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ABSTRACT
This paper proposes a new method of hierarchical clustering as
- follows. Assume a set of objects (v(l),..,v(n)), a proximity
measure S(i,J) between v(i) and v(Jj), and a fuzzy set
c(1)/v(l) +...+ c(n)/vin). The transitive closure of a relation
S'(i,j) = minlSti,J),c(i),c(j)]l 1is considered. This method
differs from the nearest neighbor method on the point that the
membership c(i) which is called here a fuzzy constraint is taken
into account. A well-known technique of the Wishart's Kth
nearest neighbor method is proved to be a special case of the
method herein. Hence it is evident that the property of the
label freedom holds for the Wishart's method and an algorithm for
the minimal spanning trees can be applied to the Wishaft’s
method. Moréover, the method herein suggests many versions other
than the Wishart's method for improving the nearest mneighbor

clustering.



1. Introduction

There are three types of major contributions of fuzzy set
theory to methods of clusfer analysis. First, Tamura and others
[11 and Zadeh [2] showed that max-min transitive closure of a
reflexive and symmetric fuzzy relation (sometimes called a
proximity relation) is a fuzzy equivalence relation, which in
turn was shown to be equivalent to a minimal spanning tree (MST)
by J. C. Dunn [3]f' As MST is equivalent to a well-known method
of the nearest neighbor clustering (Anderberg, (41), the
tranSitive closure of a proximity relation is equivalent to the
nearest neighbor method. (See also Ohsumi [5].) Secondly, the k-
means method of nonhierarchical clustering was generalized to
fuzzy c-means method by Bezdek [6]1 and active researches are
going on in this direction (See, e.g., Hirota and others [71.
Third, measures of relatedness which are called similarities or
dissimilarities for hierarchical clustering were deneralized
using a fuzzy set model, which led to a new algorithm of
hierarchical clustering (Miyamoto and Nakayama, [81).

Various interesting researches will be done in future for
all of the above three kinds of considerations, and in this paper
we show an application of the idea of the first type. Namely, we
apply the idea of the transitive closure to a fuzzy relation with
a fUzzy constraint on every vertex. A method of cluster ahalysis
that is equivalent to the transitive closure of the fuzzily
constrained relation is considered using a fuzzy graph. This
method 1is proved to include a well-known method of the Wishart's
Kth nearest neighbor clustering (Wishart, [81, [101). As a

result, the Wishart's method is proved to be a version of the



nearest neighbor method with a modified similarity meésure. The
last stateﬁent does not reduce the value of the Wishart's method.
On the contrary, it shows that the Kth nearest neighbor method
enjoys theoretical properties of the nearest neighbor method such

as the label freedom and applicability of efficient algorithms

for the MST.

2. Preliminary results

Let V=(vl,v2,;..,vn) be a finite set of objects for
clustering. A fuzzy relation R on V x V is assumed to be given.
The relation R is reflexive and symmetric: R(v,v)=1 and
R(v,w)=R(w,v) for all v,wé€V. Since the set U is finite, the
relation R is idetified with a matrix (rij)’ rij=R(vi,vJ),
1<i, j¢{n. In this paper we do not distinguish a fuzzy relation
and its matrix representation for simplicity. Note that this
abuse of terminology does not induce any confusion. An alpha-cut
(alpha level set) of a fuzzy set A is denoted by C(A)A in this
paper. Similarly, an/alpha—cut of R is represented as C(d)R.

A basic fuzzy . graph BFG is the pair (V,R). It is a
collection of crisp graphs (V,C(A)R) for 0<cdl<1. Namely, a pair
of vertices v,w€V has the edge when d <R(v,w). Since R is
symmetric, BFG is an undirected fuzzy graph. We call BFG as a
"pbasic" fuzzy graph to distinguish it from another version of a
fuzzy 9graph which will be introduced later. We assume that
readers are familiar with basic definitions of crisp graph theory

such as paths, connected components, the minimal spanning trees

(See, e.g., Aho and others, ([111). Note that we consider a



maximal spanning tree instead of the minimal spanning tree.
Given. two nxn matrices S=(sij) and ‘T=(tij) such that

sij,tijeto,ll, 1<i, j¢n, we assume that arithmetic operations on

the scalars are defined by maximum for addition and minimum for

multiplication, as is usual in fuzzy set theory. Accordingly, we

have
S+ T =« Sij + tij ) = ( max( Sij’ tij ) )
ST-= (%siktkj ) = mix min € s,,, tkj ) )

Moreover, the lattice product (Kandel, [121) of two matrices are
defined by

SxT = ( min(s; )

ity

The following lemma is well-known, therefore we omit the

proof.

Lemma 1 Assume that the relation R is reflexive and symmetric.

The sequence R + R2 + ... + Rk

infinity. Define R*= R + R% +..... Then

1

is convergent as Kk goes to

R =R + ... + RW

Moreover, R* is reflexive, symmeric, and transitive:
R*(v,w) > minl R¥(v,uw), R*(u,w) 1 for any uev.

£l

Remark A reflexive, symmetric, and transitive fuzzy relation is
sometimes called a fuzzy equivalence relation. (1
A partition of V is a finite family of subsets

(V;,V,,...,V } such that Uv,=v, v,V

1*7°2° J
1 .
partitions {Vl,....Vp} and {wl,...,wq} of the same set V is

=@ (i#j). A pair of

called equivalent if p=q and there is a permutation sigma on



{1,2,...,P} such that vi=w i=l,...,P. that 1is, the

sigma(i)’
partitions are identical except the order of members.

Second lemma on equivalence of four methods is also Kknown
and the proof is omitted. |
Lemma 2 The four methods of the nearest neighbor clustering,
the transitive closure of a proximity relation, connected
components of BFG, and the maximal spanning tree is equivalent in
the following sense. Given any parameter ge€lo0,11, thé following
four partitions generated by the four methods are all equivalent.
(i) The clusters generated at the level of similarity g using
the nearest neighbor method based on the measure R(v,w) of
similarity.
(ii) Equivalence classes {vl,.‘.,vp} generated from CIR*: a
Pair v,

1
only if C(d)R*(vi,vJ)=l. (In other words, R*(vi,vj)zci).

,vjev belongs to the same class, say Vq (vi,vjevq) if and

(iii) Connected components as a subset of vertices of (V,C(d)R)
derived from BFG=(V,R).

(iv) Consider a network that is a complete graph whose set of
vertices is V and the weight R(v,w) is given on the edge (v,w),

v,Ww€V. ApPly an algorithm of the maximal spanning tree to the

network. From the resulting tree T, delete those edges (v,w)
such that R(v,w)<d. Then we have a forest {Tl,...,Ts}. Let Vj
be the subset of vertices of TJ, j=1,..,s8. Then Vl,...,Vs forms

a partition of V. This partition is equivalent to the partitions
obtained in (i), (ii), and (iii). [1
Remark Although the author believes the above result of the

equivalence among the four Kinds of partitions is already known

as a fact, he does not know any publication on which the result



is proved in a perfect manner. Since the purpose of the present
is not to exhibit the above result, we omit the proof. Readers
who are interested in the lemma 2 may try its proof. A
guideline to its proof is to show equivalence between the nearst
neighbor method and the Kruskal's algorithm for the MST given in
{111, then to see the Kruskal's algorithm generates the connected
components of BFS. Any algorithm of the MST generates the same
partition according to the way in (iv) should also be shown.
Finally, it 1is easily seen that the connected components are
equivalent to R¥. The author is preparing a complete proof in an

tutorial work. [1

3. A fuzzy graph and cluster analysis with a fuzzy constraint
Another version of a fuzzy graph FG is defined to be a
triplet FG=(V,R,A), where V and R are the same as those in BFG in
section 2. The third element A is a fuzzy set of V. Thus, the
set of vertices is not V but the fuzzy set A; Although BFG is a
collection of (V,C(Q)R) for 0<d<l, another pair (C(A,C(dIR)
may not define a proper graph. Thereore we introduce a
restriction of R on A. First, A restriction R:K of R onto a
crisp set K of V is defined as R%K(v,w) = R(v,w) for v,w€K. Then
the restriction REA of R onto a fuzzy set A is defined to be a
collection of R=C(d)A for 0<Q<1. In other words, for ge€l0,11,
Now, for any del[0,1]1, we define alpha-cut

C)R! ,,=(C(AR)

A Cl)A”
of FG by C(d)FG=(C(d)A,C&i)R:A). Namely, FG is a collection of
criép graphs {(C(d)A,C(d)RaA)}. 0<ad<1. Accordingly, connected

components are defined on C(d)FG=(C(dJA,C(dJR=A).



Our purpose here is to consider relation of FG to a
transitive closure and a clustering algorithm. Assume that
A= al/v1 + a2/v2 R an/vn.
Now, we have the following proposition.

Prop. 1 Let

X

L = [ R#(a aly 1% .
Assume that for an arbitrary fixed ogelo,11, equivalence classes

Vv ..,VP generated from C(Q)L means that a pair v,we€V belongs to

T
the same class, say Vk’ (v,wEVk) if and only if C@IL(v,w)=1.
Then, for any oel0,11, the partition {vl....,vp} is equivalent to
the connected components of C(dJFG=(C(dJA,C«i)R=A)
(Proof) Consider FG. It is clear that for arbitrarily fixed
oero,11, two vertices vy and v, are connected if and only if
there exists a sequence of vertices vi,vk,...,vq,vj such that
min[ai.ak,...,ap,ajlzd and min[R(vi,vk),....R(vq,vj)lzd. If we
define R‘(vi,vj)=min[ai,aj.R(vi.vj)] then the last property is
equivalent to
minl R'(vi,vk),...,R'(vq,vJ) 1>d. (1)
Note that the (i,Jj) element of Rx(aal) is equal to R‘(vi,vj).
The last relation 1is equivalent to
L(v;,v)) = (RO v vy 20,

since there exists a sequence V;, Vps..., Vg vy that satisfies
the relation (1), which means the equivalence between {vl,...,vp}
and connected components of C(QRFG. [1]

The above proposition shows a new method of hierarchical
clustering. A set of objects for clustering is regarded as the
set of wvertices. A measure of relatedness between a pair of

objects is defined in some way and the measure is regarded as the



fuzzy relation. (Sometimes, a transformation from the original
measure to a fuzzy relation is needed, which is dealt with in
many literature in cluster analysis. See, e.g9., Anderberg, [41.)
In addition to the fuzzy relation,‘ a constraint a, is defined on
each object L In hierarchical clustering, clusters are merged
- dynamically according to a threshold parameter applied to merge
levels of the measure of relatedness. Here the threshold is the
alpha-cut that starts from unity and gradually decreases its
value. }Each object as a vertex viev is not qualified as a
candidate for clustering until when the parameter alpha becomes
smaller than or equal to a; . Therefore we name this method as a
hierarchical clustering with a fuzzy constraint. This method is
similar to the nearest neighbor method in the sense that the
clusters are defined as connected components of fuzzy graphs; it

differs from the nearest neighbor method in the sense that a

constraint is considered on each object.

4. Wishart's Kth nearest neighbor method
A well-known technique of hierarchical agglomerative

clustering, that is, the Wishart's Kth nearest neighbor method
(KNN)  is shown to be an instance of the above method. For
showing this, we review an algorithm for the KNN clustering.

| In general, a method of hierarchical agglomerative
clustering consists of two stages:
I) computation of values of a measure of relatedness between all
pairs of elements in the set of objects,

II) successive merges of pairs of clusters based on the measure.



In stage 1), one of two kinds of the measures that haVe different
names is used. One}is called a similarity measure and the other
is called a dissimilarity measure. When a pair of objects
becomes more similar, then the value of a similarity measure
becomes larger, while a dissimilarity measure becomes smaller. A
typical example of a similarity comes from counting common
features between a pair of objects, whereas a typical
dissimilarity is a distance of a metric space. In general, a
dissimilarity is taken for explaining the nearest neighbor method
and the Wishart's KNN method. Nevertheless, we consider here a
similarity to adapt the discussion to the concept of fuzzy
relations and fuzzy graphs. By the same reason we also assume
that the value of the similarity is in the unit interval.
Namely, a similarity measure here is denoted by S(v,w), V,w€V
which satisfies 0<S(v,w)<1l, for all v,weV. Accordingly, some
terminologies in clustering should be interpreted in terms of
similarity. The nearest neighbor to an object v means the
element w that has the maximum value of the similarity to wv:
S(v,w) = max S(v,v') for all v'€V. K nearest neighbors to v means
K different objects Wis Woseees Wy of V that is determined as
follows. Sort similarity values S(v,w), for all wéV in the
decreasing order of S. Then Wise.. Wy are on the first K records
of the sorted sequence. Clearly, Wy is the nearest‘neighbor. On

the other hand, w, is named as Kth nearest neighbor to v. It is

K
the nearest neighbor to v except w ,...,w, .

We do not discuss in detail how the measure 1is defined,
since the definition of a measure for clustering needs a

different kind of consideration. Therefore we assume that the



measure S is given somehow.

The following algorithm called here as W is a modified
version of the Wishart's Kth nearest neighbor algorithm shown in
[91, [101. The modifications do not affect the Wishart's method
in an esséntial way. The algorithm W simply specifies some parts
that are not specified in the original algorithm. There are
three kinds of the modifications. First, merge levels that are
not specified in the original algorithm is shown with underlines.
Second, order of merge steps is changed. That 1is, 1in the
original version the step (cl) in the algorithm W is after the
step (c3). Moreover the step (d) in the algorithm W is missing
in the original version. Readers who refer to the original
algorithm in [91, [10] will find that all these modifications are

reasonable.

Algorithm W (Wishart's Kth nearest neighbor method)
a) Given an integer K > 1, calculate similarity measures ci for
every viév to its Kth nearest neighbor.

b) Sort {ci} into the decreasing order. The resulting sequence

is denoted by {CJ,’C32f°"’CJﬂ}' Cjnqzcjk' k=2,...,n. cjk
corresponds to ka

c) Select thresholds pmin from successive Cjk values. At each
cycle, introduce a new "dense point" ij and test the following
(cl1)-(c3). Repeat (c¢) until all points become dense. (Remark:

Wishart called those objects that are qualified as candidates for
clusters as dense points. In the terminology herein, the dense
points may be called as objects that satisfy the constraint.)

cl) if there is a pair of clusters Gp and Gq such that

10



S(G_,G_) = max S(v,w) > pmin (2)
P’ q VeG,
WGG<1
then merge Gp and Gq such as GpUGq
at the level §LGE;§QAL
Repeat the merges until there is no pair of clusters that
satisfies (2).

c2) If there is no cluster Gi such that max S(v. ,w)>pmin,

weG; K
then v.k generates a new cluster {ij} that consists of vjk
alone.
c3) If there are clusters, say, Gl""’ GS, such that

there exists wi which satisfies S(vj ,wi)zpmin, i=l,...,5,
' k

then the clusters concerned are merged into a new cluster
{vjk}L)GlLJ...L)GS

at the level pmin.

d) When all points become dense and if there are two or more
clusters, then repeat the merge process according to the nearest
neighbor method.

End-of-algorithm W.

Remark In general, output of a hierarchical agglomerative
clustering is a graphical representation of a tree called
dendrogram that shows process of successive merges of the
clusters. Since dendrogram itself is not necessary for the
present consideration, we omit how informations of the merges are
saved for the output of a dendrogram_in the algorithm W. []

His concept of the dense points can be compared to the

fuzzy constraint herein. Now, the Wishart's method defined by

11



the algorithm W is shown to be a special case of the above method
with a fuzzy constraint.

Prop. 2 For arbitrarily fixed del0,11, the clusters generated by
the algorithm W 1is equivalent to the equivalence classes

generated by

'I‘) ]-x-

CL Sx(c ¢
where S is a matrix whose (i,Jj) element is S(vi,vj) and
c=(cl,02,...,cn)T is defined by the quantities ci's calculated in
the step (a) of the algorithm W.

(Proof) We call the fuzzy graph FG and the algorithm W simply as
FG and W, respectively, in the following. Each step in W is
based on introduction of a new dense point in the decreasing
order of {Ci}’ This corresponds to downward change of the
threshold o, of alpha-cut C(Q)FG at the levels a=cy beginning from
max Cj. Therefore we will show that at the levels Cy » k=1,..,n,

K

clusters by W and connected components of C(cj JFG are
Kk

equivalent. We use induction on k that proceeds with the level
cjk.

First, let k=1 gnd consider W. First point vy becomes dense
and no clusters that contains more than one element are formed.
Consider C(cj1)FG. Then we see only one vertex VJ1 in C(cj1)A:
cLearly. no components are observed in C(cj’)FG.

Assume that for k<m-1, clusters by W and connected
components of C(CJRJFG are equivalent. Consider W when the m-th
dense point is introduced at the level pmin=cjﬂ£ Consider the
following three cases.

i) 1If there are clusters that satisfy the condition (2) in (cl),

then the step (cl) is applied. Note that the clustes are merged

12



according to the way of the nearest neighbor clustering, since
the relation S(Gp,Gq)=max S(v,w), ver, weGq, means the nearest
neighbor 1linkage. Note also that these clusters are equivalent

to connected components formed on C(cj JFG. Since each point,
m-1

say Vs’ in the clusters concerned satisfies cszc. s, a merge of
m-t

Gp and Gq in (cl) agrees with connection of the same components

G and G_ in C(c. )FG that has an edge S(v,w)>pmin, VEG_, WEG_.
P q Jmey P q

Conversely, if there is a pair of connected components Gp and Gq

in C(c. )FG that should be connected in C(c, )JFG, then an edge

m- Jam
(v,w), ver, weGq satisfies S(v,w)zcj . Therefore the clusters
m
are merged in W, since the condition (2) holds. Thus, the step

(cl) generates newly connected components according to the

nearest neighbor 1linkage.

ii) For the point v‘j , suppose that there is no point Vs such
m ,
that c¢_>cC. and S(v, ,v_)>pmin = ¢. , then step (c2) in W |is
ST dm Jm’ S Jom

applied and a cluster with the single element {vJ } is formed.
m

Consider FG. Then the last condition means that vj is not
m

connected to any other vertices in C(cj JFG, and vice versa.
. m
iii) Suppose that points v_ ,..., V satisfy c_. 2cC. and
S(v. ,v_ )>pmin =c¢, , 1i=l,..,t, and there are no other points
Jm’ St Jm
which satisfy the last condition. Assume that vs belongs to a
i

cluster G'i, i=t,..,t. Then, the step (c3) in W is applied and

we have a new cluster (v, }\JG'IL)...L}G't. For FG, this
m

J
condition means that in C(cj JFG the vertex vj is connected to
m m
V. seeesV_ . By the inductive hypothesis, Vv is 1in the
51 St ) Si
component G'i, i=t,..,t. Therefore, we have a component

{vj }L}G'IL}...LJG‘t. It is easy to see the converse is also
m

13



true.

, We may take

Note that if these is a tie c, = .. .=C,
Jmat

c, =
I Iy

C. instead of c. and introduce dense points v, ,...,V.
Jmre Jm Jom Jmit
time. Then the above argument (i), (ii), and (iii) are directly

at a

applied with little modification.
Finally, after all points become dense at the level cj , the
n
algorithm W proceeds in the same way as the nearest neighbor

method. When d.gC;i » CIALFG=(CWA)A, C(d)RR=(V,C(d)R). Therefore

by the equivalenc: between the nearest neighbor clustering and
connected components of BFG, the inductive hypothesis implies the
equivalence between the KNN and connected components of FG when
dgcj . L1

n

Let us compare two transitive closures:

[ Sx( c cb) 1% | (3)
and

[1+5Sx(cch 1% (4)
The former is equivalent to the Wishart's method, whereas the
latter is equivalent to the nearest neighbor method based on the
similarity

S'(vi,vJ) = minC C» cj, S(vi,vj) ] (5)
Although fuzzy graphs that correspond to S*(ccT) and I+S*(ccT)
aré different, clusters that have more than one elements are the
same for the both transitive closures, since the only difference
between the two is on values of the diagonal elements. Therefore
we havel

more than one elements formed at the level d by the Wishart's

14



method based on the similarity_S(vi,vJ) and the other set of
clusters of more than one element by the nearest neighbor method
based on S’(vi,vj) given by (5) are equivalent. L1

Thus, we have proved that the Wishart's method is in a sense
a version of the nearest neighbor method with the modified
similarity given by (5).

The last statement does not reduce the value of the
Wishart's method in any sense. On the contrary, it implies that
a number of theoretical properties that is valid for the nearest
neighbor method holds also for the Wishart's method. One of the
most important properties is the label freedom.

A technical difficulty in most of hierarchical agglomerative
clustering 1is that the resulting dendrogram depends on the order
of numbering on the objects, since merges are always carried out
pairwise. A method of hierarchical agglomerative clustering is
said to have phe property of label freedom if the result by this
method is indeééndent of the order of the numbering, that is, if
the dendrograms have the same structure when the ordering on the
objects 1is changed. It is well-known that the nearest neighbor
method has the label freedom: it is free from the dependence on
the ordering. By the above corollary it follows that
Property 1 The Wishart's KNN method has the property of the label
freedom. (1]

Remark It 1is easily seen directly from the discussion herein
that the nearest neighbor method and the Wishart's method has the

label freedom, since it is evident that connected components of

BFG and FG are independent of the numbering on the vertices. L[]

15



Another good property of the nearest neighbor method is that
efficient algorithms for the maximal spanning trees can be used
for obtaing clusters. For example, we can see that the Kruskal's
algorithm ([111 (in other words, the greedy algorithm) generates
connected components successively by introducing edges one by
one. Therefore, Corollary 1 implies the following.
of the nearest method with the modified similarity equivalent to
the KNN method, is carried out by the following procedure in
three steps.

A) Calculate measures C; for all viev according to the step (a)
in the algorithm W. |
B) For all v., VJQV. i>j, calculate

i
S (vi.vj) = minf c,, C., S(vi,vj) ]

1 J

C) Apply an algorithm for the maximum spanning tree. (For
example, the Kruskal's algorithm to the network with the modified
weight S'(v,w) on the edge (v,w).) L] |

If the number of edges with nonzero weight S'(v,w) and the
number of vertices are denoted by {E! and iVi, respectively, then
the Kruskal's algorithm generates the maximal spanning tree by
the amount of computation of Order(iE:loé%V:). Moreover, since
the Kruskal's algorithm uses sorting of a sequential file, it is
uhnecessary to Kkeep the values of the similarity measure as an
array in a random access memory. Therefore a large number of

objects can be handled by the above procedure of the Wishart's

KNN method, as in the case of the nearest neighbor method.

16



5. Conclusions

Connected components of a fuzzy graph is a fundamental
concept in understanding the nearest neighbor clustefing. Here
we defined a new type of a fuzzy graph FG on which existence of
vertices themselves is fuzzy. The fuzzy graph is equivalent to
[R*(aaT)]* which is called here a cluster analysis with a fuzzy
constraint includes the well-Kknown Wishart's KNN clustering as a
special case.

In the Wishart's KNN method the term ¢ of the fuzzy
constraint 1is calculated as the value of similarity for the Kth
nearest neighbor to each object. The above consideration shows
that the concept of the fuzzy constraint is independent of the
Kth nearest neighbor. Therefore, considering different ways of
calculating the fuzzy constraints, we are led to different
versions of the method developed herein. For example, the step
(a) of the algorithm W may be replaced by another procedure:

ci:={average value of similarity of a number K of the nearest
neighbors to vi} .

In this way, chanéing the step (a) by another procedure for

defining Cj» We can modify the algorithm W ( and the procedure in

Property 2) to a more general version of the method of fuzzy

constraint. Thus, we introduced here a family of new techniques

that improves the nearest neighbor method by considering a simple

T

term (a a ) of the fuzzy constraint.

17
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c(l)/v(l) +...+ c(n)/v(n). The transitive closure of a relation
S*(i,j) = min{S(i,J),ci),c(j)]l 1is considered. This method

differs from the nearest neighbor method on the point that the
membership c¢(i) which is called here a fuzzy constraint is taken
into account. A well-known technique of the Wishart's Kth
nearest neighbor method is proved to be a special case of the
method herein. Hence it is evident that the property of the
label freedom holds for the Wishart's method and an algorithm for
the minimal spanning trees can be applied to the Wishart's
method. Moreover, the method herein suggests many versions other
than the Wishart's method for improving the nearest neighbor

clustering.
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