ISE

ISE-TR-90-80

AN ANALYTICAL EQUIVALENCE THEORY OF COMPUTER PROGRAMS
by

Tetsuya Mizutani
Shigeru lgarashi
and
Takashi Tsuji

February 20, 1990

INSTITUTE
OF
INFORMATION SCIENCES AND ELECTRONICS

UNIVERSITY OF TSUKUBA

An analytical equivalence theory of computer programs
by Tetsuya MIZUTANTI*, Shigeru IGARASHI** and Takashi TSUJI**
* Department of Information Processing, Saitama College
** Institute of Information Sciences and Electronics, University of Tsukuba

Abstract. A v-deﬁnable act is a program, both logical and procedural, and is almost a
specification. Its semantics, called analytic semantics, are given in a completely logical man-
ner. Two concepts of homomorphism between acts, called locomorphism and contralocomor-
phism, which are generalizations of the concept of equivalence, are introduced. Applications
of locomorphism to program verification are discussed.

§ 1. Introduction

In recent decades, verification of programs has become more and more important.
Various verification systems for sequential programs have been proposed, for example, Hoare
[3], [4], de Bakker [lj, Igarashi [5] [6], Igarashi, London and Luckhum [7], so that, in princi-
ple, any property of sequential programs can be formally verified now. On the other hand, the
various verification systems for parallel programs, for example, Lamport [13], [14], Elrad and
Francez [2], Soundararajan [18], depend on the languages of parallel programs being verified,
or tend to lose rigorous formalism. Perhaps Kroger’s book [12] is one of the few satisfactorily
formal presentations of temporal logic applicable to concrete problems. However, his system
goes naturally beyond formal number theory as soon as integers are included in the data, so
that his system is not so simple as it appears, while it will be obvious that his temporal formu-
las are just certain abbreviations of our formulas. Moreover, his system deals with only ‘inter-
leaving’ concurrent processes rather than multi-CPU cases. These are the reasons why we do
not use them for the uniform verification method of parallel programs and why we use the an- .
alytic semantics of the v-definable acts (simply called v-acts, acts, etc.) [8], [9], [10], [17]. An

act is obtained from a logical fogmula. Itis a program which is both logical and procedural,

and is simultaneously a specification. Its semantics are given both simply and precisely on the
basis of logic.

We consider that the verification of programs is reduced to the equivalence of programs.
A program is ‘equivalent’ to another if the respective output values of their corresponding vari-
ables are the same whenever their input values are. Equivalence ascertains that a program has
the same properties as those another that has already been verified. It will be, however, more
convenient if we will find some generalizations of the concept of equivalence, especially for
parallel programs. This makes us consider loci of programs. A locus is a function, in a theo-
retical sense, from rational numbers as time values to program states, where a state is a func-
tion from the set of variables to values. In this paper, we will consider two concepts of mor-
phism called locomorphism and contralocomorphism from a set of the loci of a program to one
of another program. By these concepts we obtain properties of the former from those of the
latter whenever verified.

In section 2, the definition of acts and their interpretation will be given. In section 3, we
will introduce sets of loci, and define locomorphism, contralocomorphism and equivalence be-
tween them. These definitions are independent from acts, and they are useful themselves in the
theoretical treatment. In section 4, we will introduce the relationships between acts. In section
5, we will discuss applications of locomorphism and contralocomorphism to programs and
programming. In particular, we will discuss the preservations of specifications, the input-out-
put relationship and the termination of programs. In section 6, we will derive locomorphism

between acts in examples. Further discussion will be found in section 7.

§2. The v-conversion

We use a higher type language both to define various data types and to analyze parallel

programs. Because of transparency and capability of developing contemporary real analysis,
the formal real analysis FA [19] is chosen as the fundamental mathematical theory. It is a con-
servative extension of arithmetic developed on the logical system that can be regarded as a
‘typed LK’. Specifically, objects of FA are typed abstracts (sets intuitively) starting from ratio-
nal numbers. (We will use non-arithmetical abstracts, as well as the arithmetical ones permitted
in the original FA.) We think that we must deal with rational nuﬁbers, at least, both as time
values and as data. They are necessary for the former in analysis of parallel programs and for
the latter in numerical programs. We prefer totally ordered time to partially ordered time, espe-
cially in the theoretical foundation, since the latter always has to be mapped onto the former
both practically and theoretically, that is peculiar to computer programs. The formal semantics
will be called analytic semantics.

2. 1. Definition. Letx,y, z, ... be mefavariablcs denoting free variables. A word of
the form vx is called a qualitative. For a formula A; an expression obtained from A by substi-
tuting at least one qualitative in place of free variables is called a v-definable act. UJ

There are many interpretations of acts. Here, we adopt an interpretation called a cosmos
using the predicate of action. Hereafter, we suppose that t is the ‘time’ variable and for a free
variable x, X is the corresponding higher type variable and X(t) represents the value of x at time
t. A sequence of variables <x;, ..., x> is denoted by x and ?((t) will be written as x(t) when
there is no confusion.

2. 2. Definition. Foran act A[X, VX, t], the predicate of action Pa(A, Q) is the follow-
ing formula:

ViV es0(Qy AR (), y, 1D 38>0(B<eAAX (D), X(t+3), t]))
AV 820(8<eD 1Ty AR (t+3), y, t+8]) DX(D=X(t+€))),

which determines x, called a locus of A. U

§ 3. Relationship between sets of loci

3. 1. Definition. Let Q* be the set of all nonnegative rational numbers, Dy, ..., D,
be the sets of all data of types T;, ..., T,, respectively, and D=D;x ... XD,. Then, a function
x:Qt—Dis called a locus on D. If there is no confusion, X is simply called a locu& . U

3. 2. Definition. A locusX is said to terminate if and only if it holds that
TV ustE ()=% (). O

3. 3. Definition. Let L and L' be sets of loci on D and D', respectively. Then, a
function ¢:L—L' is called a locomorphism from L to L' if and only if there exist functions
y:D—D' and n: Q*— Q' and it holds that

\7't(\|1(§ (t))=(p(§\ YrO))A VYV u(t<uD ()<))Ar(0)=0\V tJu(r(u)>t)

for any locus R belonging to L. A locus L is said to be locomorphic to L' with respect to (w. t.

t. for simplicity) <y, nt> (See figure 1). O

lag
et
M>

=

Pl W

yd
N\
ya

(P(X) Q o(X) D'

Fig. 1. A commutative diagram of locomorphism.

3. 4. Definition. Let L and L' be sets of loci on D and D', respectively. Then, a
function @:L—L' is called a contralocomorphism from L to L' if and only if there exist func-
tions y:D'—>D and w: Q* —»Q* and it holds that

Y (& @®)=y(@X)ONA V1V u(t<uDn®)<n) An0)=0A Y Fu(r(u)>t)
for any locus X belonging to L. L is said to be contralocomorphic to L' w. 1. t. <y, t> (See

figure 2).]

| >

2,
>

C

\/\/ 1
0(x) Q o4 D

Fig. 2. A commutative diagram of contralocomorphism.

By theorems 3. 5 to 3. 8 below, we obtain a category when objects are sets of loci and
morphisms are locomorphisms. In a similar manner, the contralocomorphisms also constitute
a category. (Proofs that are evident will be omitted hereafter.)

3. 5. Theorem. Anidentity function I} : L —L is a locomorphism from L to L. [

3. 6. Theorem. If ¢ is a locomorphism from L to L' and if ¢' is a locomorphism
from L' to L", then ¢'o @ is a locomorphism from L to L". U

3. 7. Theorem. If ¢, ¢, and @3 be locomorphisms from L to L', from L' to L" and
from L" to L", respectively, then it holds that @50 (¢,0 (Pl)(ﬁ) = (P30 ¢,)0 (pl(f(\) for any X€L.

J

3. 8. Theorem. Let];. be an identity function from L' to L. If ¢ and ¢' are loco-

morphisms from L to L' énd from L' to L", respectively, then it holds thatl; .0 (p(?()=(p(/)2) for

anyﬁe L and that (p'OIL-(9)=(p'(9) for any 96 L. O

Next, we introduce the concept of equivalence between sets of loci.

3. 9. Definition. LetL and L' be sets of loci on D and D', respectively. Let D be
D;X ... XDy, and Dg be D; % ... XD, respectively, for some m and m' such that 1<m<n,
I<m<n’, 1<m'<n and 1<m'<n'. If there exist four projections pp:D—Dy, p';:D'—Dy,
po:D—Dg and p' 5:D'—D, then L is said to be equivalent to L' in <Dy, D> if and only if

VReLFFe L' (p1&R(0)=p"1®ONATuY ulpoR)=p' o)
A V§eLTke Lipx0)=p' (FONA Tu¥ su(po@m)=p oG).
If L is equivalent to L' in <D, D> in particular, L is simply said to be equivalent to L'.
U

Intuitively, L is equivalent to L' in <Dy, D> if and only if for any locus RE L there exists
alocus Y€ L' such that pR(0))=p"; (0)) and poR(==)=p' oF (o= (e, TuV t>u(poR(®) =
p' 0(9 (t)))), and vice versa. Specifically, the input and the output values of a certain subse-

AL .
quence of X coincide with those of §.

§ 4. Relationships between v-definable acts

In this section, we define the concepts of locomorphism, contralocomorphism and equiv-
alence between acts using those between sets of loci introduced in section 3. We recall that any
X satisfying Pa(A,Q) is a locus, so that {’IEIPa(A, Q)} is a set of loci. Hereafter, type(x) shall
denote the type of x.

4. 1. Definition. An act A is said to ferminate if and only if any locus’X of A termi-
nates. U

4. 2. Definition. For any pair of acts A and B, a function ¢ is called a locomorphism
from A to B on the precondition p of A (or ‘on p’ for simplicity) if and only if ¢ is a locomor-

phism from {QIPa(A, Q)/\p(Q(O))} to { S'\IPa(B, ?')}. An act A is said to be locomorphic to an

act B w. 1. t. <y, ®> on p if and only if {QIPa(A, ,ﬁ)/\p(Q(O))} is locomorphic to {§|Pa(B, 3\1)}
w. I. t. <y, >, If p(x) is true for any x, @ is called a locomorphism from A to B and A is
said to be locomorphic to B w. r. t. <y, >,

Similarly, a function @ is called a contralocomorphism from A to B on p if and only if ¢
is a contralocomorphism from {)’(\ IPa(A, Q)/\p(ﬁ(O))} to {QIPa(B,Ij\/)}. An act A is said to be
contralocomorphic to an act Bw. r. t.<y, ©> on p if and only if {§IPa(A, ?()/\p(ﬁ 0))} is
contralocomorphic to {'j\f [Pa(B, 9)} w. I. t. <y, >, If p(x) is true for any x, ¢ is called a con-

- tralocomorphism from A to B and A is said to be contralocomorphic to B w. r. t. <y, >, re-
sepectively. Ul

Next we introduce the concept of equivalence between acts. Corresponding to the projec-
tions used in definition 3. 9, we introduce input variables and output variables of an acts. We
are interested in the values of the former at time 0 and those of the latter on the state when the
act terminates. It must be noted that they may not be disjoint.

4. 3. Notation. Whenever we are interested in a sequence z of variables occurring in
X, We may rewrite X as

x=*<z, X'>,
where =* means the equality of the sequences of variables except for the order of the variables,
ie., thé order of the variables of the sequence x may be different from that of <z, x'>. If we
are interested in two or more sequences of variables z, z', ... belonging to x, we shall write
x=%<z,K X'>=%<z', x">=% .

It must be noted that the same variables may occur in both z, z' and so on. O

4. 4. Definition. Let xjand y; be <x;, ..., X;> and <y, ..., y,>, respectively,
where type(x;)=type(y;) for eachi. Letxgand ygbe <x'y, ..., X'y>and <y'y, ..., y' > re-
spectively, where type(x})=type(y';) for each i. Let x=*<xy, zp>=*<Xq, Zo> and y=*<yy,

8

W>=*<yo, Wo>. Then A is said to be equivalent to B on the input variables <xp, y> and the
output variables <X, y o> if and only if
VX(Pa(A, 2)DTF Pa®, VAR HOA TuY u o= o))
AV3(PaB, §)DIXPa(A, HARH0)Z (OATY su® =5 0)).
If A is equivalent to B on the input variables <x, y> and the output variables <x, y> in

particular, we say that A is equivalent to an act B for simplicity. J

§ 5. Applications

In this section, we introduce applications of locomorphism, contralocomorphism and
equivalence to verification of properties of acts.. Throughout this section, for simplicity, we
suppose that the preconditions of locomorphisms and contralocomorphisms are true. If an act
A is equivalent to an act B on the input variables <xj, y;> and the output variables <xq, y o>,
then it holds that

V& (Pa(A, %)2pE0)2TuY ugEo®)= V4 @a®, H)OpE0)>Tuv ua om))
for any formulas p and q.

Similarly, if A is locomorphic to B, then actions of B simulate those of A with appropri-
ate variables of B. We recall that if a function ¢ is a locomorphism from A to B, then it holds
that

VR(Pa(A, X)DPa(B, o).

Conversely, if A is locomorphic to B w. r. t. <y, > and S is a specification of B, then A
also satisfies the specification obtained from S after transforming by ¢, y and . Specifically,
it holds that

V§(Pa(B, $)DSIFO VL Pa(A, DOGIS, ¢, , TIRD),

where @ is a transformation of the specification S by @, y and &.

If S is the input-output relationship or the termination in particular, we can define ® con-
cretely. First, we discuss the preservation of the specifications and the input-output relation-
ships.

5. 1. Theorem. If an act A is locomorphic to an act B w. 1. t. <y, ®>, then it holds

that
V§®aB, HopEO)2IVust@)2
VR(Pa(A, D2py&(0)) 2TV ustuR @M
for any pair of formulas p and g. 0

It must be noted that we do not use the function x in theorem 5. 1 because we are only in-
terested in the values of the input variables at time 0 and those of the output variables at time oo
when we consider the input-output relationship. By this theorem we can show that if A is lo-
comorphic to B w. 1. t. <y, > and B satisfies the input condition p and the output condition
g, then A also satisfies them after mapping the input and the output values of the variables by
the function . However, from this fact only, we do not obtain the same input-output relation-
ship satisfied by both A and B. Thus, we introduce the condition that we can derive that two
acts satisfy the same input-output relationship.

5. 2. Theorem. If an act A is locomorphic to an act B w. r. t. <y, > and it holds
that

VEPa(A, %)2p' (W RON=pRONA TV u>t(p’ R W)=poR(@)), (1)
then it holds that
v §(Pa(B, $)2p(p' (FONO TV u>t@(p o @)
V& (Pa(A, Op(@RO) DTV u>t(a(Po®@)N)
for any pair of formulas p and q. (]
The formula (1) is a condition to derive the fact that two acts satisfy the same input-output

10

relationship. If A is locomorphic to B w. 1. t. <y, >, if B is locomorphic to A w. r. t. <y,
n'>, if y satisfies the condition (1) and if ' satisfies one similar to (1), then A is equivalent to
B. Precisely, theorem 5. 3 shows this fact.
5. 3. Theorem. If an act A is locomorphic to an act B w. r. t. <y, >, if B is loco-
morphic to A w. r. t. <y, ©t'>, if it holds that
VX (Pa(A,)" WRO)=piRONA TV ust(p’ WX @) =po®(w))))
and if
V§@aB,)2p v FON=p' (FONATY u>t(poy' (F@)=p' oy @),
then A is equivalent to B on the input variables <x;, y> and the output variables <x, y>.
U
Next, we discuss the termination of acts. Again, we do not use T in the discussion on
the termination because we are interested in the values of the variables at time oo.
5. 4. Theorem. If an act A is locomorphic to to an act B w. r. t. <y, >, then it
holds that
V§(PaB, §)D 3V ust§)=y ©)>
VE(Pa(A, %) D3V ustyR @)=y R ®))).
O
Specifically, if A is locomorphic to B w. 1. t. <y, > and B terminates, then for any
locus x of A, the value of y(x(t)) does not change after a certain time.
5. 5. Definition. Foranact A, a predicate term A(Q, t) satisfying the following for-
mula is called a termination predicate of A:
V&Pa(A, R)DViterm, &,) Vust& (w)=R ()))).
O
A termination predicate is a sufficient condition of the termination of the corresponding

11

act. Using this predicate as ‘interpolation’, we can derive the termination of an act by the fol-
lowing theorem.

5. 6. Theorem. Letx=%<z, x"> such that/J\((t)E D and'%(t)e Dyforallt. Letp:
D—Dj, be a projection. Let term A(/)} , t) be a termination predicate of A. If an act A is locomor-
phic to an act B w. I. t. <y, 70>, if it holds that VX (Pa(A, %) V1V ut@(u)=Z (1)) Dterm, &,
t))) and if it holds that V' x; € DV x,€ D(W(x)=W(X,)2p(X)=p(X,)), then it holds that

Vi®ad, oV ust@ =P 0)oVEPaA,)0 TV ust@ W)=k).

Theorem 5. 6 says that if

- A is locomorphic to B w. . t. <y, ©>,

- B terminates,

-y is identity with respect to the values of z and

- the fact that values of z do not change after a certain time implies A terminates,
then A terminates, where z denotes the control variables of A.

In a similar manner to theorems 5. 1 through 5. 6, we can derive theorems 5. 7 thorough
5. 10 on the contralocomorphism.

5. 7. Theorem. If an act A is contralocomorphic to an act B w. r. t. <y, >, then it

holds that
V§(Pa®, $)2py@ O) DTV ustquFw))))>
V& Pa(A, %)2pR0)2 TtV ust(gR@)))
for any pair of formulas p, q. O

5. 8. Theorem. If an act A is contralocomorphic to an act B w. r. t.<y, ®> and it
holds that

V3 (Pa(B, §)2pWF0)=p' (FONA TV ust(p (W @))=p' oF W))),

12

then it holds that
VI®aB, $HOp(p' (TN Y u>t(q(p’ o@D
VREPa(A, R)Op(pRO)DIV u>t(g(po@@))))

for any pair of formulas p and q. L]

5. 9. Theorem. If an act A is contralocomorphic to an act B w. r. t. <y, >, B is
contralocomorphic to A w. r. t. <y, ">, it holds that

V5 PaB, HOpiwEO0)=p"1F OMA TV u>t(poyF @)=p’ oF @)
and that
VRPa(A, 20" 1w RON=pRONATV u>t(p’ oy (K@)=poR(w))

then A is equivalent to B on the input variables <x;, y> and the output variables <xq, y5>.
O

5. 10. Theorem. IfanactA is contralocomorphic to an act B w. r. t. <y, ©t>, then it
holds that

V§Pa®, $)DTV ust§ =3 ©)D VR (PaA,)2 ItV ustR @)=R (D).
O

Theorem 5. 10 says that if A is contralocomorphic to B and B terminates, then A termi-
nates without any additional condition.

Finally, we show a theorem to derive equivalence between acts from both of the locomor-
phism and the contralocomorphism.

5. 11. Theorem. If an act A is locomorphic to an act B w. r. t. <y, >, B is contralo-
comorphic to A w. I. t. <y, T'>, it holds that

V& (Pa(A, $)2p" (R OM=piRONA TV u>1(p’ WK @)=poR@))

and that

VRPa(A, 3)2p" (v RO)=p RONA TV ust(p’ oW (RW))=poR(w)))

13

then A is equivalent to B on the input variables <xy, y;> and the output variables <xq, ¥ o>.

|

§ 6. Examples

Example 1. Letc,, ¢,, c5 and n be constants of natural numbers and c, be positive. We
consider the following 3 acts:

A a(ACHSTAVI=T-CHAVG=(q+1.
B a(t)asSczAvu=u+lAvs=s+2vu+l.
C:: a()al<navi=l+1.

The formula a(t) is a spur expressing a scheduler of each process. The set {tla(t)} is
discrete. Each of its elements is denoted by t, (k>1). We assume that 0<t <t ., for every k.
The act A computes a quotient g and a remainder r of ¢; by c¢,, where c; is an initial value of .
The act B computes the integral part of the square root of ¢;. Specifically, ¢;=q-c,+r and
u=[Vc;]. The act Cis a loop that simply counts /. The functions y,:<q, r>}—/ and y,:/
|—<s, u> are giveh by I=(c;-1)/c, and <s, u> = <(I+1)2, I>, respectiveiy, and the function y is
by W,0V;. The function I, is identity from Q" to Q*. The formulas p;, p, are given by p, (,
q) = N((c;-1)/c;y) and po()) = N(J), respectively, where N(x) denotes that x is a natural num-
ber. For a formula F, F[t+0] means that ¥V e>038(0<8<e /A F[t+3]) and F[e~] does that
JtV u>t(F[u]).

6. 1. Assertion. For any locus <r, > of A, if p;(r(0), q(0)), then it holds that
P (1), q(t)) for all t.

Proof. We show this by induction on k such that a(t). It holds that p, (r(t;), q(t;)) since

r(0)=r(t,) and q(0)=q(t,) from the predicate of action.

Assume that p; (r(ty), q(t,)). We consider 2 cases where ¢,<r(t,) and c,>1(t).

14

If ¢, <r(t,), then r(t, +0)=r(t,)- c,, which implies (c;-r(t, +0))/c,=(c;-r(ty))/c,+1. Hence,
N((c,-1(t +0))/cy), i.e., Pyt 1)> q(te,1)) holds.

If cy>1(ty), then r(ty +0)=r(ty), which implies p;(r(t,1), q(tee1)) -

Therefore, it holds that p; (1), q(t)) for all t. Ll

6. 2. Assertion. If [c,/c;]=n then A is locomorphic to C w.t. t. <y, [[> on p;.

Proof. We show that/ given by I(t)=(c,-1(t))/c, is a locus of C by induction on k such
that a(t,).

Assume that I(t,)=(c,-1(t))/c,. First, we show that c,<r(t) = it)<n. From the as-
sumption, I(t)-[c,/c,] is ¢ /cy-[c1/cy]- Tt)/c,. Itis trivial that 0<c,/cy-[c,/cy]<1. If cp<r(t)
then I(t)-[c,/c;1<0, i.e., It)<[c,/c,]=n. Conversely, if [()<n then I(t,)-[c,/c,]<0. Because
N(l(t,)) holds by assertion 6. 1, I(t)-[c,/c,] is less that or equal to -1. Hence, it holds that
cq/cy-[cqfey]+151(ty /e, , which implies 1<r(t)/c,, i.e., ¢, <r(t). Therefore, c,<r(t) =
It)<n.

If c,<r(t,) then r(t, +0) is r(ty)- ¢,, which implies (¢, -1(t+0))/c,=(c, -1(t,))/c,+1. On the
other hand, /(t,)<n implies i(t,+0)=I(t,)+1. Hence, it holds that I/(t; +0)=(c,-r(t;+0))/c,, i.e.,
Uty 1)=(Cq1(t1))/C,. U

6. 3. Assertion. If n=[\/o3] then C is locomorphic to B w. . t. <y, I,> on p,.

Proof. We show that <s, u> given by <s(t), u(t)>=<((t)+1)2, I(t)> is a locus of B by in-
duction on t satisfying a(t).

Assume that <s(ty), u(tk)>=<(l(tk)+1)2, I(t,)>. First, we show that s(t,)<c; = I(t)<n.
It is evident that N(/(t,)) holds. If s(t;)<c; then l(tk)+1S\f c4. It holds that l(tk)+1£[\/ c4] be-
cause N(/(t,)) holds. Hence, l(tk)<[\/c3] =n. Conversely, I(t,)<n implies l(tk).<_n—1=[\/ cl-1.
Hence, it holds that l(tk)+1£[\/c3]S\/c3, ie., s(t)= (it)+1)?<c;. Therefore, s(t)<c; =

© Kt)<n.

15

If l(tk)<[\/c3] then [(t,+0) is Kt)+1 and <s(t, +0), u(t, +0)> are <s(t)+2u(ty)+3,
u(t)+1>, which imply s(t,+0) = I(t,)2+41(t,)+4 = (I(t,)+2)2 = (I(t,+0)+1)2. Hence, it holds
that <s(ty,1), Uty 1)>=<U(te, D+, Ut)>. O

6. 4. Assertion. If [cl/cz]z[\]%] then A is locomorphic to B w. 1. t. <y, I;> on p;.

Proof. 1tis trivial that p,(r, q) is equivalent to p,(y; (r, q)). Hence, it holds that {r, q |
Pa(A, <r, ¢>)/\p;(r(0), q(0))} is locomorphic to {/| Pa(C, [) A\ PO} w. r. t. <y, I>
from assertion 6. 2. Therefore, A is locdmorphic to B w. r. t-<y, I,> on p; by theorem 3. 6.

O

6. 5. Assertion. Let[c /c,]=[Nc;]. If s(0)=1/Au(0)=0 implies u(eo)=[Vc;] then

r(0)=c,; implies (c;-1(e0))/cy=[c,/c,].

Proof. By theorem 5. 1. O

Example 2. Let o be an array of type [0, 0]. The value of each element a(1), ..., o(n) is
either O or 1 and both a.(0) and a(n+1) are equal to 1. The acts P; and P, are the following,
each of which checks whether Vi€ {1, ..., n}.o(i)=1 or not:

P;:: ((a,(0A\Jz3wWR,[x, y; z, W] DRl[x, ¥; VX, vy])

A (2,OATzIWR,[x, v; z, w] DR, [X, y; vx, vy])¥

and
P,: :b()/\T[v, D; vv, vD],
where
R[x, y; X, y']:: a(x)-o(y)=1Ax'<yA\x'=x+1,
Ry[x, y; X', y'T:: ax)-ay)=1 Ax<y'Ay'=y-1
and

T[v, D; v', D']:: v=1Adz(z€ {0, ..., n+1}-DAD'=D+{z}Av'=0(z))

16

respectively. The symbol # is the sharping operator given in [9]. For an act A, actions of A¥
keep values of the variables as long as possible in accordance with a certain optimizaﬁon strate-
gy called the principle of the least action.
The function ¥ : <x, y>|-—-<v, D> is given by
v=0,(x)-0(y),
and

({0, ..., x}U {y, ..., n+1}, if o(x)=0 or a(y)z0,
> {lio, vy X-1JU {y, ..., n+1}, if a(x)=0t(y)=0.
U[x, y] is the formula |
NE)ANFYA0Lx<y<n+1A ax)e {0, 1} Aay)E {0, 1}.
Although P, would be executed with the initial value <x(0), y(0)>=<0, n+1> in practice,
we assume only U[x(0), y(0)] for the purpose of explanation. |
6. 6. Assertion. P, islocomorphic to P, w. 1. t. <y, ®©> on U for some ® and for any

combination of spurs a,, a, and b.

Proof. The proof is given in [10]. U

§7. Discussion

We have introduced the concepts of locomorphism, contralocomorphism and equivalence
between acts and have given some applications. The locomorphism and the contralocomor-
phism are extensions of ‘homomorphism’ of programs and of their ‘simulation’ discussed by
McCarthy, Milner, etc., in the late 1960°s [15], [16]. We verify specifications of a parallel pro-

gram by investigating images of the locomorphism.

Acknowledgements. This work was supported in part by the Grant-in-Aid for the

17

Scientific Research of Ministry of Education, Science and Culture (Nos. 62302005 and

01750315).

References.
[1] de Bakker, J. W.: Mathematical theory of program correctness, Prentice-Hall, Englewood
Cliffs, NJ, 1980.
[2] Elrad, T. and Francez, N.: A weakest precondition semantics for communicating pro-
cesses, Theor. Comput. Sci., 29 (1984), pp. 231-250.
[3] Hoare, C. A. R.: An axiomatic basis for computer programming, Comm. ACM, Vol. 12,
No. 10 (1969), pp. 579-580, 583.
[4] Hoare, C. A. R.: Procedures and parameters: an axiomatic approach, In Engeler, E.
(ed.), Symposium on semantics of algorithmic language, Lecture notes in Mathematics 188,
Berlin-Heidelberg-New York:Springer (1971), pp. 102-116.
[5] Igarashi, S.: An axiomatic approach to the equivalence problems of algorithms with ap-
plications, Rep. Compt, Univ. Tokyo, 1 (1968), pp. 1-101.
[6] Igarashi, S.: A natural deduction system for assertion, in M. Nivat (ed.), théorie des
algorithmes des langages et de la programmation, Séminaires IRIA (1974), pp. 39-45.
[7] Igarashi, S., London, R. L. and Luckhum, D. C.: Automatic program verification I: a
logical basis and its implementation, Acta Inform., 4 (1975), pp. 145-182.
[8] Igarashi, S.: The v-conversion and an analytic semantics, Inf. Proc. 83, R. E. A. Mason
(ed.), Elsevier Science Publishers B.V. (North-Holland), IFIP (1983), pp. 769-774.
[9] Igarashi, S., Mizutani T. and Tsuji T.: An analytical semantics of parallel program system
by v-conversion, Tensor, N. S., Vol. 45 (1987), pp. 222-228.

[10] Igarashi, S., Mizutani T. and Tsuji T.: Specifications of parallel program processes in an-

18

alytical semantics, Tensor, N. S., Vol. 45 (1987), pp. 240-244.

[11] Igarashi, S., Tsuji T. and Mizutani T.: A sufficient condition for two programs to be loco-
morphic in analytical equivalence theory, to appear.

[12] Kroger, F.: Temporal logic of programs, Springer-Verlag, 1987.

{13] Lamport, L.: What good is temporal logic?, Inf. Proc. 83, R. E. A. Mason (ed.),
Elsevier Science Publishers B.V. (North-Holland), IFIP (1983), pp. 657-668.

[14] Lamport, L.: Specifying concurrent program modules, ACM Trans. of Prog. Lang.
Syst., Vol. 5, No. 2 (1983), pp. 190-222.

[15] McCarthy, J.: Priv. comm., 1969.

[16] Milner, R.: Priv. comm., 1969.

[17] Mizutani, T., Hosono, C, and Igarashi, S.: Verification of programs using v-definable
acts, Computer Software, Vol. 2, No. 3 (1985), pp. 529-538 (in Japanese).

[18] Soundararajan, N.: Denotational semantics of CSP, Theor. Comput., Sci., 33 (1984),
pp- 279-304.

[19] Takeuti, G.: Two applications of logic to Mathematics, Princeton University Press, 1978.

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
TSUKUBA-SHI, I1BARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-90-80

TITLE

An analytical equivalence theory of computer programs

AUTHOR(S)

Tetsuya MIZUTANTI*, Shigeru IGARASHI** and Takashi TSUJI**
* Department of Information Processing, Saitama College

** Institute of Information Sciences and Electronics, University of Tsukuba

REPORT DATE NUMBER OF PAGES
February 20th, 1990 19

MAIN CATEGORY CR CATEGORIES
Theory of Computation F.3.1, F.3.2, D.2.4

KEY WORDS

analytic semantics, v-definable act, locomorphism, contralocomorphism, equivalence

ABSTRACT

A v-definable act is a program, both logical and procedural, and is almost a specifica-
tion. Its semantics, called analytic semantics, aré given in a completely logical manner. Two
concepts of homomorphism between acts, called locomorphism and contralocomorphism,
which are generalizations of the concept of equivalence, are introduced. Applications of lo-

comorphism to program verification are discussed.

SUPPLEMENTARY NOTES

