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Abstract

A construction scheme of the minimal supermartingale lying above
continuous parameter reward processes in optimal stopping problems
is introduced. It is shown that for some problems the optimal stopp-

ing rule can be derived by making use of the construction scheme.

1. Introduction

Let (Q,7,P;7(t)) be a complete probability space with right
continuous increasing family (7(t),t€T) of sub o-fields of 7
each containing P-null sets, where T=[0,w). On the probability
space suppose that we are given an R=RU{-», «} valued stochastic
process X=(X(t),7(t),t€T), which is adapted to the family (7(t),teT).
Let M={t1} be a class of stopping times t=t1(w) relative to the sys-
tem (7(t),t€T) such that P(1<w»)=1.

The optimal stopping problem is described as follows:
(1) Exhibit the cptimal stopping time T*Em such that

BIX(7 )] = suplE[X(1)]): ten). (1.1)

(ii) Exhibit the maximal expected reward E[X(T*)].

The optimal stopping rule and the maximal expected reward can be
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characterized by means of a process called the minimal supermartingale
iying above the reward process (MS), of which definition will be
given in section 2. The following important theorem is introduced
by Irle [2]:
Proposition 1. [2,Corollary in Section 2] Suppose that for a
right continuous process X there exists the MS Y=(Y(t),F(t),t&T) 1ly-
ing above X. If the stopping time T defined by T=inf{t T:X(t)iy(t)}
satisfies

E[X(sup ¢ )] ) lim sup E[X(c )] (1.2)
for any sequence of stopping times (On),n=1,2,..., such that
0 ¢ 6. ¢ 1. And if T€M. Then it holds that

— n—

E[X(T)].a sup{E[X(O)]:O stopping time, lim inf J{ }X—(t)dP =
' a)t

0}'1 sup{E[X(O)]: 0 bounded stopping timg}. (1.3)

If in addition Y is regular, then E[X(T)] = sup {E[X(O)]: Oéﬂ}.

In Irle [2] it is also shown that for the problems called weakly
monotone stopping problems, the optimal stopping rules are expressed
without using the explicit form of MS.

In section 2 we shall introduce a construction scheme of MS.
We shall also pose two corollaries with which we can derive optimal
stopping rules for some special optimal stopping problems, and
deal with the relationships between Irle’s weakly monotone stopping
problems and the problems for which our corollaries can be applied.

In section 3 we shall consider two simple examples.



2. Construction scheme of the Minimal Supermartingale

First of all we make the following definitions (c.f. Thompson

(51, Me;tens [(3]):

Definition. (i) A stochastic process Y=(Y(t), 7(t),t€T) is
called simply as a supermartingale when it is an L1—supermartigale
(see Meyer [4]), and especially if Y is a well-measurable process,
then it is called as a well-measurable supermartingale.

(ii) A well-measurable supermartingale Y is called regular, if for
any stopping times o and T with P(0<{t<x)=1 the relation

Y(o) > E[Y(1)|7(0)] a.s. holds.

(iii) For two stochastic processes S=(S(t),7(t),t€T) and
R=(R(t),7(t),teT) we define S {f} R by the requirement that
P((VteT) s(t) {¥} R()) = 1.

(iv) The minimal supermartingale (MS) y=(y(t),7(t),t€T) lying above
X is the well-measurable supermartingale such that y<Y for any
well-measurable supermartingale Y with Y>X, if especially y is regu-
lar then it is called as the minimal regular supermartingale (MRS)

lying above X.

Theorem 1. Suppose that the process X is a well-measurable

process such that XtéLl for any teT.

Let
E(t;0) = ess sup E[X(t+s)]F(t)] and
$20 (2.1)
€(tsn) = ess sup E[E(t+ssn-1)|F(t)], n=1,2,..., ¢t€T,
s)0



and set

E(t) = lim &(tsn), E = (E(t) F(t) t€T), (2.2)
)
+ ! + +, -
£Y(t) = 1im ECt+h), E'= (87(t),F(t),t€T) and (2.3)
hvy0
net) = max(E (), X(t)), n = (nN(t),F(t),tET). (2.4)

(i) If E(t)éLl for any teT, then n is the MS lying above X.

(ii) If in addition n is regular, then it is the MRS lying above X.
Remark. 1

: If there exists a random variable UEL such that
n(t)>E(U|7(t)], YteT, then n is regular.
Proof.

From (2.1) we have
£(t;n) > E[&(t+s;n-1)[F(t)] a.s., Vs,teT. (2.5)

Since E(t;n)Zi(t;n—UZX(t)éL1 a.s. for each t€T, and since (2.5)

holds, by the monotone convergence theorem (see for example [1]) we

have the followings: VteT, 3J&(t), 1lim £(t;n) = £(t) a.s. and

n-o

£(t) > E[g(t+s)[F(t)] a.s. Vs,t>0. (2.6)
Thus, if the assumption of (i) is satisfied, then & becoms a super-
martingale. Since F(t), t€T, is right continuous it follows, p.95
Meyer [4], that the process £¥ defined by (2.3) is a right conti-
nuous, and of céurse well-measurable, supermartingale such that
€+§€. Now, it is a straightforward matter to verify that the pro-
cess N is also a well measurable supermartingale satisfying
X <n <E, - (2.7)
in other words it is a well-measurable supermartingale lying above X.
On the other hand, it is known (T4 of Meltens [3]) that there

exists the MS y=(y(t),F(t),t€T) lying above X, and it must hold that



y < n, (2.8)

if the assumptions of this theorem are satisfied.
From Y>X and (2.1) by induction we have &(t;n)<y(t) a.s., for

each t€T, n=0,1,..., and hence we can conclude that £(t)<y(t) a.s.,
for each t€T. Thus from (2.7) it holds that »

n(t) < v(t) a.s., for each t€T. (2.9)
Consequently from (2.8) and (2.9) it must hold that
P((VteT) n(t)=y(t))=1. In addition if n is regular, then it is ob-

vious that n is the MRS lying above X. The proof is complete.
Corollary 1 below follows obviously from the proof of Theorem 1.

Corollary 1. Let £%=(&(tsn),7(t),tET), n=0,1,... Suppose
that X satisfies the assumptions of Theorem 1-(i) and that En, n=0,1,.
..» and & are well-measurable processes. Then

(i) € =n.

(ii) If in addition there exists a non-negative integer n%(oo such

that B" = B™, myn, with BY- g(w,t):X(t)ii(t;k{}, k=0,1,...,

then {(w,t):X(;)an(t%} = B" .

In the following Corollary 2 we see the relationships between
the theorem for weakly monotone stopping problems (Theorem in Section
3 of [2]) and Corollary 1.

Corollary 2. Suppose that X, £, n=0,1,..., and & satisfies

the assumptions of Corollary 1-(i). Assume that



C, C:Ct+h’ tho, with Ct={w:X(t)2€(t;OQ}, teT. (2.10)

Then " = 8%,  m1. (2.11)
Proof. Generally it holds that

B"C 8%,  m>1. (2.12)

If (2.10) is satisfied, then on the set BO the followings hold:

£(t3;1) = ess sup E[&£(t+h;0)|7(t)] < ess sup E[X(t+h)|7(t)] = &£(%;0)
h>0 h>0

< X(t).

Thus we have B' D BO, and hence from (2.12), B' = BY nolds. By in-

duction we see that (2.11) holds. The proof is complete.
3. Examples

Example 1. Suppose that on a complete probability space
(2,#7,P) we are given two independent Poisson procesées Zz=(z(t)), teT,
z(0)=0, and Y=(Y(t)), teT, Y(0)=0, with rate 1 and A>0 respectively.
Let 7(t), t>0, be the smallest o-algebra containing o(Z(s),¥(s);s<t),
t>0, and P-null sets of 7. Let us define the reward process X=(X(t),
F(t),t€T) by X(t) = 2(t) - ((¥(t))>.
We have E[X(t+h)|F(t)}:-Ah2+(1—x-2Y(t))h+(z(t)-((Y(t))2), h>0,

Especially, if we suppose that 1/3 < A < 1, then

X(t) if Y(t) > 1,

£(t;0) = -
X(t) + (1=-X)/4x if Y(t) = 0.

Following Irle [2], if we set Ctz{w:X(t)Zé(t;O)}, then CtCC for

t+h

any t,h>0 and KJJCt=Q, and hence we see that the process X forms a
teT



weakly monotone protess. According to Theorem in Section 3 of Irle
(2], the stopping time T=inf{t:X(t)>E(t;0)}=inf{t:Y(t)>1} has the
optimality propefty as is described in Pfoposition 1. Indeed since
the stopping time T ig totally inaccesible with respect to the family

(F(t)),t€T, [4, p.139], it must hold that lim X(bn,w)=x(sup o, ,w) for

N
a.a. wWEA, where (On),n=1,2,..., is any sequence of stopping times
such that 0 < o < 1 and On(w)zT(w) holds for a.a. w€A and large
enough n with A={w:sup On=T}. On the other hand for a.a. wéA®, since
X(on,w) increasis as n increases, it holds that
sup X(on,w)ZX(sup On,w), a.s. weA®. Consequently we have
E[X(sup on)] = E{1lim sup X(On)] > lim sup E[X(Gn)]. Thus the stopp-
ing time T satisfies (1.2), and it is obvious that T&€M% hence the
relation (1.3) holds.

Now, let us apply Theorem 1 to this example and derive the MS.

Let K1=(1—X)2/4A and the number hn > 0 be the unique solution,

of which existence is obvious, of the following equation: U(Kn,hn):o,

n=1,2,..., where Kn+1:R(Kn’hn)’ n=1,2,..., with

A Ah

R(k,h)=Ke M4h(1-A(h+1)) and U(k,h)=%ﬁR(K,h)=—KAe_ +1-1(1+2h).

By induction it is easy to see that E[£(t+h;n-1)|X(t)>0, Y(t)=0]

=X(t)+R(K_,h), E(t;n)= X(t) if Y(t)21, and K
n X(t)+K_ if Y(t)=0, n=1,2,..., n

increases as n increases and lim K, = (1-2)/x =K . Consequently,
n--

X(t) if Y(t)>1,
X(t)+K  if Y(t)=0.
Note that the assumption of Corollary 1-(ii) is satisfied with n =0.

from Theorem 1 we have that the MS n=£ and &(t):{

Example 2. Suppose that on a complete probability space



(Q,7,P) we are given two independent Poisson processes Z=(Z(t)),t€T,
72(0)=0, and Y=(Y(t)),t€T, Y(0)=0, with common rate 1, and an exponen-—
tially distributed random variable © (with rate u>0) which is in-

dependent of Z and Y. We define a process I=(I(t)),t&T, by

T(t)=q If %<8, et 7(t) be the smallest o-algebra containing
0 if t>6.

0(z(s),¥(s),I(s);s<t) and all P-null sets of 7, t€T. Let us define
the reward process X=(X(t),7(t),t€T) by X(t)=I(t){(2(t))2-(X(t))?}.

We denote N={0,1,...} and define K(z,y)=z2—y2, z,yEN. Let

RO(Z,Y)? K(Z,y) if z>y, z,yeN, and Rn(z,y)=sup CDn(Z,ZY;h), with
0 if z<y, z,yeN, h>0

o i
E ORn_1(z+j,y+i)vT TT}, n=1,2,..., z,y€EN.
J:

=
[N
=

=e—(u+2)h{'§

® (z,y;h)
n b 9 l:O

-]
[

Then it holds that g(t;n)=1(t>Rn(z(t),Y(t)), teT.
Suppose especially that u>4, then we have the followings:
(1) 0 <R _(z,y+1) <R (z,y) <R (2+1,y), Vz,yeN, n=0,1,...

(ii) Rn(z,y) = X(z,y), Vz,ye€N: z>y, n=0,1,...

I(t)K(Z(t),Y(t)) ‘ if Z2(t)>¥(t),
(iii) &(t) = {
I(t) lim Rn(Z(t),Y(t)) if Z(t)<¥(t).
n-e
(iv) no=g =(&(t),7(t),t€T) is the MRS lying above X.
(v) T =inf{t:£()<X(t) }=inf{t:2(t)>¥(t)} (3.1)

is optimal:
E[X(1 )] = sup{E[X(t)]:t€M}. (3.2)
Indeed, by induction it is easy to see that (i) holds. In order
to see that (ii) holds for any n, firstly we note that (ii) holds for

n=0. Suppose that (ii) holds for n=mZO§ that 1s



R (z,y) = K(z,y), Vaz,yeN: z>y. (3.3)

¢
Under this assumption from the relation (i) it also holds that

0 < Rm(z;y) < K(y+1,y), Vaz,yen: =z<v. (3.4)
For some k=1,2,..., let z>k and y=z-k, since (i), (3.3) and (3.4)

hold, we have the followings:

%HQm(z,z—k;h) = —(u+2)®m(z,z—k;h)+®m(z+1,z—k;h)+®m(z,z—k;h)
oQ o
-{u+ ..
< —(ut1)0_(z,2-k3h)+¢_(z+1,2-k;h) < o” WFRIBLT g Y(i,3,k;u,2)]
i=0 j=(i+1-x) 0
where (3.5)

Y(i,j,k;u,2)=-(u+1)K(z+j,2-k+1)+K(z+j+1,2-k+i)+K(z-k+j+1,z2-k+j).
But ¥(i,j,k;u,z)<0 for w4, k=1,2,..., j>i+1-k. Hence, the left

hand side of (3.5) is non-positive for any h>0, zEN, k=1,2,..., and
we have Rm+1(z,z—k)=©m(z,z—k;O)=K(z,z~k), zeN, %k=1,2,... . Thus,
by induction we see that (ii) holds.

(i1i) is a direct consequence of (i) and (ii). ©Now, we see the
validities of (iv) and (v). Since £>0 and (3.3) and (3.4) ﬂold and
€ is a right continuous process (see (iii)), from Corollary 1-(i) it
follows that & is the MRS lying above X. If we define o by (3.1),
then after similar discussion as was done for the stopping time
T in Example 1 (see also Example (1) of Irle [2]) we see that "
satisfies (1.2). And hence, from Proposition 1, we see that (3.2)
holds.

We note that in this example the assumption of Corollary 1-(ii)
is satisfied with n*=0 if w>4, but the reward process X does not form
a weakly monotone process (see Corollary 2), and hence Theorem in

Section 3 of Irle [2] can not be applied to this example.
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