ISE-TR-88-72

Unfold/Fold Program Transformation in CCFG Programming

by

Yoshiyuki YAMASHITA and |kuo NAKATA

June |, 1988

Jan.16.1987

Unfold/Fold Program Transformation
in CCFG programming

Yoshiyuki YAMASHITA and Ikuo NAKATA,

Institute of Information Sciences and Electronics,
University of Tsukuba.

Abstract ‘
The program transformation rules, unfolding, folding and replacement, in CCFG

programming are proposed. Because of the resembance between CCFG programming and logic
programming, we can defined the rules in the same way as in logic programming. The correctness
is also discussed.

LIntroduction

Unfolding and folding are central techniques to transform programs into effective ones. They
~ are first proposed in the areas of functional programming by Burstall and Darlington [5], and also
in the area of logic programming by some people [6],[7]. The correctness of the transformations
are studied by Tamaki and Sato [8] and so on [9]. Such transformation techniques as unfolding,
folding and replacement are known in most of program manipulation systems. We think that if one
system stands on a strict mathematical foundation, such program transformation techniques can be
well defined in the system as well as in functional and logic programmings.

CCFG programming is a grammatical programming system based on the formal grammar:
Coupled Context Free Grammar (CCFG) [11,[2],[31,[4]. In CCFG programming, a CCFG is
interpreted as a program and its execution is a derivation of tuples of terminal strings by the
program. Since the semantics is denotated by a set of n-tupels of terminal strings, and the terminal
strings can be considered as input/output objects, CCFG programs represent the relations of the
input/output objects. Because of representing the relations, CCFG programming has similar feature
to logic programming and there exists the transformation from an arbitrary logic program into the
corresponding CCFG program preserving the equivalence of the meanings.

In this paper we propose the unfold, fold and replacement rules in CCFG programming.
Because the mathematical structures of CCFG programming and logic programming are equivalent,
as described above, we can construct the transformation rules in the same way as in logic
programming. In this paper we mainly refer the studies by Tamaki and Sato[8]. They have proved
the correctness of the rules and we expect to prove our transformation rules in CCFG programming

in the same way.

The authors have proposed some ideas of the global strategies of CCFG program
transformation in [3]. Context free grammars embedded in a CCFG program are interpreted as the
representations of input/output data structures of the program, and such interpretation may give us
new transformation strategies which are oriented to input/output data structures defined by context
free grammars. The transformation rules presented in this paper become the mathematical basis of
such strategies.

In section two, CCFG programming is briefly reviewed. Readers not familiar with CCFG
programming are expected to read [1], [2] and [4].

In section three, some simple transformation rules are defined, which deal with only one
rule-set at a time and transform it into another. These transformation rules play the auxiliary roles in
the sequences of transformations. Their correctness is obvious.

In section four, unfolding, folding and application of replacement rules are defined in the
same way as [8]. |

In section five, three examples of transformation are presented. The first one is to transform
the program described in section two which defines an indirect relation between input and output
objects using a intermediate file, into the program which defines a direct relation between them. The
second one is to transform the program to calculate a squared integer n? (n is an integer) using the
multiplier subprogram, into a more effective one . The last one is to transform the program to
calculate a Fibonacci number, into a more effective one.

In section six, the correctness of the transformation rules are briefly discussed. The abstract

- line of the proof is given.

Glossary Symbols.

Nonterminal symbols are denoted by upper case letters A,B,...X,Y,...

Terminal symbols are denoted by lower case letters a,b,...

Strings composed of nonterminal symbols, terminal symbols and a meta symbol "=" are
called strings and denoted by lower case greek letters o.,B,...

A n-tuple of strings is denoted by upper case greek letter 2.

Terminal strings are denoted by italic lower case letters x.y,...

All the concatenation operators for strings and tuples of strings are denoted by a colon ":".

2.CCFG Programming
Here we briefly review CCFG programming in order to prepare for the discussions in the

following sections. ‘
In CCFG programming, a program is a quadruple to define a CCFG. For example, the
following quadruple is a program to represent strings composed of symbols "a" and "b", and their

Teverse,

G 1 =(N’T’QS ’R)’

N={X,Y},

T={a,b},

Qg=(X,Y),

R={ {X—¢, Yore},
{X—aX, Y->Ya},
{X-bX, Y>Yb}},

where N is the finite set of nonterminal symbols, T the finite set of terminal symbols, g the
n-tuple of start symbols, and R the finite set of rule-sets. A rule-set is a set of rules, and it can be
applicable to a tuple of sentential forms derived from Cg if the tuple contains all the nonterminal
symbols which appear in the left-hand sides of rules in the rule-set. A derivation is a sequence of
applications of rule-sets. One example of the derivations by the program is given bellow,

Qg=(X,Y)=>(aX,Ya) by {X—aX, Y->Ya}
=>(abX,Yba) by {X—bX, Y>Yb}
=>(abbX,Ybba) by {X—bX, Y—>Yb}
=(abb,bba) by {X—¢€, Y—oe}.

The above derivation generates the couple (abb,bba) of terminal strings. The set of couples of
terminal strings derived as above is the language generated by the program and it is also the
meaning of the program. In this case, the language L(G1) is a set of the couples of terminal strings

reversed each other, that is
L(G1)={(g,€),(a,2),(b,b),(ab,ba),(ba, ab),(abb,bba),..}.

Therefore we say that program G reverses strings.

Context free grammars are often interpreted as the representations of data structures. If we
consider the context free grammars embedded in a program, they can be also interpreted as the
representations of the input/output data structures in the prograrri. In the case of the above
example, there are two context free grammars,

{X—¢, X—aX, X—bX]},

and
{Y—e, Y>Ya, Y>Yb},

embedded in program G1. This interpretation is important to understand CCFG programs.

The above example is similar to a scheme of syntax directed translations [10]. More
expressive powers of CCFG programming than that of syntax directed translations are given by the
idea of multiple data structures by using a new meta symbol "=". A multiple data structure
is just like an intersection of context free languages. For example, in the following CCFG program
G, the nonterminal symbol Q defines a multiple data structure,

G2=({ Q,Y,Z} »{a,b},(Q),R),
R={ (Q-Y~Z)
{Y—e}, {Z—>¢},
{Y—aYb}, {Z—abZ}}.

The _derivﬁtion rule for the meta symbol "=" is given that if a derived terminal string contai
"=" (for example x=y), and both sides are same (that is x=y), then we say the derivation is
successful and generates a factor of the language. If a derived terminal string contains "="
both sides are different from ¢ach other (that is x#y), then we say that the derivation is failed.
Both examples of successful and failed derivations by program G, are given as follows.

and

Q = Y=Z = aYb=Z = ab=Z = ab=abZ = ab=ab.

This is successful, because "ab"="ab".

Q= Y=Z = aYb=Z = ab=Z = ab=abZ => ab=ababZ = ab~abab.

This is failed, because "ab"#"abab".
In this way, it is easily understood that

L(Gy)={x | Q="x=x}={g,ab},
where = means the reflective and transitive closure of =. In this case, L(G5) is equal to the set

E3 *
x1 Y= x}In{xZ= x}.
The meta symbol "=" also plays an important role to represent an indirect relation between

objects, as seen in the following program Gg3,

G3=({P.QRX,Y.ZW},{a,bc,d.e},(PQR)R),

R={ {P-X, Q-Y=Z, R-H5W]},
{X—>e, Yo}, (Z—e, W-e),
{X—aX, Y-ocY}, {Z—cdZ, W—eW},
{X—=bX, Y—>dY}}.

Under the derivation rule for "=", the language generated by program Gg is obtained as follows,

L(G3)={(xy,2) | B.QR)="(x.y~y.2)}
={(g,&,¢),(ab,cd;e),(abab,cdcd,ee),... }
={((ab),(cd)™,e™) | n=0}.

Program G3 contains two subprograms. One sﬁbprogram is specified by the rule-sets

{X—>e,Y—¢}, {X—>aX,Y—cY} and {X—bX,Y—dY}, which means that the couple (X,Y) of the
nonterminal symbols derives couples (x,y), where x is a terminal string composed of the terminal
symbols "a" and "b" and y is the string obtained by changing "a" and "b" in x to "¢" and "d"
respectively. Another subprogram is specified by the rule-sets {Z—¢,W—¢} and
{Z—cdZ,W—eW}, which means that (Z,W) derives a couple ((cd)n;en) for any n=0. The
connection of these two subprograms by "Y=Z" restricts the derivations and makes a new indirect
relation between the terminal strings derived by the start symbols P and R.

If we pay attention only to the indirect relation between P and R and have no interest in Q,
then the left-hand side of the rule Q—Y=Z may be omitted and the right-hand side Y=Z may be
used as a rule. Such a rule is called a left-hand-omitted-rule. Notice that a
left-hand-omitted-rule may not have a meta symbol "=" in general. Then we can revise program G

as follows,

G4=({P,R.X,Y,Z,W},{a,b,c.d,e},(P,R),R),
R={ ({P-X, Y=Z, R—HW},
{X—e, Y-—¢l, {Z—e, Woe},
{X—aX, Y—cY}, {Z—>cdZ, W—eW]},
{X—-bX, Y—dY}}.

As described above, CCFG programs define the relation of input/output objects. In this
sense, CCFG programming is similar to logic programming, and we can show that both
programming systems stand on the same mathematical background, by showing the program
transformation from an arbitrary logic program into the corresponding CCFG program preserving
the equivalence (see section six and [2]). In this paper we can use this transformation in order to
prove the correctness of program transformation rules (unfolding, folding and replacement)

presented in section four.

CCFG programming has been briefly described. More discussions are presented in
[11,[21,[31,[4].

3.Simple Program Transformation Rules

Although unfolding, folding and replacement are the central transformation rules, there are
some other primitive transformation rules, which play the auxiliary roles in the sequences of
transformations.)

For example, the rule-set {X—Y, a=a} in a CCFG program can be said to be equivalent to
the rule-sets {X—Y} because if there exists a successful derivation using the former rule-set, it is
clear that there exists a successful derivation using the latter rule-set and if there exists a successful
derivation using latter, so the former. For another example, the rule-set {X—Y, a~b} can be
eliminated from the program because the derivation in which the rule-set is applied at least once,

contains the sentential form "a=b" in itself and such a derivation is not successful according to th

derivation rule for "=" by any means.
In this way, some transformation rules are found as follows. Their correctness is evident. we

call them simple rules.

Definition(substring). Let o be an arbitrary string composed of terminal symbols,
nonterminal symbols and the meta symbol "=". The substrings of o are defined as follows,

(1) if o contains no meta symbol "=" and a=fy, then B and 7y are substrings of c.

(2) if a=Botyy=...=Po,Y, then oy =...=o, is a substring of a.. '

(3) if a=0ty=...=0,, then g =~...~0 (n2fj21, i2j>1) is a substring of a.

(@) if o=(B), then B is a substring of a, where "(" and ")" is the meta symbols which
express a parenthesis and satisfy that for arbitrary strings «, B, yand &

o(B~Y)8=afd~0ryd. ‘
(5) ifBisa subsﬁ‘ing of o and yis a substring of B, then ¥ is a substring of c.

The set of all the substrings of a is denoted by Sub(c), and the‘set of all the substrings of
01,-.-,0p, s denoted by Sub({cty,...,05 }).

Simple rule-1. 1f a rule-set has a rule which has a substring a=at in its right-hand side, the
substring can be replaced by .

Example The rule-set {X—aZ, Y—b=aZ~aZ, c=c=T=T} can be transformed into the
rule-set {X—aZ,Y—b=~aZ, c=T}. Here the underlines are used only for highlighting. _

Simple rule-2. If a rule-set has a left-hand-omitted-rule o and also has at least one other
rules which has a substring o in its right-hand side, the left-hand-omitted-rule can be eliminated.

Example. The rule-set {X—aZ, Y->b=aZ, c=T, b=aZ} can be transformed into the rule-set
{X—aZ,Y—>b=aZ, c=T} by eliminating the underlined left-hand-omitted-rule.

Simple rule-3. If a rule-set has a rule which has a substring o in its right-hand side, a -
left-hand-omitted-rule o can be added to the rule-set. Notice that the substrings ¢ may or may not

contain the meta symbol "=".
This is the reverse rule of the simple rule-2.

Example. The rule-set {X—aZ,Y—b=aZ,c=T} can be transformed into the rule-set
{X—aZ,Y—b=aZ,c~T,b=aZ} by adding the underlined left-hand-omitted-rule. It can be also
transformed into the rule-set {X—aZ,Y—b=~aZ,c~T,aZ} because the underlined
left-hand-omitted-rule appears in the original rule-set.

Simple rule4. If a rule-set has a substring a=[and also has at least one other substring o
in itself, the latter substring can be replaced by B or a~.

Example. The rule-set {X—aZ, Y—b=aZ, c=T} can be transformed into the rule-set
{X—b, Yob=aZ, c=T} or the rule-set {X—b=aZ,Y—b=aZ, c=T} by replacing the underlined
substring for the substring "b" or "b=aZ", respectively.

Simple rule-5. If arule-set has a left-hand-omitted-rule xot;y=...=xo.,y, where x and y
(e T*) are common prefix and postfix of all the side of the rule, respectively, the
left-hand-omitted-rule can be replaced by oq=...=,.

Example. The rule-set {X—aZ, Y—>b=aZ, acd=aTd} can be transformed into the rule-set
{X—b, Y—>b=aZ, c=T} by eliminating the common prefix "a" and postfix "d" from the underline

rule.

Simple rule-6. If a rule-set has a left-hand-omitted-rule 0L1=...=0L,, the rule can be replaced
by xa.1y=...=xo,y for arbitrary terminal strings x and y .

This is the reverse rule of the simple rule-5.

Example. The rule-set {X—aZ, Y—b=aZ, c=T} can be transformed into the rule-set
{X—b, Y—>b=aZ, acd=aTd} by appending the prefix "a" and postfix "d" to the underlined rule.

Simple rule-7. If a rule-set has a left-hand-omitted-rule x=...=x, where x is a terminal

string, it can be eliminated from the rule-set.

Example. The rule-set {X—aZ,Y—b=aZ, cd=cd} can be transformed into the rule-set
{X—b,Y—b~aZ} by eliminating the underlined rule.

~ Simple rule-8. 1f a rule-set in a program has the right-hand side o1 =...=a, of a rule, and
some o and b (n2i,j=1) are not unifiable, the rule-set can be eliminated from the program.

Non-unifiability between strings o and o holds if o;6 # aje for any substitutions 6 of strings
into nonterminal symbols which appear in o; and 0.

The reason why the simple rule-8 can be stated is because when the rule-set has been
applied, the derived tuple of sentential forms always contains the substring 4= and such a
derivation is not successful by any means under the derivation rule for the meta symbol "=". Since
the meaning of a CCFG program depends on only successful derivations, the rule-set which
always generates failed derivations may be eliminated from the program and the meaning of the
transformed program is equivalent to that of the original one.

As described in the following sections, the simple rule-8 is used in order to eliminate the

useless rule-sets which are derived after an unfolding operation.

Example. If there exists a rule-set {X—aZ, Y—b=aZ, c=d}, this rule-set can be eliminated
from the program by simple rule-8 because the rule-set has the non-unifiable substring “c~d".

Déefinition(anonymous nonterminal symbol). The symbol "*" is called an anonymous
nonterminal symbol to derive any terminal strings, that is

(x| *=*x)}=T".

Anonymous nonterminal symbols always appear in the CCFG program transformed from a logic
program. They correspond to variables in the logic program.

Simple rule-9. 1If arule-set in a program has a substring X=[and the program contains the
rule-set {X—>*}, all the nonterminal symbols X which appear in the right-hand sides of the rules in
the rule-set can be replaced by B.

Example If there exist rule-sets {X—AZ, Y—b=AZ, c=T, A=a}, and {A—*}, considering
the nonterminal symbol A, the rule-sets can be transformed into the rule-set {(X—aZ, Y—b=aZ,
c=T, a=~a}. And further it can be transformed into the rule-set {X—aZ, Y—b=aZ, c=T} by the
simple rule-7.

Simple rule-10. 1If a rule-set in a program has a substring @, the substring can be replaced
by a new nonterminal symbol X which does not appear in the original program provided, the
left-hand-omitted-rule X=~c. is added to the rule-set and the rule-set {X—+*} is added to the

program.

Example If there exists a rule-set {X—aZ, Y—b=aZ, c~T} in a program, it can be
transformed into {X—aZ, Y—A=~aZ, c=T, b=A} and the rule-set {A—*} can be added to the

program.

The above ten simple rules are applied in the way between the tranformation sequences of
unfolding, folding and replacement presented in the next section and play the auxiliary roles in the

sequences.

4.Program Transformation Rules
Here we propose CCFG program transformation rules so called unfolding, folding and
replacement. These rules have been well known in functional and logic programming. Espécially '

we refer to the corresponding rules in logic programming studied by Tamaki and Sato[5] in order to
construct those in CCFG programming. The correctness of the application of the rules is discussed

in section six.

Déefinition(set of nonterminal symbols). For a string o, N(ct) denotes the set of all the
nonterminal symbols which appear in c. , »

For a set S={ a,..., ;} of strings, N(S) denotes the set of all the nonterminal symbols in
the strings in S, N(ap)u...U N(a). .

For a rule-set R={X{—ay, ..., X;—=04, B1,..r Bj}, Nief(R) denotes the set of all the
nonterminal symbols in the left-hand sides of the rule in R, {X1,...Xj}, and Nright(R) denotes the
set of all the nonterminal symbols which appear in the right-hand sides of the rules in R,

N(o V... UN(e;)UN(Bpu...L N(Bj).

Definition(rule-set application). Let R and R2={X1—)(xl,...,Xi—)oai,Bl,...,Bj} (121,j20)
be two rule-sets. If Nright(Rl) contains Nj.£(R5), that is

NrightR1)2Njes(R2),
then the rule-set
R=(R;{X /01, ..., Xi/ai})U{Bl’""Bj}’

is said to be the result of applying Ry to Ry, where Rq{X;/0iy,...,X;/0} means the simultaneous
substitutions of o (i2k>1) into Xy in the right-hand sides of R;.

If the names of the nonterminal symbols which originally appear in Ry and are not replaced
by the substitution conflict with the names of the nonterminal symbols which appear in the
right-hand sides of the rules in R,, that is

(Nright(RD-Nief(RoIN N Rp)#9,

then we suffix numbers to the names of the substituted nonterminal symbols so that such

nonterminal symbols may be identified.

, Example. The result of applying the rule-set {Z—¢€, W—¢} to the rule-set)
{P>X,Y=~ZR—-W} is {P—X, Y~¢, R—e}. The result of applying the rule-set {Z—X, W—Y)
to the rule-set {P-X,Y=Z, R—W} is {P-X, Y=X»,, R—>Y2}. In the second case, because the
name conflicts appear, the suffixed names X5 and Y of the nonterminal symbols are used for X
and Y. '

Definition(unfolding). Let G be a CCFG program, R be a rule-set in G, M be a set of
nonterminal symbols, and Ry,..., R}, in G be all the rule-sets which are applicable to R and satisfy
that '

Nieft(R1)= .= Nief(Rp)=M.

Let R'; (n2i21) be the result of applying R; to R. We call the set {R',....R'y} the result of
unfolding R by Ry,..., Ry, ‘

Example. In program Gy, the result of unfolding the rule-set {P—X,Y=Z,R—W} by the
rule-sets {Z—e€,W—¢)} and {Z—Zab,W—Wc} is the set
{ {P—)X,Yz&,R—)&:} J{P-X,Y=ZabR—Wc}}.

Definition(folding). Let
R1={X1—>a1,...,Xi——>ai, Bl,.;., B_]]’ (i21,j20),
and Q
R2={Y1—)71,...,Yk—-)'Yk, 51,..., Sm}, (k=1,m>0),
be two rule-sets in a CCFG program G. If the following three condiﬁoné hold,
SUb({al,...,ai})USUb({Bl,...,ﬁj}'{81,..., Sm})g {'Yl:"-"Yk}:
{ﬁl,...,Bj};) {81,..., Sm},
and
Nnght((Rl' { 81 r“’Sm}) {Y1/E,...,YI(/8})nNright(R2' { 61 ’°"98m})=¢’
then the following rule-set
R=(R1-{8 15 Sy DN/ Y 150 M/ Yic)
is said to be the result of folding Ry by Ry. The rule-set Ry is called the folded rule-set, and R, the

folding rule-set.
If no rule-set R’y in the program except R, saitsfies that

Nieft(R'2)= Niefi(R2)»
the folding operation is said to be reversible.
Example. The result of folding the rule-set {P—baX,Y=Z,R—Wc} by the rule-set
{P—>X,Y~ZR—W} is {P—baP,R—Rc}.
In the contrary, the rule-set {P—X,Y~Z,R—W]} is not foldable by the rule-set
{P—baX,Y=ZR—Wc}, because the first condition in the definition does not hold, that is,

baXe Sub({X,W}HuSub({Y,Z}-{Y,Z}),

and
Wee Sub({ X, W}HuSub({Y,Z}-{Y,Z}). -

The rule-set {P—baX,Y=Z,R—Wc, Q—X]} is not also foldable by the rule-set {P—aX,
Y=Z, R—W}, because the third condition does not hold, that is,

Nright(({P—baX,Y~ZR—-Wc,Q-X}-{Y~Z}){aX/e,W/e})=(X},

and
Nrighi({P—aX, Y=Z, R->W} -{Y~Z})=(X,W},

then
{XIN{X, W}

The third condition in the above definition means that any nonterminal symbols which appear
in Nﬁght(Rz—{Sl,...,Sm}) must not remain in the result of folding. It matters little because even if
the condition does not hold, the applications of the simple rule-10 and rule-6 can make such a
non-foldable rule-set foldable as shown in the following example.

Example. In the previous example, the rule-set {P—baX,Y=Z R—>Wc,Q—X]} is not
foldable by the rule-set {P—)aX,YzZ,R—)W}. Adding the left-hand-omitted-rule "A=X" to the
former rule-set by the simple rule-10, and further adding the prefix "a" to the rule "A=X" by the
simple rule-6, the former is transformed into {P—baX,Y=Z,R—>Wc,Q—A,aA=aX}, where we
assume that { A—+*} has been added to the progam,. This rule-set is foldable and the result of
folding is {P>bP,R—Rc,Q—A,aA=P}.

Definition(application of a replacement rule). A replacement rule is a simultaneous
substitution 6={c1/B1,...,0,/B,,} (n=1). For a rule-set

R={Y1-V1> «-» Y>Y0 015 -» O }» (k21,m>0),
and a replacement rule 0={0£1/B1,..., ocn/Bn}, if the following condition holds,
Sub(y})u...uSub(y)USub(d1)u...USub(d)2 {0y, 0),
then the rule-set R@is said to be the result of applying the replacement ml¢ to R.

Definition(correctness of a replacement rule). A replacement rule 6={ct1/B1,...,0,/B,} is
said to be correct with respect to a CCFG program G=(N,T,Qg,R) if the following two CCFG

programs
G'=(NU(S 1.} To(S 1 Sp) RU{(S =0t ... 8 =01, 1),

— 11 —

and
G"=(NU{S1,....8,},To(S15-sS). RU{ {Sl—>Bl,...,Sn-—->Bn} D,

generate the same language, that is L(G)=L(G"), where we suppose that Sy....,S, does not
appear in the original program.

Examples of replacement are presented in section five.

Deﬁnz‘tion(transformation sequence). Let Srp be a set of rule-sets in a CCFG program
G=(N,T,Q2g,Srp) and © be a set of replacement rules. A (finite or infinite) sequence of sets of
rule-sets Srq,...,STp,... 1 said to be a transformation sequence with the input (Sr(),®), if for each
Sr,, (n=1) in the sequence one of the followings holds,

(1) (application of simple rule) Sr,=(Sr,_1-{RDU{R'}, where R is a rule-set in Sry,_1 and
R'is the result of applying the simple rule-1,rule-2,..., or rule-10 in section three to R.

(2) (unfolding). Srn=(Srn_1-{R})U{Rl,...,Rk}, where R is a rule-set in Srp,_1, and
{R{,...Ry} is the result of unfolding R by some rule-sets in St 1.

(3) (folding) Srn=(Srn_1-{R})u{R’}, where R is a rule-set in Sr;,_1 and R' is the result of
reversibly folding R by a rule-set in Srj,.

(4) (replacement) Srn=(Srn_1-{R})u{R'}, where R is a rule-set in Sr;;_1 and R'is the
result of applying some replacement rule in © to R.

5.Examples
Here some examples are given in order to illustrate the definitions in the previous sections.

5.1.Elimination of Intermediate file

CCFG program G4 in section two represents the indirect relation between the couples of
terminal strings derived from the nonterminal symbol P and R, connecting two subprograms by the
intermediation of "Y=Z". Since the two data structures specified by P and R have no structure cle
in the meaning of [11], this program can be transformed into the program which represents the
direct relation between two data structures. The following sequence indicates such a
transformation.

First the initial set of rule-sets in G4 is

Stg=({P—X, Y~Z, R->W]}, AR
{(X—e, Yoe}, (R2)
(X—aX, Y=cY}, (R3)
(X—bX, Y=dY}, (R4
{Z—e, W—¢}, ...(R.5)

{Z—cdZ, W—eW}}. ' ..(R.6)

Unfolding (R.1) at {Z,W} by (R.5) and (R.6),
Sry=({P—X, Y~¢, Re}, | RT)
{P-X, Y=cdZ, R—eW}, ..(R.8)

(R2),(R3),(R4),(R.5),(R.6)}.

Unfolding (R.7) at {X,Y} by (R.2), (R.3) and (R.4),

Srp={ {P—¢, e~g, R—E}, ..(R.9)
{P—aX, cY=¢, R—¢}, .(R.10)
{P-bX, dY=¢, R}, ~(R.11)

(R.8), (R.2),(R.3),(R.4),(R.5),R.6)}.

Eliminating (R.10) and (R.11) by the simple rule-8 and eliminating the left-hand-omitted-rule
"e~g" in (R.9) by the simple rule-7,

Srg={ {P—¢,R—¢}, ..(R.12)
(R.8), (R.2),R.3),(R.4),(R.5),R.6)}.

Unfolding (R.8) at {X,Y} by (R.2), (R.3) and (R.4),

Sry={ {P—¢,e~cdZ, R—eW}, ..(R.13)
{P—aX, cY=cdZ, R—eW}, ..(R.14)
{P—bX, dY=cdZ, R—eW}, ..(R.15)

(R.12), (R.2),(R.3),(R.4),(R.5),(R.6)}.

Eliminating (R.13) and (R.15) by the simple rule-8, and further unfolding (R.14) at {X,Y} by
(R.2), (R.3) and (R.4),

Sr5={ {P—>a, c=cdZ, R—eW]}, ...(R.16),
- {P—aaX, ccY=cdZ, R—eW]}, LRI,
{P—abX, cdY=cdZ, R—eW]}, ..(R.18),

(R.12), (R.2),(R.3),(R.4),(R.5),(R.6)}.

Eliminating (R.16) and (R.17) by the simple rule-5 and eliminating the prefix "cd" of "cdY=cdZ" in
(R.18) by the simple rule-5,

Srg={ {P—abX, Y=Z, R—eW]}, | ~(R.19),
(R.12), (R.2),(R.3),(R4),(R.5),(R.6)}.

— 13 —

Folding (R.19) by (R.1) in Sry,

Sry={ {P—abP,R—eR}, ..(R.20),
(R.12), (R.2),(R.3),(R.4),(R.5),R.6)}.

This folding operation is reversible.

Since the nonterminal symbols W, X, Y, and Z do not appear in any tuple of sentential
forms derived by the tuple of start symbols, the rule-sets (R.2), (R.3),..., and (R.6) are applied no
longer and we obtain the final program G’y as follows,

G'y=({P,R}.{a,b,c},(P.R),R),
R={ {P—e, R-e},
{P—baP, R—Rc} }.

The above program represents the direct relation between the data structures specified by the
nonterminal symbols P and R.

5.2.Calculation of Squared Interger
The program to calculate a squared integer is given as the followings in functional style,

SQR(X)=MUL(X,X), (ED
MULCX,Y)=if X=0 then 0 else Y+MUL((X-1,Y), ..(F.2)

where SQR is the function to calculate a squared integer and MUL is a multiply. More effective
program can be given as follows,

SQR(X)=if X=0 then 0 else SQR(X-1)+(X-1)+(X-1)+1, ..(F.3)

because for an integer n=1, n =(n—1)2+2*(n-1)+1. Assuming that the execution cost of additions
and subtractions can be less than that of multiplications, the latter program is more effective than the
former.
In this subsection we show that a CCFG program which is equivalent to the former program
* can be transformed into that of the latter. |
The initial CCFG program is given as follows,

SQR=({SQR_i,SQR_o,M1M2Mo,X},{@},(SQR_i, SQR_0),51p), -

Srg={ {SQR_i—->M1=M2, SQR_o—Mo}, ..(R.1)
{M1—¢, M2-X, Mo—¢}, ..(R.2)
{(M1-@M1, M2->M2, Mo—M2Mo}, ..(R.3)

{X—*}}. «.(R.4)

Since the integer data type is not defined in CCFG programming, in the above program we use
strings of "@" for representing integers. We suppose that the string with length n means the integer
n. Then the meanings of the rule-sets (R.1), (R.2), and (R.3) are same as those of (F.1), the
then-part of (F.2), and the else-part of (F.2), respectively. Because we use strings of "@" for
integers, the addition of two integers is expressed by the concatenation of two strings. For
example, 2+3 is expressed by "@@":"@@@". Therefore the right-hand side "M2Mo" of the third
rule in the rule-set (R.3) means that M2+Mo.

First unfolding (R.1) by (R.2) and (R.3),

Sri={ {SQR_i—e=X, SQR_o—¢}, ..(R.5)
{SQR_i-»@M1=M2, SQR_o—>M2Mo}, ..(R.6)
(R.2),R.3),(R.D)}.

Replacing X in (R.5) for € by the simple rule-9, and further applying the simple rule-1,

Srp={ {SQR_i-s¢, SQR_o—€}, ~(R.7)
(R.6),(R.2),(R.3),(R4)}.

Applying the replacement rule {M1/M2,M2/M1,Mo/Mo} to (R.6),

Srz={ {SQR_i—»@M2~M1, SQR_o—MIMo}, ...(R.8)
R.7),(R.2),(R.3),(R4)}.

This replacement rule is correct because informally the rule is equivalent to the commutative law of
multiplication, M1*M2=M2*M1=Mo, and precisely the language L(G') generated by the following

grammar

G'=({51,52,53,SQR_1,SQR_o,M1 -M2,Mo},{@},(51,52,53),R),
R={ {Sl——)Ml, Sz-—)MZ, S3-—>MO} }USro,

and the language L(G") generated by the following grammar

G"=({S1,57,53,SQR_i,SQR_0,M1,M2,Mo},{@},(S1,57,53).R),
R={ {Sl—)MZ, 32->M1, S3—>MO} }uSrO,

are equal to each other.
Unfolding (R.8) by (R.2) and (R.3),

Sry={ {SQR_i—@X=~¢, SQR_o—¢}, ..(R9)

15-

{SQR_i-@M2~@M1, SQR_o—»@M1M2Mo}, -(R.10)
R.7),R.2),(R.3),(R4)}.

Eliminating (R.9) by the simple rule-8, and substitute the substring "M2=M1" of the right-hand
side "@M2~@M1"="@(M2~M1)" of the first rule in (R.10) to the substrings "M1" and "M2" of
the right-hand side "@M1M2Mo" of the second rule by the simple rule-4,

Srg={ {SQR_i»@(M2~M1), SQR_o—»@M2~=M1)(M2=M1)Mo}, ...(R.11)
(R.7),(R.2),(R.3),(R.4)}.

Folding (R.11) by (R.1) in S,

Sre={ {SQR_i—>@SQR_i, SQR_o—)@SQR_iSQR_iSQR_o}, ..(R.12)
R.7),R.2),(R.3),(R4)}.

The rule-sets (R.7) and (R.12) have same meanings as the then-part and the else-part of
(F.1), respectively. The final program is ‘

SQR'=({SQR_i,SQR_o0} {@},(SQR_i, SQR_0),S1),
Sr={ {SQR_i—¢, SQR_o—¢},
{SQR_i—»@SQR_i, SQR_o—>@SQR_iSQR_iSQR_o}}.

5.3.Calculation of Fibonacci Number '
The program to calculate Fibonacci numbers is often used for the exmaple of program
transformations[5],[12]. Here we can construct the same transformation in CCFG programming.
The initial program is given as follows,

Fib=({Fin,Fout,G1,G2,G3},{@},(Fin,Fout),Sr(),

Stg={ {G1—>Fin, @Fin~Finy, G2—Fouty, G3—FoutFouty}, ~(R.1)
. {Fin—e¢, Fout->@}, ...(R.2)
{Fin—»@, Fout-@}, v ..(R.3)
{Fin—>@Fin~@@Finy, Fout—FoutFouty } }. ..(R.4)

The nonterminal symbols Finy and Fout; suffixed with 2 are introducted so that name conflicts
may be avoided, and the meanings of Finy and Fout, are equivalent to those of Fin and Fout.

In the same way as in the previous subsection we also suppose that integers are expressed by
strings of "@"s. The relation between the integers Fin and Fout means that the Fin-th value of
Fibonacci sequence is Fout, that is fib(Fin)=Fout, where fib(n) is a function to calculate n-th value
of the Fibonacii sequence.Then the rule-set (R.2) means that

fib(0)=1,
the rule-set (R.3) means that
fib(1)=1,
and the rule-set (R.4) means that
fib(n)=fib(n-1)+fib(n-2),

for n>2. The relation between G1, G2 and G3 means that

G2=fib(G1+1)

and
G3=fib(G1)+fib(G1+1)=fib(G1+2).

Although we find that Fibonacci numbers can be computed even if the rule-set (R.1) is never
applied, however by introducing the rule-set, the program to compute the numbers more effectively
can be transformed from the above original program.

First unfolding (R.1) at {Fing,Fout3} by (R.2),(R.3) and (R.4),

Sry={ {G1-Fin, e=@Fin, G2-@, G3—>Fout@}, ~(R.5)
{G1->Fin, @~@Fin, G2-@, G3—Fout@}, ~(R.6)
{G1-Fin, @Finy~@@Fin3~@Fin, G2—>FoutyFout3, G3—>FoutFoutyFout],

~(R7)
(R.2),(R:3),R.4)}.

The nonterminal symbols Fing and Foutj suffixed with the integer 3 are introduced so that name
conflicts may be avoided, and the meanings of Fing and Fouty are equivalent to those of Fin and
Fout.

Eliminating (R.5) by the simple rule-8, and unfolding (R.6) at {Fin,Fout} by (R.2),(R.3)
and (R.4),

Sry={ {Gl-g, @=@, G2-@, G3-@@}, ..(R.8)
{G1-@, @~@@, G2-@, G3-»@@} , ..(R.9)
{G1->@Fin~@@Fin,, @~@@Fin~@@@Fin), G2—@, G3—FoutFout,@},

..(R.10)
(R.7),(R2),(R.3),(R.4)}.

Eliminating (R.9) and (R.10) by the simple rule-8 and eliminating "@=~@" in (R.8) by the simple
rule-7,

Sr3={ {Gl-¢, G2-@, G3-@@}, «(R.11)
R.7),(R.2),(R.3),(R.4)}.

Eliminating the prefix "@" of the second left-hand-omitted-rule in (R.7) by the simple rule-5,

Srg={ {Gl—Fin, Finy=@Fin3=~Fin, G2—FoutyFout3, G3—FoutFoutyFouts},...(R.12)
(R.11),(R.2),(R.3),(R.4)}.

Applying the replacement rule 8;={Fin~Fin,/Fin, Fout/Fout, Fouty/Fout} to (R.12),

Sr5={ {G1->Fin, Fin=@Fin3, G2—FoutFouts, G3—FoutFoutFouts} , .{R.13)
R.1 1),(R-2),(R.3),(R‘4) }.

The replacement rule is correct because informally the rule means that if m=n, then fib(m)=fib(n)
for any integers m and n, and formally the language L(G') generated by the following program

G'=({S1,S,,53,Fin,Fout,G1,G2,G3},{@}.(81,59,53).R),
R={{S—Fin=Finy, Sp—Fout, S3—Fouty } }USr,

and the language L(G") denerated by the following program

G"=({S 1,82,83,Fin,Fout,G 1,G2,G3},{@}.(S 1 ,82,83),.R),
R={{S1—Fin, Sp—Fout, S3—Fout} }USr,

are equal to each other. v
Replacing the right-hand side "Fin" of the first rule by "@Fin3" by the simple rule-4,

Srg={ {Gl—-@Fins, Fin=@Fin3, G2—FoutFouts, G3—FoutFoutFoutz}, ..(R.14)
(R.11),(R.2),(R.3),(R.4)}.

Applying the replacement rule v62=[Fin/Fin, Fing/Fin3, FoutFouts/FoutsFout} to (R.14),

Sry={ {G1-@°Finz, Fin=@Fin3, G2—FoutzFout, G3—FoutFoutgFout}, ...(R.15)
(R.11),(R.2),(R.3),(R.4)}.

This replacement rule is correct because of the commutative law of addition, that is
fib(m)+fib(n)=fib(n)+fib(m)
for any integers m and n.

Folding (R.15) by (R.1) {Gl—)Fin3,Fin=@Fin3,G2—-)Fout,G3-—)Fout3Fout} in Sty,

Srg={ {G1-@G1, G2-G3, G3—>G2G3}, ..(R.16)
(R.11),(R.2),(R.3),(R.4)}

This folding operation is reversible. ;
Next adding the left-hand-omitted-rule "@Finz@@Finz" to (R.4) by the simple rule-3,

Srg={ {Fin—»>@Fin~@@Finy, Fout—FoutFout), @Fin~@@Fin, }, -(R.17)
(R.16),(R.11),(R.2),(R.3)}.

Replacing the ﬁght-hand side "@Fin=@@Fin," of the first rule in (R.17) by "@@Finy" by the
simple rule-4, |

Sryo={ {Fin>@@Fin,, Fout—FoutFouty, @Fin~@@Fin, }, ...(R.18)
(R.16),(R.11),(R.2),(R.3)}.

Eliminating the prefix "@" from the left-hand-omitted-rule "@Fin=@@Fin," in (R.18) by the
simple rule-4,

Srq1={ {Fin—>@@Fin,, Fout—FoutFouty, Fin~@Fin, }, ..(R.19)
R.16),(R.11),(R.2),(R.3)}.

And further adding the left-hand-omitted-rule "Fout," to (R.19) by the simple rule-3,

Sr1o={ {Fin->@@Fin,, Fout—FoutFout,, Fin=@Fin,, Fout}, ..(R.20)
(R.16),(R.11),(R.2),(R.3)}.

Applying the replacement rule 6,={Fin/Fin, FinZ/FinZ, FoutFout,/FoutsFout} to (R.20),

Sry3={ {Fin—>@@Fin,, Fout—Fout,Fout, Fin=~@Fin,, Fout}, ~(R.21)
(R.16),(R.11),(R.2),(R.3)}.

Folding (R.21) by (R.1) {Gl—-)Finz,Fin=@Finz,G2—>Fout,GS—->Fout2Fout} in Sfo,

Sr14={ {Fin—-@@G]1, Fout—G3, G2}, ...(R.22)
R.16),(R.11),(R.2),(R.3)]. :

At last, the final program is obtained as follow,

Fib'=({Fin,Fout,G1,G2,G3},{@},(Fin,Fout),R),

R={ {Fin—e, Fout—@},
{Fin—>@, Fout—>@},
{Fin>@@G]1, Fout—G3, G2},
(Gl-oe, G2-@, G3-@@),
{G1-@G1, G2—G3,G3—G2G3}).

6.The Brief View of the Correctness

We have defined the program transformation rules in section three and four. In this section
we discuss the correctness of the rules.

There are two methods to prove their correctness.

One is to prove straightforwardly. Because the mathematical background of CCFG
programmmg is similar to that of logic programming, we can prove in the same way as [8].

Another is to prove indirectly by using the program transformation from logic programs into
CCFG programs. Let L be a logic program and R(L) be the logic program transformed from L by
applying a rule R in [8]. We have already known their equivalence if the transformation satisfies the
assumptions Al, A2 and A3 in [8]. Let T(L) and T(R(L)) be the CCFG programs transformed
from the logic program L and R(L), respectively, where T is a program transformation from an
arbitrary logic program into the corresponding CCFG program which preserves the equivalence.
Because the meanings of L and R(L) are equivalent to each other, so are the meanings of T(L) and
TR()). If the CCFG program T(L) can be transformed into R'(T(L)) by applying the rules R’
presented in the previous sections, the application of R’ can be stated to preserve the equivalence of
the meanings. We say that R' in CCFG programming is the equivalent transformation rule as R in
Jogic programming. That is illustrated bellow.

original program transformed program
logic program | - L R R(L)
[T [T
CCFG program | TL) R' T(R(L))=R'(TL)) ?

In this paper we trace the brief line of the above contents by a example. The strict and precise
discussions will be given in other papers.

For the simplicity of our discussion, the canonical form of a definite Horn clause is
introduced.

Definition(canonical form). A definite Horn clause of the form
P(PI’""Pi):'q(Ql’"-’Qj)’""r(Rl""’Rk)’P1=S1,"°’Pi=Si’t1=“1v"’tn:“n"
- is said to be of the canonical form where P1,...,Ry are variables and s1,...,ul,, are terms. The name
of a variable P, can be uniquely identified with the name of a predicate symbol p and the occurence
position n of the variable in an atom p(..e’Ppyse.). A set of definite clauses of the cannomcal form is

said to be a logic program of the cannonical form. Here the predicate "=" is defined by the Horn
clause, X=X:-true.

It is clear that an arbitrary definite clause can be transformed into one of the canonical form, and
that an original logic program (a set of definite clauses) can be trasnformed into the logic program
(a set of definite clause of the canonical form) which has the same meaning as the original one. We
consider logic programs of the canonical form in the following discussions.

Definition(transformation). A Horn clause C of the canonical form
pX1se-Xj):-q(Y 1,...,Yj),...,r(Zl,...,Zk),X1=sl,...,Xi=si,t1=u1,...,tn=un.,
is translated into the rule-set T(C),
T(O)={X 1—ai,(s1),...,)(i—>£(si),i(t1)=i,(u1),...,i,(tj)-~i,(uk)},
and a set of some other completementary rule-sets c-T(C),
c-T(O)={{i(V 1)—>*},...f{i(Vn)—e*}),

where V1,...,V,, are all the variables which appear in $1,----Uk, and function i is a mapping from a
term to a string, defined as follows,

(1) if auis a variable, i(o) is the corresponding nonterminal symbol.

(2) if ais a constant, i(ct) is the corresponding terminal symbol.

(3) ifaisaterm fay,..., o) constructed by a n-ary functor f and terms Ol 5ees O, E(C) 1S
the corresponding string (o), (o))", where "f',"(",")", and "," are terminal
symbols and ":" is a concatenation operator.

Let L be a logic program. When we consider the meaning for a n-ary predicate symbol p in
L, Tis a transfoﬁnation from the logic program L into the CCFG program T(L)=(N. ,T,QS,R) ,
where Qg is a n-tuple (i(Pl),...,i(Pn)), Ris a set {T(C)uc-T(C)lc is a clause in L} of rule-sets, N
is a set of all the nonterminal symbols which appear in R, and T is a set of all the terminal symbols

which appear in R.

Proposition. Let L be a logic program of the canonical form and T(L) be the CCFG
program transformed from L. If there exists a CCFG program transformation T(L)=>*R'(T(L)),
then there exists a logic program transformation L=>*R(L), and the following condition holds,

TRIL))=R'(TL)).

Because the total correctness of the transformation L=>*R(L) has been proved in [8], then the total
correctness of the transformation T(L)=>*R'(T(L)) holds.A

In this paper we do not present the proof of the above proposition, because it requires much
more preliminaries and more considerations. It will be given in other papers. Here we show it with

the following example.
The'following set is a logic program

Ly=(P(A.B):-q(AC)x(C.B).,
q(nil,nil).,
q(cons(a,A),cons(c,B)):—q(A,B).,
q(cons(b,A),cons(d,B)):-q(A,B).,
r(nil,nil).,
r(cons(c,cons(d,A)),cons(c,B)):-r(A,B). 1

where nil, "a", "b","c" and "d" are constants and "cons" a functof. Considering the predicate
symbo p, the meaning for the predicate symbol p is the follwoing set of ground atoms,

M(p,LO)={p(nil,nil),p(cons(a,nil),cons(c,nil)),p(cons(b,nil),cons(d,nil)),p(cons(a,cons(b,nil)),co
ns(c,cons(d,nil))),...}

Program Ly is transformed into the program of the canonical form as follows,

Li={ p(P1,P2):-q(Q1,Q2).1(R1,R2). P1=Q1,P2=R2,Q2=R1., (C.1)
q(Q1,Q2):-Q1=nil,Q2=nil,, ‘ ..(C.2)
q(Ql,Q2):-q(Q12,Q22),Q1=cons(a,Q12),Q2=cons(c,Q22)., ..(C.3)
q(Q1,Q2):-q(Q15,Q27),Q1=cons(b,Q1),Q2=cons(d,Q27)., .(C.4)
r(R1,R2):-R1=nil,R2=nil,, .(C.5)

r(R1 ,RZ):-r(Rl2,R22),R1=cons(c,cons(d,Rl2)),R2=cons(e,R22),. }. ..(C.6)
Program L for the predicate symbol p is translated into the following CCFG program,

T(Ly)=({P1 P2,Q1,Q2,R1,R2,A,B,C},{ a,b,c,d,e,cons,(,),, },(P1,P2) ;R),
R={ {P1-Ql,P2—R2,Q2~R1 1
{Q1—nil, Q2—nil},
{Q1 —scons(a,Q1),Q2—cons(c,Q2)},
{R1—nil,R2—nil},
{Rl—-)cons(c,cons(d,R1)),R2-—>cons(e,R2)} }.

If we identify a term "cons(X,Y)" with a string "X:Y", and the atom "nil" as an empty string "€",

we find that program T(L1) is equivalent to program G4. In the same way as in subsection 5.1, it is
easily understood that program T(L1) can be transformed into the more effective CCFG program as

follows,

R'(T(L1))=({P1,P2},{a,be,cons,(,),.},(PLP2)R),
{P1-snil, P2—nil},
{P1—cons(a,cons(b,P1)), P2—cons(e,P2)}.

Acoording to the above proposition, there exists such a logic program R(L1) as satisfies thai
R'(T(L1)=TRL1)-
For an example of the above proposition, we can show the same program transformation from L
into R(L) as in the subsection 5.1.

The initial program of this transformation is Scp=L. First unfolding (C.1) by (C.5) and
(C.6), '

Sci={ . p(P1,P2):-q(Q1,Q2),R1=nil,R2=nil,P1=Q1,P2=R2,Q2=R1,, «(C.7),
p(P1,P2):-q(Q1,Q2),r(R1,,R25),R1=cons(c,cons(d,R1;)),R2=cons(e,R2,),
P1=Q1,P2=R2,Q2=R1., ..(C.9),

(C.2),(C.3),(C4),(C.5),(C.6)}.

The clauses (C.7) and (C.8) are corresponding to the rule-set (R.7) and (R.8) in subsection 5.1,
and in the same way a clause (C.n) appearing bellow is corresponding to the rule-set (R.n) in
subsection 5.1 for 20>n>1. We see that the transformed rule-set from a cluase (C.n) by the
transformation rule T described above is equivalent to the rule-set (R.n) in subsection 5.1.

Because we use the canonical form, we need not to pay attention to applicability of (C.5) and
(C.6) tor(R1,R2) in (C.1). The clauses (C.7) and (C.8) are obviously equivalent to the following
clauses,

p(P1,P2):-q(Q1,Q2),P1=Q1,P2=nil,Q2=nil,, | -(C.7),
p(P1,P2):-q(Q1,Q2),x(R1,,R2,),P1=Q1,P2=cons(e,R25),
Q2=cons(c,cons(d,R17))., ..(C.8).

Scq is corresponding to Sry, since T(Scq) is equivalent to Sry.
Unfolding (C.7") at {X,Y} by (C.2), (C.3) and (C.4),

- Srp={ p(P1,P2):-Q1=nil,Q2=nil,P1=Q1,P2=nil,Q2=nil,, ..(C.9),
p(P1,P2):-q(Q1,,Q25),Q1=cons(a,Q15),Q2=cons(c,Q2,),P1=Q1,P2=nil,Q2=nil,
_ ..(C.10),
p(P1,P2):-q(Q1,,Q25),Q1=cons(b,Q1,),Q2=cons(d,Q2,),P1=Q1,P2=nil,Q2=nil,
..(C.11),
(C.8", (C.2),(C.3),(C.4),(C.5),(C.6)).

Eliminating (C.10) and (C.11) because the bodies do not succeed by any means, and transforming
(C.9) into the following equivalent clause, ' '

Sry=(p(P1,P2):-P1=nil,P2=nil, (C.12),
(C.8", (C.2),(C.3),(C.4),(C.5)(C.6)}. .

Unfolding (C.8") by (C.2), (C.3) and (C.4),

Srg={ p(Pl,P2):—Q1=ni1,Q2=nil,r(R12,R22),P1=Q1,P2=cons(e,R22),
Q2=cons(c,cons(d,R17))., ..(C.13),
p(Pl,P2):-q(Q12,Q22),Q1=cons(a,Q12),Q2=cons(c,Q22),r(R12,R22),P1=Q1,
. P2=cons(e,R22),Q2=cons(c,cons(d,R12))., ..(C.14),
p(Pl,P2):-q(Q12,Q22),Q1=cons(b,Q12),Q2=cons(d,Q22),r(R12,R22),P1=Q1,
P2=cons(e,R22),Q2=cons(c,cons(d,Rl2))., ..(C.15),
(C.12), (C.2),(C.3),(C.4),(C.5),(C.6)}.

Eliminating (C.13) and (C.15) because the bodies do not succeed by any means, and (C.14) is

transformed into the following equivalent clause,

p(Pl,PZ):-q(Ql,Q2),r(R1,R2),P1=cons(a,Q1),P2=cons(e,R2),
cons(c,Q2)=cons(c,cons(d,R1)). _ ..(C.14).

Further unfolding (C.14") by (C.2), (C.3) and (C4),

Sr5={ p(Pi,PZ):-Q1=niI,Q2=nil,r(R1,R2),P1=cons(a,Q1),P2=cons(e,R2),
cons(c,Q2)=cons(c,cons(d,R1))., ..(C.16),
p(P1,P2):-q(Q1 2,Q22),Q1=cons(a,Ql2),Q2=cons(c,Q22),r(R1,R2),

Pl=cons(a,Q1),P2=cons(e,R2),cons(c,Q2)=cons(c,cons(d,R1)).,
L(C.17),

P(Pl ,Pz)"Q(Ql 2‘JQ22)’Q1 =C0nS(b,Q1 2) ,Q2=COHS(d,Q22) oL (Rl ,R2) >
Pl=cons(a,Q1),P2=cons(e,R2) ,cons(c,Q2)=cons(c,cons(d,R1)).,
...(C.18),

(C.12), (C.2),(C.3),(C.4),(C.5),(C.6)}.

Eliminating (C.16) and (C.17) because the bodies do not succeed by any means, and transforming

(C.18) into the following equivalent clause,

Sr6={ p(P1,P2):-q(Q1,Q2),r(R1,R2),P1=cons(a,cons(b,Q1)),PZ=cons(c,R2),Q2=R1.,
' ' .(C.19),

(C.12), (C.2),(C.3),(C.4),(C.5),(C.6)}.

The molecule "q(Q1,Q2),r(R1,R2),Q2=R1" is an L{-expansion of p(Q1,R2) because for the
substitution 8={P1/Q1,R2/P2} the following condition holds,

(p(P1,P2):-q(Q1,Q2),r(R1,R2),P1=Q1,P2=R2,Q2=R1.)6=
p(Q1,R2):-q(Q1,Q2),x(R1,R2),Q2=R1.

Then folding "q(Q1,Q2),r(R1,R2),Q2=R1" of (C.19) into p(Q1,R2), the following clause is
obtained,

Sr7={ p(Pl,PZ):-p(Ql,R2),Pl=cOns(a,cons(b,Ql)),P2=cons(e,R2)., ..(C.20),
(C.12),(C.2),(C.3),(C.4),(C.5),(C.6)}.

This folding operation is reversible. Variables in (C.20) can be renamed as follows,
p(Pl,P2):—p(P12,P22),P1=cons(a,cons(b,P12)),P2=cons(e,P22)., ..(C.20Y,
At last the final program is obtained as follows,

R(L1)={p(P1,P2):-P1=ni1,P2=nil.,
p(P1,P2):-p(P1,,P2,),P1=cons(a,cons(b,P1;)),P2=cons(e,P2,). }.

We find that T(R(L1))=R'(T(L1)). Becausethe above transformation satisfies the assumption A.1,
A.2 and A.3 in [8], the correctness of the above logic program transformation L1=>*R(L1) holds.
So does the correctness of the CCFG program transformation T(L1)=>*R‘(T(L1)). And to say

. * oy -
further, the transformation G4= G4 is correct.

7.Discussion
In this paper, we have discussed the program transformation rules in CCFG programming,

mainly the unfolding and folding rules.
The following problems to solve the next step remain,

(1) to precisely prove the total correctness of the rules.
(2) to well-define the transformation strategies proposed in [3] by using our transformation

rules.

“ Especially the problem (2) is important to construct an automatic program transformaiton system.

References

[1] Yamashita,Y. and Nakata,I.:An extension of context free grammar and the computation
model based on the extended grammar, JIPS Working Group Report of Software Foundation
SF15-5(1986) (in Japanese). v

[2] Yamashita,Y. and Nakata,I.:Coupled Context Free Grammar and its Interpretation as a
Programming Language, RIMS Symposia Report on Software Science and Engineering, Kyoto
University(1986). ‘

[3] Nakata,L and Yamashita,Y.:Program transformation in Coupled Context Free Grammar,
JIPS Working Group Report of Software Foundation SF17-3(1986) (in Japanese).

[4] Yamashita,Y. and Nakata,.:The execution method of the programming language based on
Coupled Context Free Grammar, JIPS Proc. 28th Programming Simposium(1987) (in Japanese).
[5] Burstall,R.M. and Darlington,J.:A transformation system for developing recursive
programs, JLACM 24(1977),pp.44-67.

[6] Clark,K.L.:Predicate logic as a computauonal formalism, Imperial College Reserch
Monograph 79/59 TOC(1979).

[7]Hogger,C.J.:Derivation of logic programs, J.ACM 28(1981) pp.372-392.

[8] Tamaki,H. and Sato,T:A generalized correctness proof of the unfold/fold logic program
transformation, Technical Report No.86-4, Ibaraki University(1986).

[9] Kanamori,T. and Fujita,H.:Unfold/fold transformation of logic programs with counters,
ICOT Technical Report(1986).

[10] Aho,A.V. and Ullman,J.D.:"The theory of parsing,translation and compiling Vol
1:Parsing", Prentice-Hall(1972). |

[11] Jackson,M.A.:"Principles of program design", Academic Press(1975).

[12] Tamaki,H. and Sato.T: A transformation system for logic programs which preserves
equivalence, ICOT Technical Report-018(1982).

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
. UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI 305 JAPAN

: REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-88-72 -
TITLE .
Unfold/Fold Program Transformation
in CCFG programming
AUTHOR(S)
Yoshiyuki YAMASHITA and Ikuo NAKATA.
REPORT DATE NUMBER OF PAGES
Jun. 1, 1988 : 26
MAIN CATEGORY CR CATEGORIES
Progranming Languages D.3, F.3, F.4
KEY WORDS

Program Transformation, Unfolding, Folding,
Coupled Context-Free Grammar

ABSTRACT

The program transformation rules, unfolding, folding and replacement, in CCFG
programming are proposed. Because of the resembance between CCFG programming and lbgic
programming, we can defined the rules in the same way as in logic programming. The correctness
is also discussed. '

SUPPLEMENTARY NOTES

