ISE-TR-88-73

Programming in Gramp:

a programming language based on CCFG

by

Yoshiyuki YAMASHITA and lkuo NAKATA

June |, 1988

Programming in Gramp:
a programming language based on CCFG

Yoshiyuki YAMASHITA, the Doctoral Program in Engineering,
and
Tkuo NAKATA , the Institute of Information Sciences and Electronics,
University of Tsukuba,
Tsukuba-shi, Ibaraki-ken 305.

Abstract

Gramp is a declarative programming language based on Coupled Context-Free Grammar
(CCFG). It is considered that Gramp is effective to express the programs whose input/output data
objects have some kind of structures, especially hierarchical ones. In this sense CCFG formalizes
and Gramp embodies the Jackson program design. Here some problems described in [1] are
expressed in Gramp programs. It is shown that the programs are more readable than in other
languages. Several ideas of syntax-sugaring and control in Gramp are also discussed.

[1] Jackson, M. A. : Principles of Program Design, Academic Press (1975).

1.Introduction
CCFG programming [2] is a programming paradigm in which a context-free grammar is
regarded as the representation of an input/output data structure and a couple of the context-free
grammars, called a Coupled Context-Free Grammar (CCFG) or a CCFG program, is regarded as a
program representing the relation between such data structures. It has been proved that CCFG
programs with some additional devices can express every recursively enumerable set [2]. Therefore
we say that CCFG programming is universally descriptive. For example, the following is a CCFG
program representing the relation of string reversal.
- {X—s, Y—e}
{X—aX, Y-Ya)
{X—>bX, Y-Yb} ,
Here € is an empty symbol, A—>¢ is a production rule, and each set of production rules enclosed
by braces is called a rule-set, in which all the production rules must be simultaneously applied.
Therefore one of the derivation from the couple (X, Y) of start symbols is given as follows,
' X, Y)=>(aX, Ya)=(abX, Yba)=>(abbX, Ybba)=>(abb, bba).
In this way, we see that every couple of terminal strings derived from (X,Y) has two strings which
are mutually reversed. This is the reason we say that this CCFG program represents the string

reversal. v ,
In the sense that a CCFG represents a relation between input/output data objects, it is quite
similar to a logic program. We have obtained the program transformation rules from a logic
program into the equivalent CCFG program and vice versa. These transformation rules are simple
‘enough to automate the transformation. This relationship between two equivalent logic and CCFG
programs shows that the semantic structures of both programs are similar and their syntactic
structures are just the reverse of each other. Namely both programs are in the dual relation. Since
the readability of a program is greatly influenced by the syntactic structure of the program,
problems suitable for solving in logic programming are not always suitable for CCFG
programming and vice versa. The main purpose of this paper is to clarify the domain of problems
which are suitable for solving in CCFG programming rather than logic programming.

The Jackson program development method uses the diagrams which are equivalent to regular
expressions for representing input/output data structures at the first stage of the development. A set
of regular expressions is equivalent to a context-free grammars. In this sense the Jackson method is
considered to be closely related to CCFG programming. In fact, one of our motivations to invent
CCFG programming was to formalize the Jackson method in a declarative programming paradigm.
Therefore some of the problems discussed in [1] are expected to be compactly and
straightforwardly expressed in CCFG programs rather than in other style of programs, especially in
'COBOL. In this paper we show this by solving three examples in [1].

Gramp (a Grammar is a program !) is a programming language based on CCFG and
designed for practical use [4]. It can treat character strings, terms, rational numbers and their
mixtures. From the unified theory of CCFG programs with logic and functional ones, Gramp can
also treat predicate-calls and function-calls [4]. In this paper, in addition to such basic features we
introduce some words for syntax-sugaring and control structures to Gramp, which make Gramp
programs more readable.

In section two, we overview Gramp by using a small program.

In section three, we solve the problem of counting batches [problem 4 in [1] pp.49-50]. In
this problem the data structure of the input sequence of cards determines the whole program
structure. The usage of regular expressions and an iterative control structure are introduced. The
program transformation by loop fusion is also discussed.

In section four, we solve the problem of the Magic Mailing Company [problem 7 in [1]
pp.70-71]. The syntax-sugaring words "where", "let" are used in order to make the meanings of
rule-sets obvious. The word "otherwise™ is also introduced, which give priority to rule-sets
selectively. This problem is solved in both bottom-up and top-down manners.

In section five, we solve the problem of telegrams analysis [problem 13 in [1] pp.155-156].
It is known that this problem can not be solved without an intermediate file. In Gramp such a file is
implemented by connecting two nonterminal symbols with an equality symbol == which is the same
as the metasymbol = in CCFG [2]. The word "with" is also introduced.

In section six, we compare a Gramp program with a Prolog program [7]. We will see that the
problems whose input/output data structures are complex and hierarchical are suitable for solving in
- Gramp because such data structures can be easily defined by context-free grammars and the
definition is more readable than that defined in clausal forms. But the problems which have many

complicated relations are suitable for solving in Prolog because logical connectivity among relations
(literals) is important for their program structures rather than input/output data structures.

2.The programming language: Gramp

The programming language: Gramp is explained here by showing a small program.

Character strings are the basic units in Gramp, which are explicitly written by enclosing the
sequence of characters by double quotes. The empty string is denoted by two consecutive double
quotes ", and the concatenation operator is a colon :. The following conditions hold for arbitrary
strings "o, "B and "y".

(o By iy =rar: (B mym) ="ofy",
nmomQ QU LT = QL. \

The subprograms in Gramp are modules. For example, a module representing the string
reversal is written as follows. We have already seen the same CCFG program in the previous
section.

module rev (Input,Output)

{ Input->"", Output->"" } w{rev.l)
{ Input->"a":Input, Output->Output:"a"” } ..{rev.2)
{ Input->"b":Input, Output->Cutput:"b" } ..{rev.3)
end

Here rev is a module name, which must begins with lower case letters. The symbols Input and
Output are nonterminal symbols, which must begin with upper case letters. The symbols
Input and output are called input/output symbols because they are declared as
rev (Input, Cutput)- at the head of the module. An input/output symbol is an interface of the
module with other modules and can be referred from the outside of the module, whﬂe a
non-input/output symbol cannot. The body of the module is a set of the rule-sets. A rule-set is a
set, enclosed by braces, of context-free production rules of the form a->o where the
left-hand side a is a nonterminal symbol. Any two left-hand sides in a rule-set must not be the
same.

Since all the production rules in a rule-set are to be simultaneously applied [2], a derivation
sequence from the tuple (Input, Output) of input/output symbols is, for example, given as
follows,

(Input, Output)=("a":Input, Output:"a") by (rev.2)
=("ab":Input, Output:"ba") by (rev.3)
= ("abb" :Input, Output:"bba") by (rev.3)
= ("abb", »"bba") . by (rev.1l)

The derived string "abb" is the reversal of "bba” and vice versa. In the same way as above, we see
that any two strings derived are reversed in general. Therefore the module rev can be said to be a
module which represents the string reversal. To speak more formally, the semantics SF[rev] of the
module is denoted by the set of all the couples of character strings derived from the module as
follows,

revAbToCd

Output Trpuat
rev -abToCd

Ficure 1. The structure of the compound module revAbToCd

SF[rev] = {(n LR L] u)’ (nau’ "an), ("b", "b"), ("ab", "ba"), ("ba", "ab"), .”}.

Remarks Although we use the symbol name " Input™ and "output™ for convenience, the
module does not express an one way transformation like a scheme of syntax directed translations
[6]. It expresses a relation between Input and output. Therefore we can transform a string not
only from Input to Output, but also from Output to Input.

The following is the module to transform the strings composed of the characters "a" and "b"
" into the strings of "c" and "a". '

module abToCd (Input,Output)

{ Input->"", Output->"" }

{ Input->"a":Input, Output->"c":Output }

{ Input->"b":Input, Output->"d":Output }

end
The semantics of this module can be obtained in the same way as in the previous case.

The above two modules can be connected by the following compound module, which
transforms the strings composed of "a" and "b" into the reversed strings of *c” and "d".

module revAbToCd (Input,Output)

{ Input->rev.Input, rev.Output==abToCd.Input, Output->abToCd.Output }

end '
This module has only one rule-set. Here the symbol == is equivalent to the metasymbol = in CCFG
programs (see [2], [3]), whose intuitive meaning is the same as that of the equality symbol in

equational logic. The symbols rev. Input and rev.Output in the above rule-set means Input and
Output in the module rev. Therefore rev. Inﬁut and rev.Output are simultaneously rewritten
“and they derive the mutually reversed character strings. This means a module invocation in
Gramp. In the same way, abToCd. Input and abToCd.Output express the invocation of the
module abTocCd. The string "rev.Output==abToCd. Input™ has no left-hand side nonterminal
symbol followed by ->. This is called a left-hand-omitted-rule (see [2]) and it means that the
two symbols rev.Output and abToCd. Input must always derive a same character string.
Therefore this left-hand-omitted-rule expresses the communication between the modules rev and
abTocd through the channel == in Gramp. The module revabTocCd is a compound module (see
figure 1).

A main program in Gramp contains only one rule-set which is composed of only
left-hand-omitted-rules in the similar sense that a main program in a logic program (pure Prolog) is
a Horn clause which has no literal in its head. For example, the following is a main program whose
name is "smallProgram”.

main smallProgram

{ "abb"==revAbToCd.Input, revAbToCd.Output==2SysOut }

end
This program is to obtain the string corresponding to the input string "abb" and to send it to the
system's output device named " 2Sysout”. In this paper we do not discuss the functions and
actions of such physical devices in Gramp. If we do not use the compound module, the program
may be rewritten as follows. '

main smallProgram2

{ "abb"==rev.Input, rev.Output==abToCd.Input, abToCd.Output==?SysOut }

end
And further if we do not use module invocations, it may also be rewritten as follows.

main smallProgram3

{ "abb"==Inputl, Outputl==Input2, Output2==2?SysOut }

{ Inputi->"", Outputl->"" }
{ Inputl->"a":Inputl, Outputl->Outputl:"a” }
{ Inputl->"b":Inputl, Outputl->Outputl:"b” }

{ Input2->"", Output2->"" }
{ Input2->"a":Input2, Output2->"c":Output2 }

{ Input2->"b":Input2, Output2->"d":Output2 }

end '

- Though we have treated only character strings in the above example, we can also treat terms
(which include lists) and rational numbers as primitive data types in Gramp. There is no theoretical
difficulty to treat them (such theoretical discussion will be given in separate paper). The Gramp
program in this section is quite small. In the following sections we try to build more complicated

Gramp programs.

3.Counting batches
Now we solve the problem 4 in [1]. In subsection 3.1, we obtain a naive Gramp program,
and in subsection 3.2, 3.3 and 3.4, we revise it and obtain more effective one. '

Problem 4 An input file of card images is to be analyzed. There are three card types, T1, T2
and T3, with the values 1, 2 and 3 respectively in position 1 of the card. The required analysis is as
follows: :

(1) Count the cards preceding the first T1 (count A).

(2) Display the first T1. -

(3) Display the last card, which is always the first T2 following the first T1.

(4) Count the batches following the first T1, where a batch is either an uninterrupted

succession of one or more T1 cards or an uninterrupted succession of one or more T3
cards (count B).

(5) Count the T1 cards after the first T1 card (count C).

(6) Countthe batches following the first T1 card which consist of T3 cards (count D).
All counts are to be displayed following the display of the last card. The file is known to be in
correct format; that is, there is at least one T1 card, the last card is a T2, and no T2 intervenes
between the first T1 and the last card.

3.1.Naive program _]

The following singleton sets are rule-sets which define the formats of the card images T1, T2
and T3.

{ T1->"1":CharString:\cr\ }

{ T2->"2":CharString:\cr\ }

{ T3->"3":CharString:\cr\ }
These rule-sets mean that the nonterminal symbols T1, T2 and T3, which express the card images,
are character strings which begin with the character "1, "2" and " 3" respectively, and end with
the carriage-retumn \cr\. The system-defined nonterminal symbol CharString exprésses an
arbitrary character string.

Next we obtain the subprograms which count A, B, C and D according to the requirements
(1), (4), (5) and (6) in the above problem, respectively. The subprogram to count A is given as
follows,

{ Inputa->"", aA->0 }

{ InputA->T20rT3:InputA, A->1+A } ,
where InputA expresses the sequence of cards preceding the first T1, and A expresses the
corresponding count. The first rule-set means that if Inputa is empty, the corresponding a is zero.
The second means that if Inputa is composed of T20rT3 and Inputa, the corresponding A is 1+A .
This is a recursive definition of the relation between Inputa and A. The nonterminal symbol
T20rT3 is defined as follows,

{ T20rT3->T2 }
. { T20rT3->T3 }
Namely T2orT3 is either T2 or T3. Hence Inputa is defined as an arbitrary string composed of T2
and T3. One example of derivations from the couple (Inputa,a) is given as follows,

(InputA, A)= (T20xT3:Inputa, 1+34)
= (T2:Inputa, 1+3)
= (T2:T20rT3:InputA, 2+3)
= (T2:T3:Inputi, 2+4)
= (T2:T3:T20rT3:Inputa, 3+A)
= (T2:T3:T2:InputA, 3+43)
= (T2:T3:T2, 3)

This means that if the input string Inputa is the sequence of cards T2, T3 and T2 in this order, the
corresponding count a, which is the number of cards in the Inputa, is three. In this way, the
above rule-sets satisfy the requirement (1). ’

In the same way, the subprograms to count B, C and D are given as follows,

{ InputB->InputBl, B->Bl }

{ InputB->InputB3, B->B3 }

{ InputBl->"", B1->0 }
{ InputBl->Tls:InputB3, Bl1->1+B3 }
{ InputB3->"", - B3>0 }

{ InputB3->T3s:InputBl, B3->1+Bl }

{ InputC->"", Cc—>0 }
{ InputC->T1l:InputC, C->C+1 }
{ InputC->T3:InputC, C->C }

{ InputD->InputDl, D->D1 }
{ InputD->InputD3, D->D3 }

{ InputDl->"", D1->0 }
{ InputDl1->T1ls:InputD3, D1->D3 }
{ InputD3->"", D3->0 }

{ InputD3->T3s:InputDl, D3->1+D1 }

Here T1s and T3s are defined as follows,

{ Tls->T1 }

{ Tls->T1:Tls }

{ T3s->T3 }

{ T3s5->T3:T3s }.
The subprogram to count B and D are a little more complicated than those to count A and c, because
the former subprograms have to recognize uninterrupted successions of one or more cards of the
same type. In the case of the subprogram to count B, by using two distinct pairs (InputB1,B1)
and (InputB3, B3) of nonterminal symbols, two states of the recognizer and the state transitions
from one to the other are implemented. In the state of InputB1 the subprogram reads only T1

cards, and in the InputB3 state only T3 cards. Counting-up of B1 (or B3) is invoked when a state
transition arises. More elegant program which does not use the notion of states is given in
subsection 3.3.
Now we give the whole structure of our program as follows,
{ CardSeq—>InputA§T1:(InputB==InputC==InputD):T2,
Output->T1:T2:
"A=":!charStr(a) :\cr\:
"B=":!charStr(B) :\cr\:
"C=":!charStr (C) :\cr\:
"D=": icharStr (D) :\cr\ }
The first rule means that Cardseq consists of the sequence Inputa of T2 and T3 preceding the first
T1, the sequence InputB==InputC==InputD of T1 and T3, and the last card T2. The sequence
InputB==InputC==InputD means that one sequence is interpreted in multiple ways as InputB,
'Inputc, and also InputD. In this sense it is said that Cardseq has a multiple data structure. It
is easy to understand that this production rule satisfies the requirement of the problem. The second
rule means that output consists of the first T1, the last T2, and the values of the counts A, B, C, and
D which correspond to Inputa, InputB, InputC, and InputD, respectively, where ! charStr (X)
is a function call which returns the character string corresponding to the value of X.

At the end, we connect the symbol CardSeq with a system input file named "inputFile”
and the symbol output with a line printer. The following is the main program to solve the problem
4,

main problemd

{ ?Input ("inputFile")==CardSeq, Output==2?LinePrinter }
followed by all of the above rule-sets, where ?Input (..) and ?LinePrinter are the special
nonterminal symbols which express a file input device and a line printer output device,
respectively. In this paper we do not discuss the actions of such devices.

3.2.Regular expressions

The production rule whose right-hand side is a regular expréssion is more expressive and
more readable than the corresponding set of usual context-free rules. In Gramp regular expréssions
can be used as the right-hand sides of production rules. For example, T20rT3, T1s and T3s are
defined as follows,

{ T20rT3->T2|T3 }

{ Tls->T1:{T1} }

{ T3s->T3:{T3} }
Here "ou| B means the alternative of o or B and " {o} " the O or more repeated . By using these
expressions, simple data structures can be expressed more concisely.

If a rule-set has two context-free rules of which some right-hand sides have the similar
structure of regular expressions as follows,

{ X->a: (blc), ¥Y->(dle):f, Z2->g, ..}
it is considered to be equivalent to the following rule-sets,

{ X->a:b, Y->d:£f, 2->g, .. }
{ X->a:c, ¥Y—>e:f, Z2->g, .. }.
'And the following rule-set
{ X->a:{b}, Y->{c}:d, z2->e, ..}
is equivalent to the following rule-sets,
{ X->a, Y¥Y->d, Z->e, ..}
{ X->X:b, Y¥->c:¥, Z->Z, .. }.
A rule-set must not contain any two context-free rules whose right-hand sides have different
structures of regular expressions. For example, the following rule-set is not allowed in Gramp.
{ X->a: (blc), Y—>{d}:f, Z->g, ..}
because the structure of a: (b c) is different from that of {d} : £. Regular expressions should be
used for making the expressions of (rather) simple data structures more concise.

Note The context-free grammars in which the right-hand side of every production rule is
allowed to be a regular expression over terminal and nonterminal symbols, are called regular right
part grammars. They have been studied well in [9]. Our discussions here are based on them.

3.3.Expression of uninterrupted successions

In the above program, we have used the notion of state transitions when writing the
subprograms to count B and D. They have the two states only. If a program has more states,
however, it is obvious that the program becomes more difficult to read. The essence of
subprograms to count B and D is to recognize the uninterrupted successions of cards of the same
type. Here we introduce an iterative control structure which recognizes such an uninterrupted
succession.

We have defined the regular expression " {a} " as the 0 or more repeated o Here extending
this definition, we define the expression "~ {o} " as the 0 or more repeated o of which length is as
long as possible. Therefore it is considered that the push-down automaton defined by the following
context-free rules can recognize only the uninterrupted successions of T1 and T3 cards.

InputB->"",
InputB->T1:~{T1l}:InputB,
InputB->T3:~{T3}:InputB.
If the input sequence is given as "T1:T1:T1:T3:T3", itis always analyzed as the following
derivation tree.
InputB
I
T1:T1:T1:InputB
I
T3:T3:InputB
!

mwi

It can never be analyzed as follows,

InputB
|
T1:T1:InputB
|
T1:InputB
I
T3:T3:InputB
I

"y

because "~ {T1}" means the sequence of T1 whose length must be as long as possible. If the
control structure "~ {...} " appears twice in an expression such as "~ {T1}:~{T1}", the left onec has a
priority to the right one.
By using this control structure, the subprogram to count B can be written as follows,
{ InputB->"", B->0 }
{ InputB->T1:~{T1}:InputB, B->1+B }
{ InputB->T3:~{T3}:InputB, B->14+B }
or
InputB->"", B0 }
InputB->Tls:InputB, B->14B }
InputB->T3s:InputB, B->1+B }
T1s->T1:~{T1} }
T3s->T3:~{T3} }.
This subprogram does not use the notion of state transitions. In the same way, the subprogram to
count D is rewritten as follows,

Lo T e D e T e B e}

{ InputD->"", D->0 }
{ InputD->T1:~{T1l}:InputD, D->D }
{ InputD->T3:”{T3}:InputD, D->1+4D }.
It is not so difficult to implement this control structure in the Gramp interpreter.

3.4.Loop fusion

We find that both structures of the above subprogram to count B and D are quite similar
except "B->1+B" and "D->D" in each second rule-set, respectively. Further more, the subprogram
to count C can be rewritten as the following subprogram similar to the above two,

{ InputCc->"", Cc->0 }

{ InputC->T1:~{T1}:InputC, C->1{+13}+C }

{ InputC->T3:~{T3}:InputC, c->C }
Since the symbols InputB, InputC and InputD are bound by InputB==InputC==InputD, these
three subprograms can be merged in one subprogram which expresses the relation between four
nonterminal symbols InputBCD, B, C and D, and then InputB==InputC==InputD can be replaced
by one nonterminal symbol InputBCD. Finally the program is given as follows,

main problem4 2

{ CardSeq->InputA:T1:InputBCD:T2, .. }

{ InputBCD->"", B->0, c—>0, D->0 }

" { InputBCD->T1:~{T1}:InputBCD, B->1+B, C->1{+1}+C, D->D }
{ InputBCD->T3:7~{T3}:InputBCD, B->1+B, C->C, D->1+D }
end

The program transformation technique from the naive program problem4 into the above program

problem4 2 is similar to the so-called loop fusion well known in the field of functional

programming [8]. Some other program transformation techniques in CCFG are presented in [5].
At last the final versions of the program to solve the problem 4 is illustrated in figure 2.

4.The Magic Mailing Company
Next we solve the problem 7 in [1].

Problem 7 The Magic Mailing Company has just sent out nearly 10000 letters containing an
unrepeatable and irresistible offer, each letter accompanied by a returnable acceptance card. The
letters and cards are individually numbered from 1 to 9999. Not all of the letters were actually sent,
because some were spoilt in the addressing process. Not all of the people who received letters
returned the reply card. The marketing manager, who is a suspicious fellow, thinks that his staff
may have stolen some of the reply cards for the letters which were not sent, and returned the cards

so that they could benefit from the offer.
The letter sent have been recorded on a file; there is one record per letter sent, containing the

main problemd
{ ?Input ("inputFile")==CardSeq, Output==?LinePrinter }

{ CardSeg->InputA:T1l:InputBCD:T2,
Output—->T1:T2:"A=":!charStr(a) :\cr\:
"B=":!charStr(B) :\cr\:
"C=":!charStr(C) :\cr\:
"D=":!charStr (D) :\cr\ }

{ Inputa->"", a->0 }

{ InputA->T20rT3:Inputa, A->1+A }

{ InputBCD->"", B—>0, c—>0, D—>0 }

{ InputBCD->T1:”~{T1l}:InputBCD, B->1+B, C->1{+1}+C, D->D }

{ InputBCD->T3:”{T3}:InputBCD, B->1+B, C->C, D->14D }

{ T20rT3->T2|T3 }

{ T1->"1":CharString:\cr\ }
T2->"2":CharString:\cr\ }
{ T3->"3":CharString:\cr\ }
end

———

Figure 2. The final version of the program to solve the problem 4

letter-number and other information which does not concem us. The reply cards are machine
readable, and have been copied to tape; each reply card returned gives rise to one record containing
the letter-number and some other information which again does not concern us. Both the letter file
and the reply file bave been sorted into letter-number order.

A program is needed to report on the current state of the offer. Each line of the report
corresponds to a letter-number; there are four types of line, each containing the letter-number, a
code and a message. The four types of line are:

NNNNN 1 LETTER SENT AND REPLY RECEIVED

NNNNN 2 LETTER SENT, NO REPLY RECEIVED
NNNNN 3 NO LETTER SENT, REPLY RECEIVED
NNNNN 4 NO LETTER SENT, NO REPLY RECEIVED

Two programs to solve this problem in different manners are given in figure 3 and figure 4.
In the programs four new notions, record data type, "let"”, "where" and "otherwise", are used.
They are explained in the following subsections.

The program in figure 3 is effective for the bottom-up interpreter. Contrarily, the program
effective for the top-down interpreter is given in figure 4. The comparisons of the execution by the
bottom-up interpreter with the top-down interpreter are discussed in the subsection 4.4.

4.1.Record data type

Gramp can define a term of the form record (..) as a record data type, which is declared by
the singleton rule-set as follows, :

{ ARecordType->record (fieldl->TypeOfFieldl, field2->TypeOfField2,..) }
where ARecordType is the name of the record data type and its field identifier names are fieldl,
field2, ... whose types are TypeOfFieldl, TypeOfField2, ... The types of the fields are defined
by rule-sets as follows,

{ TypeOfFieldl—>.. }

{ TypeOfField2->.. }

For example, the nonterminal symbols Letter and Reply in figure 3 express the record data types
of a letter and a reply card, respectively, and their fields are number, name and address.

Each field is referenced by its field identifier followed by the record type name and adot . "
just like "ARecordType . field1". For example, there appears the rule-set of the following form in
figure 3.

{ .., Letters->Letters:Letter, .., Linetl==Letter.number }

This rule-set means that Letters consists of the last Letter following Letters and that the value
of the number field in the Letter is equal to the value of the Line plus one. This is considered to
be the abbreviation of the following rule-sets

{ .., Letters->Letters:record (Number,Name,Address,..); .., Line+l==Number }

{ Number->Integer }

{ Name->CharString }

main problem?7

{ let Line==9999,
Letters=?InputFile ("letters"),
Replies==?InputFile("replies™),

Report==?LinePrinter }) ..(4.1)

{ Letter—>record(number—>Integer,namé->CharString,address->CharString) }
- (4.2)

{ Reply ->record (number—->Integer,name—>CharString,address—->CharString) }
‘ ..(4.3)

{ Line->0, Letters->"", Replies->"",
Report—->"" } ..(4.4)
{ Line—>Line+l, Letters—>Letters:Letter, Replies->Replies:Reply,
Report->Report:
!charStr (Line+l) :™ 1 LETTER SENT AND REPLY RECEIVED":\cr\,
where Line+l==Letter.number==Reply.number } ..(4.5)

otherwise
{ Line->Line+l, Letters—>Letters:Letter, Replies->Replies,
Report->Report:
!charStr(Line+1):" 2 LETTER SENT,NO REPLY RECEIVED":\cr\,
where - Line+l==Letter.number } . ..(4.6)
otherwise
{ Line->Line+l, Letters->Letters, Replies->Replies:Reply,
Report->Report :
'charStr(Line+l) :" 3 NO LETTER SENT,REPLY RECEIVED":\cr\,
where Line+l==Reply.number } . {4.7)
otherwise
{ Line->Line+1, Letters->Letters, Replies—->Replies,
Report—->Report :
!charStr (Line+l) :" 4 NO LETTER SENT,NO REPLY RECEIVED":\cr\ }
: ..(4.8)

end

Figure 3. The bottom-up program to solve the problem 7

{ Address—>CharString }
By using this notations, we can use record data types in Gramp in the same way as in Pascal.

4.2. "where” and "let"
Conditions whether a rule-set can be applied or not are represented by left-hand-omitted-rules
of the form "..==...” in the rule-set. For example, the following rule-set
{ Line->Line+l, Letters—>Letters:Letter, ..,
- Linet+l==Letter.number }
means that Line and Letters are rewritten as Line+1 and Letters:Letter, respectively, if it
holds that the value of Line+1 is equal to that of Letter.number. In order to emphasize the
meaning of the left-hand-omitted-rule, the word "where™ may be inserted before the rule as
follows, '
{ Line->Line+l, Letters—}Letters:Letter, ey
" where Line+l==Letter.number}
Although "where" has no meaning for the program execution, the latter rule-set is more readable

than the former.

main problem7_2

- { let Line==1,

Letters==?InputFile ("letters"),
Replies=—=?InputFile("replies"),

Report==?LinePrinter } ..(4.9)
{ Letter->re¢ord(number—>Integer,name->CharString,address—>CharString) }
. ..(4.10)
{ Reply ->record(number—>Integer,name—>CharString,address->CharString) }
.(4.11)
{ Line->10000, Letters—>"", Replies—>"",
Report->"" } . .. (4.8)
{ Line->Line-1, Letters->Letter:Letters, Replies->Reply:Replies,
Report->!charStr (Line-1) :" 1 LETTER SENT AND REPLY RECEIVED" :\cr\:
Report, v
where Line-1=Letter.number==Reply.number } .. (4.9)
otherwise
{ Line->Line-1, Letters->Letter:Letters, Replies—->Replies,
Report->!charStr (Line-1) :" 2 LETTER SENT,NO REPLY RECEIVED":\cr\:
Report,
where Line-l==Letter.number } ..(4.10)
otherwise
{ Line->Line-1, Letters—>Letters, Replies->Reply:Replies,
Report—>!charStr(Line—1) :" 3 NO LETTER SENT,REPLY RECEIVED":\cr\:
Report,
where Line-1==Reply.number } .(4.11)

otherwise
{ Line—>Line-1, Letters—>Letters, Replies—->Replies,
Report—>!charStr (Line~1) :" 4 NO LETTER SENT,NO REPLY RECEIVED":\cr\:

Report } ..(4.12)

end

Figure 4. The top-down program to solve the problem 7

In the same sense as "where”, the word "1et ™ may be inserted before the
lefi-hand-omitted-rule if it can be regarded as an initial assignment of a value to a nonterminal
symbol at the beginning of the program execution. For example, in figure 3 we can see that the
following three rule-sets express the 9999 times iteration.
{ Line==9999, ..}
{ Line->0, ..}
{ Line->1+Line, ..} ’
The first rule-set means the initial assignment of 9999 to Line, and the second means the
completion condition of the iteration for the value of Line, and the third means the count-down
procedure for the value of Line. In this case, the first rule-set may be rewritten as follows,

{ let Line==9999, ..}
The intuitive meaning of the left-hand-omitted-rule becomes clearer.

4.3."otherwise” '

Often we want to write the control structure: "if el==e2 then <then-part> else
<else-part>" in a program. As for Gramp, it is expressed as follows,

{ <then-part>, where el==e2 }

{ <else-part>, where el'—e2 }.
Here !=is an inequality symbol, the details of which are not discussed in this paper. However it is
quite redundant to write two similar equations "el==e2" and "el!=e2" in a program and
inefficient to evaluate the similar equations twice. :

A new control mechanism is introduced by using a word "otherwise™ as follows,

{ <then-part>, where el==e2 }

otherwise

{ <else-part> }
At the time when both rule-sets are applicable, the Gramp interpreter first tries to apply the rule-set
above the "otherwise". If both sides of e1==e2 are further replaced by a same ground term, the
interpreter never retry to apply the other one under the "otherwise™ even if back-tracks arise after.
If both sides of e1==e2 can never be replaced by any same ground term, the interpreter does apply
the other one next at the time a back-track arises. The similar mechanism can be seen in the
- Edinburgh Prolog [7] as a cut "!". A rule-set written above an "otherwise™ has at least one
left-hand-omitted-rule with a "where™.

In figure 3, there are three "otherwise"s, which express "if .. then .. elseif .. then

.. elseif .. then .. else ..".

4.4.Bottom-up solving and top-down solving

At last, we see that the Gramp program in figure 3 solves the problem 7. This program use
the newly introduced notations, record data types, "where", "let" and "otherwise". The rule-set
(4.1) is the main rule-set which connects nonterminal symbols with the system's input/output
devices. The rule-set (4.2) and (4.3) define the record data types of Letter and Reply. The
rule-set (4.4) defines the termination condition of iteration that it terminates if both sequence
Letters and Replies become empty and the line number (the value of Line) is zero. The rule-sets
from (4.5) to (4.8) define the four kind of processing context. The rule-set (4.5) expresses the
case 1 that Letters and Replies contain Letter and Reply, respectively, whose numbers are
equal to the line number. The rule-set (4.6) expresses the case 2 that Letters contains Letter
whose number is equal to the line number but that Replies does not contain such Reply. The
rule-set (4.7) expresses the case 3 that Replies contains Reply whose number is equal to the line
number but that Let ters does not contain such Let ter. The rule-set (4.8) expresses the case 4
that neither Let ters nor Replies contains an element whose number is equal to the line number.
In each case, the appropriate message is added to the Report.

In figure 3, we represent the iteration of reading a letter record as follows,

{ let Line=—=9999, Letters==?InputFile ("letters"), .. }

{ Line->0, Letters->"", ..} ‘

{ Line->Line+l, Letters->Letters:Letter, .. }

On the other hand, we can also represent it as follow,
{ let Line==1, Letters==?InputFile ("letters"), ..}

{ Line->10000, Letters->"", ..}

—_ 15 —

Line=9999 Letters=2?Input (...)

Letters
9999 / Ietter
/ 9998 Letter
I_etter S

7%\13 letter

Letters Letter

nm

Figure 3

Letters=?Input (...)

Line=1
/ / Letters
1 Ietter / \

letter

Ietters

/ Ietters
9998 / \

9999 Ietter Letters

10000 ' '"'

Figure 4
Figure 5. Derivation trees for the Gramp programs in figure 3 and 4

{ Line->Line-1, Letters—>Letter:Letters, .. }

" The former definition of Letters is left-recursive and is not suitable for being executed by a
top-down Gramp interpreter which reads the input sequence from left to right because many back
tracks arise (recall the actions of top-down parser on context-free grammars [6]). It is suitable for a
bottom-up interpreter (recall the actions of bottom-up parser [6]). Contrarily the latter definition is
not left-recursive and is suitable for a top-down interpreter. By looking one record ahead, it is
decidable which production rule should be applied, Letters->"" or Letters->Letter:Letters.
If the bottom-up Gramp interpreter executes the latter programs, it consumes much stack memories
(recall the actions of bottom-up parser).

Thus the former program is said to be a bottom-up program and the latter is said to be a
top-down one. The structures of these two kind of programs are illustrated in figure 5 by using
derivation trees.

5.Telegram analysis

Problem 13 An input file on paper tape contains the texts of a number of telegrams. The
tape is accessed by a "read block” instruction, which reads into main storage a variable-length
character string delimited by a terminal EOB character: the sizeof a block cannot exceed 100
characters, excluding the EOB. Each block contains a number of words, separated by space
character; there may be one or more spaces between adjacent words, and at the beginning and end
of a block there may (but need not) be one or more additional spaces. Each telegram consists of a
number of words followed by the special word "ZZZZ"; the file is terminated by a special end-file
block, whose first character is EOF. In addition, there is always a null telegram at the end of the
file, in the block preceding the special end-file block: this null telegram consists only of the word
"ZZZZ". Except for the fact that the null telegram always appears at the end of the file, there is no
particular relationship between blocks and telegrams: a telegram may begin and end anywhere
within a block, and may span several blocks; several telegrams may share a block.

The processing required is an analysis of the telegrams. A report is to be produced showing
for each telegram the number of words it contains and the number of those words which are
oversize (more than 12 characters). For purposes of the report, "ZZZZ" does not count as a word,
nor does the null telegram count as a telegram. The format of the report is:

TELEGRAM ANALYSIS

TELEGRAM1 15 WORDS OF WHICH 2 OVERSIZE

TELEGRAM2 106 WORDS OF WHICH 13 OVERSIZE

TELEGRAM3 42 WORDS OF WHICH 0 OVERSIZE

END ANALYSIS

The Gramp program to solve this problem is giveh in figure 6

main probleml3
{ ?PaperTape—=BlockFile,
NOEOBBlockFile==TelegramFile,

Report==?LinePrinter } . (5.1)
{ BlockFile—> {Block}: LastBlock: EndFileBlock,
NOEOBBlockFile—>{NoEOBBlock} :NoEOBLastBlock :NoEOBEndFileBlock }
..(5.2)
{ Block->CharString: \EndOfBlock\,
NOEOBBlock->CharString:\space\ } : . (5.3)
i LastBlock->CharString:"ZZ2zz" : \EndOofBlock\,
NoEOBLastBlock->CharString: \space\ } ..(5.4)
{ EndFileBlock->\EndOfFile\,
NoEOBEndFileBlock—>"" } .(5.5)
{ TelegramFile->Telegrams:Spaces,
Report—>"TELEGRAM ANALYSIS":\cr\:ReportBody:"END ANALYSIS",
with TelegramsCount } ’ ..{5.6)
{ Telegrams->"", ReportBody->"", TelegramsCount—>0 } . (5.7)

{ Telegrams->Telegrams:Spaces:Telegram,
ReportBody—->ReportBody:
"TELEGRAM" ; | charStr (TelegramsCount+1) : \tab\ :ReportLine,
TelegramsCount—>TelegramsCount+1 } ..(5.8)

{ Telegram—->Words:Spaces:"2222",
ReportLine->!charStr (WordsCount) :" WORDS OF WHICH ”":
IcharStr (OverSizeWordsCount) : " OVERSIZEY:\cr\ } ..(5.9)

{ Words->"", WordsCount->0, OverSizeWordsCount->0 } - (5.10)

{ Words->Word:Spaces:Words, WordsCount->WordsCount+1l,
OverSizeWordsCount->0OverSizeWordsCount,
where WordSize < 13 } . (5.11)

otherwise

{ Words->Word:Spaces:Words, WordsCount->WordsCount+l,
OverSizeWordsCount—->0OverSizeWordsCount+1l } ..(5.12)

{ Word->{AlphaNumeric}, WordSize->0{+1} } ..(5.13)
{ Spaces—>\space\:{\space\} } .. (5.14)
end »

Figure 6. The program to solve the problem 13

5.1.Intermediate file

It is known that this problem should be solved by using an intermediate file because of the
structure clash between the input file of blocks and the format of the report. In Gramp such an
intermediate file is implemented by a left-hand-omitted-rule as in the main rule-set (5.1) in figure 6.
Here ?PaperTape is the special nonterminal symbol which expresses a papar-tape device in our
system. The nonterminal symbol BLockFile means the sequence of blocks which are separated by
\EndOfBlock\ marks. Eliminating all \EodofBlock\ marks, it is translated into the sequence
NOEOBBLockFile of telegrams which are separated by the special words "zzzz". This is connected
with TelegramFile by using ==. The sequence Report is obtained by analyzing Telegramrile,
and it is printed out to the line printer device.

Hence the Gramp program to solve this problem consists of three parts, the main rule-set

(5.1), the subprogram (the rule-sets from (5.2) to (5.5)) to translate BlockFile to
NoEOBBlockFile, and the subprogram (the rule-sets from (5.6) to the last) to obtain Report from
TelegramFile.

5.2."with"

In the previous section, we have introduced the words "where™ and "1let™ in order to make
Gramp programs more readable. One more word "with" is introduced here, which is followed by
one or more nonterminal symbols as follows,

{ .~->.Telegrams.., ..~>.ReportBody.., with TelegramsCount } - ..(5.6)
in the same way as in the rule-set (5.6) in the figure 6. This rule-set has the same meaning as the
following rule-set,

{ .~>.Telegrams.., ..—>.ReportBody.., where TelegramsCount==Any } ~ ..(5.6)°
or '

{ let TelegramsCount==Any, ..—>..Telegrams.., ..->.ReportBody.. }. ..(5.6) 77
Since any means an arbitrary data object, the value of the TelegramsCount is not bound. However
it is required that there appears TelegramsCount in the right-hand sides in the rule-set, because the
three nonterminal Symbols Telegrams, ReportBody and TelegramsCount must be simultaneous! ly
rewritten by the rule-set (5.7) or (5.8). In this case, we should use the word "with™".

Of course we can write the rule-set as

{ ..—>.Telegrams.., ..~>.ReportBody.., TelegramsCount},

(5.6)" or (5.6)”". However the meaning of TelegramsCount is not clearly readable from the text.

6.Comparison of Gramp with Prolog

Arbitrary Prolog program can automatically be translated into the equivalent Gramp program
and vice versa [3]. This transformation shows us that the mathematical structures of both programs
are in the dual relation. Therefore the results discussed in one paradigm are also available in the
other paradigm. However the mathematical relationship does not always imply the similar
programming styles and techniques. In this section we overview what kind of problems are suitable
for solving in Gramp and what for solving in Prolog.

Our first suggestion is that the problem whose input/output data structures are hierarchical
and easily written in context-free grammars are more suitable for Gramp than Prolog. The problem
4,7 and 13 described above are such problems. ‘

For example, the Gramp program in figure 2 is translated into the Prolog program in figure -
7. Here we assume that this Prolog, just like Prolog III [10], can treat strings and rational numbers

in the same way as terms, the predicate symbol charString is system-defined and an atom
charString (X) is true if X is a character string, and that ! charstr(..) is a function-call same as in
the figure 2. Several variable names in the figure 7 are the same as the nonterminal symbol names
appearing in the figure 2. Since a regular expression can not be used in Prolog, it is expressed by

?-input ("inputFile",X) ,problemd (X, Y),linePrinter (Y) .

problem4 (InputA:T1:InputBCD:T2,
T1:T2:
"A=":!charStr(A) :\cr\:
"B=":!charStr (B) :\cr\:
nC=":!charStr(C) :\cr\:
wD=": !charStr (D) :\cr\) :-t1(T1),t2(T2),processA (Inputh,d),
processBCD (InputBCD, B, C,D) .

processA("",0).
processA (X:Inputh, 1+A) :—t2ort 3 (X) ,processA (Inputh, A)

processBCD("",0,0,0) .
processBCD (X, 1,Y,1) :—processTls (X, Y) .
processBCD (X:Y: InputBCD, 1+B, Z2+C, 14D) :-processTls (X, 2) ,t3 (Y),
processBCD (Y: InputBCD, B, C,D) .
processBCD (T3s,1,0,1) :-t3s(T3s) .
processBCD (X:Y:InputBCD, 1+B,C, 14D) :-t3s (X) , t3(Y),
processBCD (Y: InputBCD,B,C,D) .

processTls (X,1) :-t1(X). .
processTls (X:Y,1+2) : -t1 (X) ,processTls (Y, Z) .
t20rt3(X) :-t2(X):;t3(X).

t3s(X):-t3(X).

£3s(X:Y) :-t3(X),t3s(Y).

t1("1":X:\cr\) :-charStr(X).
t2("2":X:\cr\) :-charStr(X) .
£3("3":X:\cr\) :-charsStr(X).

Figure 7. The Prolog program to solve the problem 4

‘several clauses.
In the Gramp program, it is easy to read each input/output data structure by extracting the
context-free rules related to the data structure.
Inputa->"",
InputA->T20rT3:InputA.
From these two rules we can easily understand that Inputa is a sequence of T2orT3. On the other
hand, in the Prolog program the structure of the first argument of the predicate proceesa(..),
which corresponds to the nonterminal symbol Inputa, is obtained by abstracting second argument
parts of the atoms as follows,
processa("",..).
processA (X:Inputh,..) :—t2ort3 (X) ,processA (Inputh,..)
We see that the data structure is directly readable from the former context-free rules while indirectly
from the latter definite clauses.

Our second suggestion is that the problems in which there are a number of complicated
relations rather than their hierarchical data structures are suitable for Prolog than Gramp. For
example, there is a well known problem about ancestors-descendant relation written in Prolog as
follows, |

ancestor (X,Y) :—father (X, Y) .

ancestor (X, 2) :—father (X, Y) ,ancestor(¥,2) . =
father (a,b) .
father(b,c).

This program is translated into the following Gramp program,
{ Ancestor->Father, Descendant->Child }
{ Ancestor->Father, Descendant->Descendant,
where - Child==Ancestor }
{ Father->a, Child->b }
{ Father->b, Child->c)

This Gramp program is not so readable as the Prolog program, because the relations can not be
expressed well. In this case, the input/output data structures are simple and the context-free rules
which express the data structure of Ancestor are as follows

Ancestor—->Father

Ancestor->Father,

Father—>a,

which show almost nothing.

7.Concluding remarks \

In this paper we have introduced a programming language: Gramp based on CCFG and
shown that Gramp is effective to express the programs whose input/output data objects have some
kind of structures, especially hierarchical ones in the sense of the Jackson program development
method. Although Gramp and Prolog stand on a common mathematical basis, their syntaxes are
quite different from each other. Hence a programmer should choose the effective one according to a
problem to solve.

We are now developing the Gramp interpreter which can execute the program described in
this paper.

Reference

[1]1 Jackson, M. A. : Principles of Program Desigri, Academic Press (1975).

[2] Yamashita, Y. and Nakata, I : Programming in Coupled Context-Free Grammars, submitted
for publication.

[3] Yamashita, Y. and Nakata, L : On the Relation between CCFG Programs and Logic
Programs, submitted for publication.

[4] Yamashita, Y. and Nakata, I. : The Unified Theory of CCFG Programs with Logic and

51
(6]

(71
(83

9]

Functional Programs, Institute of Electronics, Information and Communication Engineers,
Workshop Report on Computation, COMP 87-40 (1987), (In Japanese)

Nakata, I and Yamashita, Y. : Program Transformations in Coupled COntext-Free
Grammar, Computer Software, to appear (1988). (In Japanese)

Aho, A. V. and Ullman, J. D. :The Theory of Parsing, Translation, and Compiling,
Volume I: Parsing, Prentice-Hall (1972).

Clocksin, W. F. and Mellish, C. S. : Programming in Prolog, Springer-Verlag (1981).

‘Burstall,R.M. and Darlington,J. : A Transformation System for Developing Recursive

Programs, _J ACM 24(1977), pp.44-67.
Lalonde; W. R. : Regular Right Part Grammars and their Parsers, C. ACM, Vol.20, No.10

(1977), pp.731-741. |

[10] Colmerauer, A. : Opening the Prolog IIl Universe, BYTE, August (1987), pp-177-195.

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKURA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

| REPORT NUMBER ‘
REPORT DOCUMENTATION PAGE ISE-TR~-88.-73

TITLE ..
Programming in Gramp:

a programming language based on CCFG

AUTHOR(S)

" Yoshiyuki YAMASHITA,
Tkuo NAKATA ,

REPORT DATE NUMBER OF PAGES

Jun. 1, 1988 22

MAIN CATEGORY CR CATEGORIES
Programming Languages D.1, D.3

KEY WORDS

Programming Language, Coupled Context-Free Grammar,
Data Structure Directed Programming, The Jackson Methogi

ABSTRACT

Gramp is a declarative programming language based on Coupled Context-Free Grammar
(CCFQ). It is considered that Gramp is effective to express the programs whose input/output data
objects have some kind of structures, especially hierarchical ones. In this sense CCFG formalizes
and Gramp embodies the Jackson program design. Here some problems described in [1] are
expressed in Gramp programs. It is shown that the programs are more readable than in other
languages. Several ideas of syntax-sugaring and control in Gramp are also discussed.

{11 Jackson, M. A. : Principles of Program Design, Academic Press (1975).

SUPPLEMENTARY NOTES

