrix whose main diagonal and super- and
sub- diagonals converge to 0 for any fixed m > -1.

If we multiply /= into (2.1) and regard it as a three-term reccurrence relation in \/nJ, (z)
for n = m+ 2,m +4,..., we can reformulate these relations as a matrix equation (2.4) below
where A is an infinite real symmetric tridiagonal matrix whose main diagonal and super- and

sub-diagonals again converge to 0:
A 4
(2.4) v = ?V + Vo

1 2

= =4, k=1,2.,
a’k,k (ak—l)(a’k'l"l) k 15

Ak k=1 = Qp=1% = = fr, k=2,3..,

1
(Olk - l)ﬂak - 2)ozk
(2.5) { ap=m-+2k, k=12..
v = [Vm + 2Jma2(2), VI + £ pia(2), 17,

Jm(x) 0.0 ”]T

Vo = Y SR R
. [(m+1)\/m+2

Example. For m = 0 and m =1 the matrix A is given respectively by

- 2 1
i3 351 0]
1 2 1
324 35 546
= 1 2 .. -
(2.8) A= — : (m=0)
L 0
and
2 1 -
237 W3s 0
1 2 1
4+/3°5 46 68+/57
(2.7) A= 1 2 (m=1)

>
o

et
=
0o

L

Let the symbol H denote the Hilbert space of infinite column vectors ¢ = [¢1,42,..]T such
that | & |2< oo with the inner product (¢,7) = ¢¥9 = 3. &n. Then from [2, p.93] M and
A both represent compact operators in H. The following theorem is known in [5] and forms
the computational basis for solving Problem I.
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Theorem 2.1. Let m > —1. Then:

(a) A positive number o is a zero of J,(z) if and only if 4/a? is an eigenvalue of A.

(b) A is positive-definite and every eigenvalue of A is simple.

(c) Let Ay > g > ... >0 be an enumera,tioniof the eigenvalues of A, Then A\, — 0(k — 00).

(d) Let A, denote the n X n principal submatrix of A. The eigenvalues of A, are simple and positive. Let
them be denoted by /\5") > .. > M™ > 0, These interlace with the eigenvalués of Apg1: /\E"'H) >
PYLN /\g"“) > > > 2D,

(e) Let a =2/ /\(" (k= 1,..,n). We have the monotonic convergence ag”) | Jm,k as n — oo for each

fixed k, where j 1 is the standard notation for the k*® positive zero of J,(x).

The next theorem estimates the rate of convergence and is one of the main theorems of

this paper.

Theorem 2.2. Let o be a positive zero of Jy (z) (m > —1), say jm , and let o, be the approximation
to o computed from A,,, the n X n principal submatrix of A, We have then

(2.8) Ia’ca— | < | Jm+2n(a) ” Jm+2n+2(a) l ng+2n+2(0‘) a3 B,

272 1(a)(m+2n+1) 2J2 1 (e)(m +2n + 1)2(m + 2n) 87

where Ez/E; = O((m + 2n)™*) and E, is asymptotically dominrant as n — oo with o fixed.

Proof.  Let v, denote the column vector consisting of the first n components of v. Then from (2.4)

1 Tmsania(a)
2.9 AV, = —=V 0.....0, — m+2n+2\ & T
( ) . 7V o2 n+[1 » Yy (m+2n+1)\/m+2n]
Hence
(2.10) ¢ = VTA—V” = i _ 1 Jm+2n(0!)~]m+2n+g(oz)
o T val? e |[valP @ mt2a+1

Let A = 4/a? and )\,(:') = 4/a?. Take the ineqality
(2.11) , D=2 <A -0+ ] -2 .

For the first term | A — ¢ | we have the following estimate by (2.10):

1| Jmgon (@) Imt2nt2(e) |
2.12 A=< .
( ) | <p|—”vn”2 m+ 20+ 1




For the second term | ¢ — A™ | we have by [14, §55, p.173]

| Anvn — oV |2
a|lvalf

(2.13) Lo =27 |<

where o denotes the distance from ¢ to the nearest eigenvalue of 4,. It is well-known (see, for
example, [1, 9.5.2, p.371] or [6, Theorem, p.251]) that the distance between two consecutive

zeros of J,,(z) is approximately =. This approximately translates to

(2.14) o=
Now by [13, p.152]
(25) (4 T 4a(2) (4 T2 (0) 4 = (T3 (6) = (s}
which holds for any complex m. Hence
(216) 1V 1P (4 272 5(0) + (m + 4)7 () + - = T2 (@)

since Jn(a) = 0. For n large, || v, || may be approximated by || v || since || v, ||=|| v ||. Using
(2.14), (2.16) and the approximation || v, ||~]| v || in (2.11), (2.12) and (2.13) we finally obtain
the inequality stated in the theorem. I

Remark.  The corresponding bound for | (e, —a)/a | given in [5] is essentially E,. In view
of Theorem 2.2, this is clearly not rigorous.

Using the fact that

(217) In(e) = \| feos( =) + 0@)} (e —o0), c= (24 D,

we have for large =

(2.18) Imy1(a) = =Jp(e) & :I:\/%.

Then the above proof really shows that

o, — @

m+2n+1
6

(2.19)

R

™
1 Im+20(0)Imt2n+2()
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for large « and large » such that o < m + 22, where E; may be ignored against E;.
The last estimate for the relative error, (2.19), shows that the smaller zeros converge

faster as n — co. See Fig.2.1.

Let n be so large that E, may be ignored relative to E;. Consider counting the number
of those computed zeros o{™,...,o{ that have a relative error < ¢, a given positive number.
The bound E; would be small while J,, 42, (z) (hence Jp4on42(2)) is small in modulus, which
is the case until = grows from 0 to about m + 2n. See Fig.2.4. The first positive zero of
(), jm,1, is located near m. Hence N would equal approzimately to (m+ 2n —m)/7 = 0.64-n,
independently of m and e, since the zeros of J,,(2) are approximately = apart as stated in the
last proof. Our numerical computations fairly well confirm this prediction, as can be seen
from Figs.2.2 and 2.3.

The eigenvalue problem for 4,, a real symmetric tridiagonal matrix of order »,may be
solved either by the QR algorithm or by the recent homotopy algorithm of Li and Rhee[8].
For our purpose the implicit QR algorithm routine IMTQL1 in the EISPACK package[12]
suits well. The homotopy algorithm, though apparently faster than the QR algorithm,
requires careful management of its parameters in order to keep the eigenvalue curves well
separated. This is especially critical in our work since the eigenvalues of 4, get increasingly
pooﬂy separated as n grows large. For stability’s sake we thus prefer the QR algorithm in

our work.



§3 Problem II.

In Fig 3.1, jms and j4, , are plotted as a function of m for several values of k. Each curve
represents an increasing function that is slightly convex upward. For theorical results on the
monotonicity and concavity of jm and j,, , see [4],[9],(10] and references given there. Thus

either one of the equations

(31) imk =B  (B>0, k:a positive integer)
or
(3.2) j:n,k =p (8 >0, k:a positive integer)

may be solved for m by Newton’s method. For definiteness take (3.1). The algorithm is

given by

, ) (OM
mG+D) = @) _ a_(g_)ﬁ ,4=0,1,2,...
63 ()

m 9 : an initial guess

where a(m) denotes jm k.
The computation therefore requires the evaluation of the k* positive zero of Jn(z) and
of dafdm for m = m©@ ,m®,. ... The first may be computed by the method of §2. For the

evaluation of the derivative da/dm at a given m, we have the following theorem.

Theorem 3.1. Let o denote jm, where k is a fixed positive integer. Then for m > —1

do o vTAv o . o, .
(3'4) 21—77—1 = —E ” v ”2 =- 9J2 +1(0‘) {dl"’% + Z(dkvi + kavk—l’vk)}
m k=2

(the dot “ represents differentiation with respect to m) where

(v =[v1,99,...|T = Vm + 2Im+a(@), Vi + 4Jma(e), .. T

_ 4o
(ap = 1)% (e + 1)
— 1 { 1 + 1 y=- 2
Vor(ar —2) Yoar =12 oplax—2)" 7 (o —1)
1

ok = (Otk - 1)\/ozk(ozk - 2) + ak(ozk - 2) !
1

k=12,3,...

dy =

k=1,2,...

b=

3(1+0'k)(1+7'k) k=2,3,...
(35)

k=23...

™= anar - 2)

lar=m+2k ,k=12,...



Proof. From (2.4) and (2.5)

(3.6) ’ Av = v
where
4

Differentiating (3.6) with respect to m and multiplying vT from left we find
(3.8) vIAv +vT AV = JvTv + avTy.

By symmetry of A, vTA = (Av)T = (Av)T = AvT. Substitution into the last equation enables

us to cancel the second term from either side, giving

. vTAv
(3.9) A= -

Substitution of (3.6), (3.7), (3.8) and (2.16) into (3.9) yields (3.4). m

Remark.  In [3, p.108] the following expression is known for do/dm:

, de  2m “J2(2)
(3.10) ) /0 2 g,
On the other hand, using
(3.11) / " I () das (1)t = > (Befn)> 1)
0

([11, p.100]) and other well-known reccurrence relations, one may derive
(3.12) 2m/c’°—Ji:‘mdaz‘-1-—Jz(a)—QJ2 (@) —2J5 5(@) =+ (m>-1, a>0)
. o .‘L’ - m m—+1 m~+2 ) .

Combining this with (3.10) we find

do 2
(3.13) T ol e +1(a){J12n+1(0‘) + Jmga(@) +- -,
m

which is valid only for m > 0. The series on the right converges twice as slowly compared

with the series in (3.4).



Theorem 3.2. Form > —1, —A is positive-definite.

Proof. We will prove the theorem by showing the eigenvalues of —4 are all positive. To
do this, we will show the similarity transform D-'(-A)D is strongly diagonally dominant
(namely, the property that the sum of the moduli of the off-diagonals is strictly less than
the modulus of the diagonal element holds for each row) where

(3.14) D = diag{(m + 1)*5, (m + 3)!®, (m + 5)'3,.. .}.

We note that —A itself is not strongly diagonally dominant, since it fails to be so for the

second row when m = 0. D~1(—A)D has the form
—Cil pg 0
g2 =—dz ps

- D} (-A)D = .
( 1 ) ( ) g3 —dg
0 .
where
_(mt2k-1)15 )
(3.16) e = (m+2k_3)1.5(—fk) k=23,
| _ (m+ 2k —3)!®

% = Gy ok 1ps )
Note that the diagonal elements and the super- and sub-diagonal elements of D~!(~A)D are

positive. Therefore we must verify for m > -1

(3.17) —dl > pz

and
(3.18) —d}; > gk + Pr+1 k=2,3,....

The verification of (3.17) is straightforward by noting ¢, < (2v/3+3)"! = 0.154.-. and =, <
1/6 = 0.166--- for any m > —-1.

To prove (3.18) we let u = 2/(m +2k —1). Then 0 <u < 1 since k> 2 and m > -1. We note
that o, < 42/6, 7, < u2/6, op41 < 4?/8 and ny1 < w?/8. After some computation one can show

that to prove (3.18) it is enough to show
2
(3.19) T(u) = {(1 —u2)'® + 111 + )51 + 96—)2/(2 +u)<1l  for0<u<l

One can show that as v increases from 0 to 1 ¥(u) decreases steadily from 1 to a unique
positive minimum value and increases until it reaches 0.64... at u =1. See Fig.3.2. W

10



Corollary. jn i, k=1,2,..., is an increasing function of m for m > —1.

Example.  Let § = 10.1734681350627 = jy 5, i.e., the third positive zero of Ji(z). We consider
solving jm 3 — B = 0 by Newton’s method (3.3), where we denote jy, 5 by a(m). The answer is

clearly m = 1. We take m(® = 0. The result is summarized in Table 3.1 below.

i m®) Jm 3 Relative Error
0 0.000000000000000  8.6537279129110 0.100 x 10!

1 0.969080032750020  10.1277295540507 0.309 i 10-1
2 0.999976638332601  10.1734336031533 0.234 x 10~%
3 0.999999999986751  10.1734681350431 0.132 x 10~10

Table 3.1. Newton’s method (3.3) as applied to the last example.

The last table shows that the 37¢ iterate m® = 0.99... is accurate to 10 digits. The next

iterate will have an accuracy of 20 digits or more.
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§4 Problems IIT, IV and V.

We will be brief in this section, giving only the main results with occasional explanatory
comments.
We consider Problem III first. By combining the three-term reccurrence relations (2.1)

for n =m —1,m+1,..., where m > —1 and m # 0, with the well-known relation
(41) 2J,,(2) = Jp-1(z) = Im41(z)

we obtain the matrix equation

4
(4.2) Bw = ?w + W
where
( g1 he 0
ha g2 hs
B=|
hs g3
0 .
_ 443m
B= mlm + D(m+ 2)
(4.3) g = 2 -
%= tmrsh—omizR FT A
1
hy = =23,
- (m + 2k — 2)\/(m + 2k — 3)(m + 2k — 1)
w = [V 1ng1(2) Vi + 3dmta(@), . .. ]¥
2
=[] (2),0,..]T
Lwo [ mm m(m) ]

Writing B(m) for B and A(m) for A (for the definition of A see §2), to emphasize their

dependency on m, we note that

1
(4.4) B(m) = A(r) + [(r+150Zf+25 g] , r=m-—1
Theorem 4.1. A positive number o is a zero of J.,(2) if and only if 4/a® is an eigenvalue of B.

Approximate zeros of J,, (z) may thus be computed from an n X n principal submatrix of B, By, as in §2.

Theorem 4.2. Let m > 0 and let o denote jg, \, the k** positive zero of J. (z), and let a, be the
approximation to a computed from B,,. We have then

o | Jmt20(2) || Imt2n—1(c) | | 20 (@) || Imt20+1(2) | *

(45) | (L= (m/a)? )72 (@)(m + 20) | 3{1 = (m]a)}J2(a)(m + 2n)2(m + 2n — 1) 87

C_als
o 2
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Proof is similar to that of Theorem 2.2.
Remark. The zeros of Ji(z) are the same as those of Ji(z), since Ji(¢) = —Ji(z). For
-1 < m < 0, B has a simple negative eigenvalue with all other eigenvalues positive. The
positive zeros of Ji,(z) for this case correspond to the positive eigenvalues.

Theorem 4.8.  Let o denote a pasitive zero of J,, (z). Then for m > —1(m # 0)

do awTBw
(4.6) dm ~ {1 (ma)? 12 (a)

where the dot *’ represents differentiation with respect to m and where w is evaluated at z = «.

Theorem 4.4. For m > 0, —B is positive-definite.

Proof follows from (4.4) and the fact that —A(r) is positive-definite for » > -1 (see
Theorem 3.2). Problem IV may thus be solved using Newton’s method as in §3.
Consider the last problem, i.e., Problem V. Let m < —1. Since Jom(z) = (1) (2) if m

is an integer, we may assume that m is not an integer.

Theorem 4.5. A complex number « is a zero of Jy,(z) where m < ~1 and m # integer, if and only if

4/0‘2 is an eigenvalue of A,where if m < =2

( (41 f2 0]
f2 ’
A= dp-r fy ,|?|<p<|7;'|+1
(4.7) < _fp dy
..0 .
. 1
kf” - (m+2p—1)\/;(m+2p—2)(m+ 2p) =l

which differs from A in §2 only at the p** off-diagonal pair (—f;,f;), and if =2 < m < -1, A= A but with

d <.

By [13, §15.27] Jn(2) has precisely 2[| m || complex zeros, of which two are purely imagi-
nary if [| m |] is odd, and the rest of the zeros being real. Our numerical experiments indicate
that all complex zeros and a given number of positive zeros of J,,(z) may be approximately
computed from an n x » principal submatrix of 4 within a given relative error by taking n

large enough. Further investigation is needed here.
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§5 Conclusion.

We have outlined in the last three sections computational methods for solving Problems I-V
with convergence analysis where appropriate. We are experimenting with a pilot version of

software that is intended to solve these problems. Results will be reported elsewhere.
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List of Figures .

Fig. 2.1 Case m=32. The relative errors of the computed zeros a{™,a{® and o{3 (solid
curves) and their theoretical bounds E; (dashed curves) as a function of n.

Fig. 2.2 Case m=16. The number N of approximate zeros of J.(z) computed from 4,
within the relative error ¢ ( ¢ = 107%,1078, 10‘10,10"12 and 107!* ) as a function of n. The
number attached to the right end of each curve indicates logice.

Fig. 2.3 Case e = 107!¢. The number N of approximate zeros of Jm(m)‘computed from A,
for m = 2,4,8,16,32,64,128,256,512 and 1024 as a function of n. The number attached to the
right end of each curve indicates m.

Fig. 2.4 Bessel functions of order m = 16,17,56 and 58.

Fig. 3.1  jn., and j}, , as a function of m for k = 1,2,3,5,10,20 and 30.

Fig. 3.2 ¥(u)in (3.19) and d¥(u)/du . ¥(0) =0, ¥(1) = 0.6416---, d¥(u)/du=0at u= 09864 .
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