- ISE-TR-88-71

On the relation between CCFG programs and logic programs

by

Yoshiyuki YAMASHITA and lkuo NAKATA :

June |, 1988

e
e

o

On the relation
between

CCFG programs and logic programs

%k

Yoshiyuki YAMASHITA* and Ikuo NAKATA*

University of Tsukuba,
Tsukuba-shi, Ibaraki-ken, 305, Japan.

Abstract

CCFG programming is a programming system based on the formal grammar: Coupled
Context-Free Grammar (CCFG) [1]. A CCFG is regarded as a program, called a CCFG program,
and its semantics is'deﬁned by the language, a set of tuples of derived terminal strings which it
generates. CCFG programs are similar to logic programs, because their semantics domains are
similar in the sense that both represent relations between input/output data objects. In this paper the
relationship between CCFG programs and logic programs is discussed by using program
transformations. The rules for these transformations are so simple and we can clearly understand
the characteristics of CCFG programs by comparing them with those of corresponding logic

programs.

* With the Doctoral Program in Engineering.

** With the Institute of Information Sciences and Electronics.

1L.Introduction
CCFG programming_is a programming system based on the formal grammar: Coupled

Context-Free Grammar (CCFG) [1], which is an extension of context-free grammar. A CCFG is
regarded as a program, called a CCFG program, and its semantics is defined by the language, a set
of tuples of terminal strings which it generates. A CCFG program contains context-free grammars,
which are interpreted as the representations of input/output data structures, and the program itself is
interpreted as the representation of the relation between the data structures. For example, the
following is the simple CCFG program which represents the relation between strings composed of
terminal symbols "a" and "b" and strings composed of "c" and "d",

{X—e, Y-},

{X—aX, Y—-cY},

{X—bX, Y—dY}.
Here each set of the above is called a rule-set. The empty string is denoted by €. The derivation rule
in CCFG is given as that all the production rules in a rule-set must be simultaneously applied.
Therefore one of the derivations from the couple (X, Y) of nonterminal symbols is given as
follows,

(X, Y) = (aX, cY) = (abX, cdY) = (abbX, cddY) = (abb, cdd).
The language is a set of couples of ﬁerminal strings derived from the start tuple (X, Y), thatis
{(&, ©), (a, c), (b, d), (ab, cd), (ba, dc), (abb, cdd), ...},

and it is called the Coupled Context-Free Languége (CCFL). This gives the semantics of the
program. The production rules X—e, X—aX, and X—bX determine the structure of strings
derived by X, and the production rules Y—¢, Y—cY, Y—dY determine the structure of strings
derived by Y. The program on the whole represents the relation between the strings derived by X

”

and Y. More complicated CCFG programs can be built by using the metasymbol "=" which has

almost the same meaning as the equality symbol in equational logic.
A logic program (a set of definite Horn clauses), as well-known, represents érelation. In this
sense we expect that there is a relationship between CCFG programs and logic programs. For
| example, the following is a simple logic program,
p(nil, nil),
p@@(*X), c(*Y)):-p(*X, *Y),
p((*X), d*Y)):-p(*X, *Y).

The semantics of the program for the predicate symbol: p is specified by the following set of
ground atoms which can be proved by the program,

{p(nil, nil), p(a(nil), c(nil)), p(b(nil), d(nil)), p(a(b(nil)), c(d(nil))),

p(b(a(mil)), d(c(i))), p(a(b(b(il))), c(@d@(nil)))), ...}.

In the above two example of the CCFG program and the logic program, we find that both
semantics are similar when we identify the terminal symbols "a", "b", "c" and "d" with the functors
"a()", "b()", "c()" and "d()", respectively. Since a CCFG program and a logic program represent
relations and their semantics are defined by sets of tuples, it is expected that both programs have
similar features. The purpose of this paper is to clarify the relationship between them and the
characteristics of CCFG programs by comparing them. More precisely, the purpose is to give the
program transformation rules which preserve their semaﬁtics.

In section two, we define term-based CCFG (t-CCFG) programs in place of the original
string-based one, in order to stand on the uniform data domain, the Herbrand universe [2] of
CCFG and logic programs. Because strings can be regarded as the special terms which satisfy the
associative law, that is (a:b):c=a:(b:c), we can easily establish the term-based one by discarding the
associative law. The t-CCFG program corresponding to the string-based CCFG program described
above is, for example, given as follows,

{X—nil, Y-—snil},

{X—aX), Y-oe(M},

{X-b(X), Y—=d(Y)},
The right-hand sides of production rules are the terms which are composed of constants, functors
and nonterminal symbols. The semantics of t-CCFG programs are defined in the same way as that
of string-based ones, by using the languages and the least fixpoints. In the above case, the
semantics is given as

{(nil, nil), (a(nil), c(nil)), (b(nil), d(niD)), (a(b(nil)), c(d(niD))),

(b(a(nil)), d(c(nil))), (a(b(b(ni))), c(d(d(@il)))), ...},
and we find that it is similar to the semantics of the above logic program.

In section three, we briefly review the syntax and the least fixpoint semantics of a logic
program. The semantics by the least Herbrand model and the operational semantics are not
presented, because we are going to discuss by using only the least fixpoint semantics.

In section four, we define the equivalency of both semantics. This is the base of our

discussion to obtain the relationship. For example, we say that the above term-based CCFG
program and logic program have the same meaning because both semantics are equivalent.

In section five, we give the program transformation rule from an arbitrary logic program into
the t-CCFG program which is equivalent to the original logic program. This rule is so simple and
we can automatically transform one definite clause in a logic program into one rule-set in a t-CCFG
program. The correctness of the rule is proved by using the homogeneous form of the logic
prograrfl, in which the equality symbol plays an important role.

In section six, aécording to the transformation rule described in section five, some typical
logic programs are transformed into t-CCFG programs, and discuss the similarities and differences
of both programs. We will show that the syntactic structures of both programs are dual to each
other.

In section seven, the program transformation rule from an arbitrary t-CCFG to the equivalent
logic program is defined. This is easy to understand because this is the inverse transformation rule

described in section five.

2.Term-based CCFG programs

In this section we define the syntax of a term-based CCFG program and its semantics by the
language and the least fixpoint.

A string-based CCFG program defined in [1] contains the prociuctidn rules whose right-hand
sides are strings, while a term-based one contains the production rules whose right-hand sides are
terms. The data structure of terms is simpler than that of strings, because terms need not satisfy the

associative law, and the definition of the term-based CCFG program is the same as that of the

string-based one.

Definition I (term) Given a finite set N of nonterminal symbols, a finite set F of functors
(constructors) and a set of variables, terms are defined as follows,

(1) A functor of the arity 0, called a constant, is a term.

(2) A nonterminal symbol is a term.

(3) A variableis a term.

4 Ifey, ...t are terms and f is a functor of the arity n, f(z;, ...,) is a term.
Terms which contain no nonterminal symbols and no variables are called ground terms, and the
set of all the ground terms is denoted by U(F). The set of terms which contain no nonterminal
symbols is denoted by U(F, V). The set of all the terms is denoted by U(N, F, V).

The above definition is extended by adding a metasymbol "=" and the following condition,

(5) If tand u are terms, t=u is a term. |
Here the commutative and distributive laws for the metasymbols hold, i.e.

t=u = u=t,
and
f(..., t=u,..) = (..., ¢, D)=L, u, ...).

For this extended definition of terms, U(F, =), U(F, V, =) and U(N, F, V, =) are defined in the

same way.

Notice that nonterminal symbols are newly introduced to construct terms. The metasymbol "=" has

the same functions as described in [1].
In the following discussions, we suppose that the name of a nonterminal symbol begins with

an upper case letter and the name of a variable begins with the star "*".

Definition 2 (-CCFG) A term-based Coupled Context-Free Grammar (t-CCFG)
is a quintuple (N, F, V, Q, R) where N is a finite set of nonterminal symbols, F a finite set of
functors, V a set of variables, Q2 a n-tuple (n>1) of start symbols, and R a finite set of rule-sets. A
start symbol is a nonterminal symbol. A rule-set is a finite set of production rules. A production
rule is either a context-free rule of the form X—¢ which has one nonterminal symbol X in its
left-hand side and a term #in its right-hand side, or a left-hand-omitted-rule of the form of term
t. Any fwo context-free rules in a rule-set must not have the same nonterminal symbols in their

left-hand sides.

Example 1 The following quintuple is a t-CCFG,

fib.G = (Nfib.G’ Fﬁb_G, Vﬁb,G’ Qﬁb.G’ Rﬁb.G)’

Nepg= {Fin, Fout, Fin’, Fout’, Plus,, Plus,, Plus;, Num},

Fg,6=1{0,s},

Vive =9

Qg g = (Fin, Fout),

R =1 (Fin—>0, Fout—s(0)}, (1)
{Fin—s(0), Fout—s(0)}, .(r.2)

{Fin—s(Fin)=s(s(Fin")), Fout=Plus,, Fout"~Plus,, Fout—Plus,},

(r.3)
{Fin’—Fin, Fout"—Fout}, .(r.4)
{Plus;—0, Plus,—Num, Plus;—Num]}, ..(r.5)
{Plus, —s(Plus,), Plus,—Plus,, Plus;—s(Plus,)}, ..(1.6)
{Num—0}, (@7
{Num—s(Num)}}. ..(r.8)

In this case, no variables appear. Here, if the functor: s is interpreted as the successor function for
integer data, then the nonterminal symbol Num derives all the integers, Plus, (more precisely the
- values of ground terms generated by Plus,) represents the sum of Plus; and Plus,, and Fout

represents the Fibonacci number of Fin. In the following examples we mainly refer this t-CCFG.

Example 2 The following quintuple is a t-CCFG,

car.G = (Ncar.G’ Fcar.G’ Vcar.G’ Qcar.G’ Rcar.G)’

N_,. g = {InputList, CarList},

F_,. = (nil, cons},

Ve = (%X, *Y),

Q_,. g = (InputList, CarList),

R, c={ {InputList—nil, CarList—nil}, .(1.9)
{InputList—cons(*X, *Y), CarList—>*X}}. ..(r.10)

In this example, V,_ is not empty. This is the grammar to express the Lisp-like car operation.

Next we define the derivation rule for a t-CCFG. First we define numbered nonterminal

symbols in the same way as in the string-based CCFG.

Deﬁnition 3 (numbered nonterminal symbols) For a nonterminal symbol X and an integer k
(k>0), the nonterminal symbol numbered with k is expréssed as X[k]. Foraterm ¢, 1[k]
expresses the same term as ¢ except that all the nonterminal symbols in ¢ are numbered with k, and
is said to be numbered with k. For a tuple Q=(t,, ..., 1) of terms, Q[k] expresses (t;[k], ...,
¢ [k]). For a set N of nonterminal symbols, N[k] expresses {X[k] | XeN}.

Given a set N of nonterminal symbols, a set F of functors and a set V of variables, the set of
all the numbered nonterminal symbols X[m] (Xe N, m=>0) is denoted by N[w]. The sets UN[w],
F, V) and UN[w], F, V, =) are defined in the same way as UN, F, V) and U(N, F, V, =).

Definition 4 (substitutions) Given a t-CCFG G=(N, F, V, Q, R), the substitution
6={X[m]/t} X[m]e N[w], te UNN[w], F, V)) is a mapping from U(N[w], F, V) into UN[w], F,
V) defined as follows,

(1) cB=c,if cisa constant.

2) *XO6=*X.

(3) Y[Mn]O=rif X=YeNandm=n,

Y[n]@ = Y[n], otherwise.

@ fuy, ..., u))0=1wy6, ..., 4;0).

To avoid confusion of variable names, if necessary, some variables in ¢ should be replaced by new

ones, i.e. when 0={X[m]/t} is applied to u, there must be no common variables in u and z.

Extending this definition, the substitution O=(X[m]/t;=..=t } (t;, ... t,€ UN[0], F, V), n21)
is a mapping from UN[w], F, V) into UN[w], F, V, =) defined as follows,

(5) ub= uelz...zuen, if X[m] appears in u,

u6 = u, otherwise,

where 9i=,{X[m]/ti} (n>i>1). Further extending the definition, the substitution € from U(N[w], F,
V, =) into UN[w], F, V, ,,)' is defined as follows,

©) (y=..mu)0=1u6~.~u.b,
where u,e UNN[w], F, V) (n?iZl). The substitution 6 from a tuple (4, ..., ¥)e UN[0], F, V,
=)x..xU(N[w], F, V, =) into a tuple is defined as follows,

7 (s s U) 0= (1) 0, ...,u0),
where u,e UN[w], F, V, =) (n2i=1). A substitution {X,[m,1/r; }...{X; [m]/5, } (m20, k=i21) is
expressed as {X,[m,}/t;, ..., X;[m,]/z, } for the convenience if any two numbered nonterminal
symbols X;[m;] and Xj[mj] are not the same.

The substitution ¢= {*X/t} (*XeV, te U(F)) of ground terms into variables is defined in the
same way as above except the following two rules.

29 *Y¢=tif *X =*YeV,

*Y¢=*Y, otherwise.

(3) Yinl¢=Yinl.
The substitution {*X,/t;}...{*X /s } (k=21)is expressed as {*X,/t;, ..., *X,/t, }. The set of all of
such {*X,/1;, ..., *Xi/t, }'s is denoted by D

Definition 5 (tuples of sentential forms) Given a t-CCFG G=(N, F,V, Q,R), a tuple
(k>0) of sentential forms is defined as follows.

(1) The tuple [0] numbered with zero is the start tuple Q, of sentential forms.

(2) The tuple Q, , is a tuple of sentential forms if &, is a tuple of sentential forms and
satisfies the relation Q=2 ;.

Here the relation =g is described in the next definition.

There are two derivation rules in t-CCFG. One is to rewrite nonterminal symbols in the same

way as in the string-based CCFG, and the other is to rcwritebvariables.

Definition 6 (deri?ation rule-1) Given a t-CCFG G=(N, F, V, Q, R) and a tuple of
sentential forms Q =(®,, ..., ®_) (k=0), Iet N, be the set of all the numbered nonterminal
symbols which appear in €, and Left, be the set {X, ..., Xp} of all the nonterminal symbols
which appear in the left-hand sides of a rule-set |

r={X,-1, .., Xp—np, Upy oo uq} eR, (p=1,g20),

where u,, ..., u, are left-hand-omitted-rules. If it holds that for a certain integer m=0,

q
Left [m]cN,

then the relation Qk=>GQk 1 is defined as follows,
Q1 = QX [ml/e [k+1], ..., X[ml/e [+ 11}y [k41], .o, ug[k+10),
where {X,[m]/r;[k+1], ..., Xp[m]/tp[k+1]} is a substitution, and ":" is a concatenation operator for

tuples.

Definition 7 (derivation rule-2) Given a t-CCFG G=(N, F, V, Q, R) and a tuple of

sentential forms Q, (k>0), for the substitution ¢e @ the relation Q, =;Q, , is defined as

Qk+1 = Qk¢

We often abbreviate the relation £, =>5€, ., as the relation =€, ,, if G is clear in the context.
The sequence Q;=Q,=>...=Q, =... issaidtobe a derivation sequence. The reflective and
transitive closure of = is expressed as =".

Next we define the language generated by a t-CCFG just like a string-based Coupled
Context-Free Language (CCFL) in [1]. In the usual sense of the theory of formal grammars, a
language is defined as a set of terminal strings. In our case, however, it is a relation over ground

terms, a subset of U(F)x...xU(F) where F is given in a t-CCFG G=(N, F, V, Q, R).

Definition 8 (t-CCFL) Given a t-CCFG G=(N, F, V, Q, R), where Q is a n-tuple, the
term-based Coupled Context-Free Language (t-CCFL) L(G) is a set of n-tuples of ground
terms defined as follows,

L(G) = {(t}, ., 1) 1 Q=7 (@, ooy @, ., @), O, = t=..~1, e U(F), m2i>1},
where the term #;=...=f; expresses one of t, t=t, t=t~t, ... We call an element in L(G) a

solution of G. If a derivation sequence generates a solution, we call it a successful one.

Otherwise it is a failed one.

Now we define t-CCFG programs.

Definition 9 (t-CCF G program) A t-CCFG G is a t-CCFG program, and its semantics
SF,;[G] is defined by the t-CCFL L(G).

Example 3 (continued) The t-CCFG fib.G is a t-CCFG program. One example of the

successful derivations by fib.G is given as follows,

(Fin[0], Fout[0])
=(s(Fin[1])=s(s(Fin1])), Plus3[1],
Fout[l]zPlusl[l], Fout'[1]=Plusz[l]) by (1.3)

=(s(s(Fin[2]))=s(s(s(Fin [2])))=s(s(Fin[1])), Plus,[1],
Plus,[2]=Plus, [1], Fout[1}=Plus,[1],
Fout[2]=Plus, [2], Fout[2]=Plus,[2]) by (r.3)
=(s(s(s(0)))=s(s(s(Fin[2])))=s(s(Fin[1])), Plus,[1],
Plus,[2]=Plus, [1], Fout'[1]=Plus,[1],
s(0)=Plus,[2], Fout[2]}=Plus,[2]) by (1.2)
=(s(s(s(0))=s(s(s(Fin[4])))=s(s(Fin[1])), Plus;[1],
| Plus;[2]=Plus, [1], Fout"[1]=Plus,[1],
$(0)=Plus, [2], Fout[4]=Plus,[2]) by (.4)
=*(s(s(s(0)))=s(s(s(0))=s(s(s(0))), s(s(s(0))),
$(s(0))=s(s(0)), s(0)=s(0), 5(0)=s(0), s(0)=s(0)).
This derivation is successful and the solution is the couple (s(s(s(0))), s(s(s(0)))) of ground terms
which can be interpreted as that the third element of the Fibonacci sequence is three. In the same
way, the language L(fib.G), that is the semantics SF, [fib.G], is obtained as
L(fib.G) = {(0, s(0)), (s(0), s(0)), (5(s(0)), s(s(0))), (s(s(s(0))), s(s(s(O))); ...}
. An element in L(fib.G) is (s™(0), s*(0)) for m>0, where the numbers m and n satisfy that the m-th
number of the Fibonacci sequence is n. Namely this program means the computation of the

Fibonacci sequence.

Example 4 (continued) For the t-CCFG car.G, the start tuple is rewritten as
(InputList[0], CarList[0])=>(nil, nil), by (1.9)
or
(InputList[0], CarList[0])=(cons(*X, *Y), *X). o by (1.10)
The former gives a simple soiution. The latter can further derive the solutions, such as (cons(nil,
nil), nil), (cons(cos(nil,nil),nil), cons(nil,nil)), by applying the derivation rule-2. In this way, we
see that the derived couple (x, y) of two ground terms satisfies that car(x)=y over U({nil, cons}),

where car is a Lisp's function.

Next we define the least fixpoint semantics of a t-CCFG program as well as that of the

string-based one.

Definition 10 (ground substitution) For a t-CCFG program G=(N, F, V, Q, R), the
ground substitution ©={X,/t,, ..., X, /t, } (XN, t,e U(F), k2i21) over G is a mapping from
UNN, F, V, =) into UN, F, V, =). The definition of the ground substitution is the same as the
definition 4 except that the nonterminal symbols are not numbered. If X, ..., X, Yy, ..., Y
(m,n>1) are distinct nonterminal symbols, the two ground substitutions {X,/z,, ..., X_ /¢, } and

{Y,/u,, ..., Y /u_} are said to be disjoint.

Definition 11 Given a t-CCFG program G=(N, F, V, £, R), let B; be a set of all the ground
substitutions over G, and P(B;) be the set of all the subsets over B. The mapping T over P(Bg)
is defined as follows,

To(A) = ({Xxys oos X /2 }

{(Xi=15 0 X005, 1y, 0 U JER,

361, ..., B € A (k20), any two O, and ®j_(1si, j<k) are disjoint,
Ipe @,

10,.0,0=x~.=x;, xeU() forall 1<i<p,

uj@l...®k¢ =YYy YE U(F) forall 1<j<q},

where Ae P(Bg).

The domain P(B ;) is a complete lattice when we define the order A<B (A, Be P(B()) as the

inclusion relation ACB. The least upper bound of X (SP(B) is the union of all the subsets in X.
The top element of this lattice is the total set B itself, and the bottom element is the empty set @. It
can be easily proved that the mapping T is continuous. Therefore there exists the least fixpoint of
T, and it is equivalent to TGTO), that is

| TgTo = BUTL@)UTHD)V...,
where T"(@) denotes @ for n=0 and T(T5™!(@)) for n>1.

Definition 12 (the least fixpoint semantics) The semantics SF[G] of a t-CCFG program
G=(N,F,V, (S, ... S)), R) is given as follows,
SFAG] = {(t}, -r 1) 1 {Sy/ty, .0r S/t }e T T}

Example 5 (continued) For the t-CCFG fib.G,

Tep, (D) = {{Num/0}, {Fin/0, Fout/s(0)}, {Fin/s(0), Fout/s(0)} },

Tpp 62(D) = T (D) {Numy/s(0)}, {Plus, /0, Plus,/0, Plus,/0},
{Fin"/0, Fout”/s(0)}, {Fin"/s(0), Fout/s(0)} },

Tg (D) = Ty 2BV {Num/s(s(0))}, {Plus;/0, Plus,/s(0), Pluss/s(0)},
{Plus,/s(0), Plus,/0, Plus,/s(0)}},

| Tﬁb,g4(¢) = Tpp 6> (@ {Num/s(s(s(0)))}, {Plus,/0, Plus,/s(s(0)), Plusy/s(s(0))},

{Plus,/s(0), Plus,/s(0), Plus;/s(s(0))},
{Plus, /s(s(0)), Plus,/0, Plus,/s(s(0))}},

Therefore

SF[fib.G] = {(0, s(0)), (s(0), s(0)), (s(s(0)), s(s(0))), (s(s(s(0))), s(s(s(0)), ..}
Theorem 1 (identicalness) For a t-CCFG program G, it holds that SF;[G] = SF[G].

This proof is omitted because it is rather lengthy though it can be carried out straightforwardly.

3.0verview of logic programs
In this subsection we overview the syntax of a logic program (a pure Prolog program) and its

Jeast fixpoint semantics [2][3]. Other semantics are omitted since we do not use them in the

following sections.

Definition 13 (atom) Given a set F of functors and a set of V of variables, if p is an n-ary
predicate symbol and 7, ..., ;, are terms in U(F, V), then p(#y, ..., £) is an atomic formula or,

more simply, called an atom. If ¢, ..., ¢, are ground terms, the atom is called a ground atom.
In this paper, we do not consider the predicate symbols whose arities are zero.

Definition 14 (logic program) A definite Horn clause is a formula of the form
Pty o 1):-Q (8 15 oos By 1)y woos Gty 15 o0 U) (21, 020, 0221, £j=20),
where p, q;, ..., q, are predicate symbols, £, ..., &, Uy 1, ..y Uy g, ATE LETMS. A logic program
is defined by the quintuple (P, F, V, s, D), where P is a finite set of predicate symbols, F a finite

set of functors, V a set of variables, s is a predicate symbol in P, and D a finite set of definite Horn

clauses.

Here the definition of a logic program is different from the usual one, because our purpose is
to clarify the relationship between t-CCFG programs and logic programs. We relate the quituple of

a t-CCFG program with the quintuple of a logic program in section five.

Example 6 The following quintuple is a logic program,
fib.L = (Pgy, 1> Fry, 1> Voo fib Dy
Py = {fib, plus, num},

Fgpp = (0.8},

Vep = (KW, *X, ¥Y, %Z, ..},

Dg ={ fib0, s(0)), (d.1)
fib(s(0), s(0), (d2)
fib(s(s(*X)), ¥Y):-fib(s(*X), *2), fib(*X, *W), plus(*Z, *W, *Y),

..(d3)

plus(0, *X, *X):-num(*X), ..(d.5)

plus(s(*X), *Y, s(*Z)):-plus(*X, *Y, *Z), ...(d.6)
num(0), ..(d.7)
num(s(*X)):-num(*X)} ..(d.8)

We will show later that the set Dy, ; in fib.L.corresponds to the set Ry, of rule-sets in fib.G.
The reason why we do not define the clause (d.4) in Dy, 1. is because the corresponding rule-set

(r.4) is only an auxiliary one in fib.G.

Definition 15 (substitution) Given a logic program L=(P, F, V, s, D), the substitution
mapping ¢={*X,/t;, ..., *X /) (FXeV, e U(F)) from U(F, V) into U(F, V) is defined in the

same way as ¢€ D in the definition 4. The set of all of such ¢ is denoted by @y .

Definition 16 Given a logic program L=(P, F, V, s, D), let B| be the set of all the ground
atoms over L, and P(B;) be the set of all the subsets over B, . The mapping T; over P(B;) is
defined as follows,

T (A) = { p(tys weos)@ D(ty5 ooy 1):-Q (g 15 o5 Uy 1) ens QU 15 woes Uy 1)ED,

Ype @y,

p(ts - 1)PE B,

q;(%; 15 - Uy)€ A, for all n2ix1},
where Ae P(By).

In the same way as P(B;) in the previous section, the domain P(By) is a complete lattice
when we define the order A<B (A, Be P(B,)) as the inclusion relation ACB. The mapping T is

continuous, and there exists the least fixpoint TLTO) similar to TGTco in the previous section.

Definition 17 (the least fixpoint semantics) The semantics SF[L] of a logic program L=(P,
- F, V, s, D) is given as follows,

SFR[L] = {(t)y s 1) 1 8(2p, ooy 2,)€ T T},

Example 7 (continued) For the logic program fib.L,
Tgy, 1.(D) = {num(0), fib(0, s(0)), fib(s(0), s(0))},

TgpL2(D) = T LB {num(s(0)), plus(0, 0, 0)},
T 1-(D) = T 1 AB)0{num(s(s(0))), plus(0, s(0), s(0)), plus(s(0), 0, s(0))},
Tep 1} (D) = Tgy 1 2@ {num(s(s(s(0)))), plus(0, s(s(0)), s(s(0))),

plus(s(0), s(0), s(s(0))), pIHS(S(é(O)), 0, s(s(0N},

Then
SF{fib.L] = {(0, s(0)), (s(0), s(0)), (s(s(0)), s(s(0))), (s(s(s(0))), s(s(s(0))), }

We omit the details of logic programs (see [2] for the details), since our major objective in

this paper is to clarify thevcharacteristics of CCFG programs through discussing the relationship
between CCFG and logic programs rather than to describe the details of logic programs.

J— 15 ———

4.Equivalence of semantics

In the previous two section we define the least fixpoint semantics of a t-CCFG program and

a logic programs. Here we define the equivalence of them by comparing their semantics.

Definition 18 The correspondence between an n-ary predicate symbol p and an n-tuple (P,,
..., P_) of nonterminal symbéls is expressed by the following naming convention
| l<p,1> =P, .., p> = P.
The symbol «p,i> (n>i>1) is identified with the symbol P;.
Given a logic program L and a t-CCFG program G, let A be a set (e P(By)) of ground atoms
and A’ be a set (€P(Bg)) of ' ground substitutions. If it holds that
A’ = {{@,D/ty, ..., P/t } 1 p(ty, .. 1)E A},
or that |
A={p(t, ... 1) | {<p,1/ty, ..., P/t JEATY,

we say that A and A~ are equivalent each other, and it is expressed as A=A".

Definition 19 (Equivalence of programs) Given a logic program L and a t-CCFG program
G, we say that G is equivalent to L if it holds that SF[L]=SF[G].

Example 8 (continued) The t-CCFG program fib.G is equivalent to the logic program
fib.L, because SF[fib.L]=SF pfib.G].

5.Transformation from logic programs into t-CCFG programs
In this section we give the transformation rule from a logic program into the t-CCFG

program which preserve their semantics, and prove the correctness of the transformation rule.

5.1.Transformation rules

First the preprocessing procedure for logic programs is defined.

Transformation rule P (preprocessing) For every definite Horn clause d in a logic program
L=(P,F, V, s, D), if a predicate symbol qe P appears more than once in the body of the clause as
in

d =Py Qlees)s voes Ql)s ey QL) ooy
then suffix these q's with the numbers 2, ..., k (k=2) as follows in order to distinguish them
clearly.
P(d) = p(..)imeees Q)5 ens o)y ens Gglens)s oo
Otherwise P(d)=d.

The preprocessed logic program is expressed as P (L), which is a quintuple (PUP", F,
VuV’, s, D’UD”), where

P’ = {qj: | q; is a suffixed predicate symbol in aP(d)},

D’ = {P(d) | deD},

D" = {qj(*Xl, e ¥X)-q(*X, o, ¥ XD 1 qE P,

and V" is a set of newly introduced variables in D™,

Example 9 (continued) For every definite clause d in fib.L, it holds that d=P(d), except the
clause (d.3) which is transformed into
fib(s(s(*X)), *Y):-fib(s(*X), *Z), fib,(*X, *W), plus(*Z, *W, *Y). ..P(d.3)
Then introducing the following definite clause
fib,(*X, *Y):-fib(*X, *Y), . ..(d.4).
P(fib.L) is obtained as the quintuple (Pg;, ; U{fib,}, Fgpy, Vi1, fib, (D-(d.3)u{P(d.3),
@a@ah.

Transformation rule R For a preprocessed logic program L = (P, F, V, s, D), let <p,)>

(2j=1) be the nonterminal symbol corresponding to the j-th argument of an i-ary predicate
symbol pe P. Transform the following definite Horn clause,
d = p(y, ti):-ql(ul‘l, e ”1,f1)’ s qn(un'l, - un,fn)
into the following rule-set,
R@) = {<p, oty oo, PO, <Qp,D=Uy g, e, @ fD=Uy gy,
<qn,1>~u <qn,fn>~u fn)-
And transform L into the folloﬁng t-CCFG program R(L),
RL)=N,FE V,Q,R),
N = {«p,j> | m=j21, m is the arity of pe P},
Q=(s, >, ..., <5,)
={R(d) 1deD}.

Example 10 (continued) The clauses in the logic program P(fib.L) are transformed into the
following rule-sets,
{<fib,1>—0, «fib,2>—s(0)}, ~R(@d.1)
{£ib,1>—s(0), fib,2>—s(0)}, «R(d.2)
{fib,1>—>s(s(*X)), <fib,2—>*Y, |
«fib,1>=s(*X), fib,2>=*Z, <fib,,1>=*X, «fiby,2>=*W

<plus,1>=*Z, «plus,2>=*W, <p1us,3>=*Y}, R®P(.3)
{<ﬁb2,1>——>*X, <fib2,2>—->*Y, ib,1>=*X, «ib,2>=*Y}, +R(d.4)
{plus,1>—0, «plus,2>—*X, «plus,3>—>*X, qum, h=*X}, .R(d.5)

{ <plus, 1—3s(*X), plus,2>—*Y, plus,3—s(*Z),

plus, L=*X, «plus,2>=*Y, <plus,3=*Z}, “R(d.6)
{mum,1>—0}, : R@.7
{num, 1—s(*X), aum, 1>=*X}. “R(d.8)

_Then the logic program P (fib.L) can be transformed into the following t-CCFG,
RP(fib.L)) = N1 Fror> Vevr Lo Rev):
Nfb.L = {«fib, 1>, «fib,2>, «fib,,1>, «fib,,2>, «plus, 1>, <plus,2>, <plus,3>, <xnum,1>},
1 = (fib, 1>, «fib, 2>)

Rgy, = (R(d.1), R(d.2), R(P(d.3)), R(d.4), R(d.5), R(d.6), R(d.7), R(d 8)}.

We see that this program is equivalent to fib.G, and the rule-sets R(d.1), ..., R(d.8) correspond

to the (r.1), ..., (.8), respectively.

In this way, an arbitrary logic program can be transformed into a t-CCFG program. These
rules are simple and give the basis to discuss the relationship between logic programs and CCFG

programs.

5.2.Correctness

The correctness of the transformation rule P is obvious. Therefore its proof is omitted.
The correctness of the transformation rule R is proved here by using the least fixpoint

semantics by induction.

Lemma 1 Given a logic program L and a t-CCFG program G, it holds that SF;[L]=SF ;[G]

if T; To=T;To.
The proof is trivial.

Theorem 2 - For every preprocessed logic program L, the transformation rule R preserves

the semantics. Namely it holds that
SFy[L] = SFg[R(L)].

proof We prove that TL“(Q)ETR(L)“(Q) (n=0) by induction.

Basic step: It is clear that TL0(®)= TR(L)O(Q)=Q). Therefore TLO(Q)ETR(L)O(@).

Inductive step: We assume that Ty X(@)= Ty, 1 *(9) for a certain k. The preprocessed logic
program L contains the following clause,

p(t, s ti):-ql(uu, ”1,f1)’ qn(un,l, un’fn),
if and only if the t-CCFG program R(L) contains the following rule-set derived by the
transformation rule R,
{<p,1>—>tl, vees <P, <q1,1>=u1,1, . <ql,f1>=u1’ﬂ,

cosy

Qo D=U 1, ooy <qfo=U ¢}

— 19 —

From the assumption, for a substitution e Dy =Dy, ; , TLk(Q) contains the ground atom q, (14, ,,
oo uk,ﬂ()q) (n=k>1) if and only if TR(L)k(Q) contains the ground substitution ®k={<qk,l>/uk’l¢,
wor Quoflo/y g @} In this case it holds that
(<Qad>=2y J)®k¢ = Uy ;= Uy ;0. (nk>1, £, 2j21)

We can always obtain ¢ such as tj(p is a ground term for all i>j>1. Therefore, from the definitions
of the least fixpoint semantics of both programs, TLI‘+1 (D) contains p(t,, ..., #,)¢ if and only if
TR(L>k“;1(Q) contains {<p,1>/1,9, ..., p,b/t;p}. Hence T k1 (@)ET.R(L)kH (D).

Thus it holds that TLH(Q)ETR(L)“(Q) for any n. Therefore TLTOJETR(L)T(D. At last, from the
lemma 1, SF[L] = SF, ARL)]

In other words, every logic program L can be transformed into the equivalent t-CCFG program '

REP LY.

— 20 —

6.Intuitive relationship between CCFG programs and logic programs

Although the correct transformation from a logic program into a t-CCFG program has been
defined, it does not clearly show us the intuitive relationship between CCFG and logic programs
yet. |

In subsection 6.1 we introduce some simple transformation rules on CCFG programs, which
eliminate the redundancies of the CCFG programs. For a logic program L, we may find some
redundancies of the transformed t-CCFG program R(P(L)). For example, the text size of the
transformed rule-set R(P(d.3)) is bigger than that of its corresponding rule-set (r.3), because
R (P(d.3)) has the variables *W, *X, *Y and *Z which mean arbitrary ground terms. Such
variables express only the indirect bindings between nonterminal symbols, for example, the
right-hand side s(s(*X)) in R(P(d.3)) is the same as s(<fib,1>)=s(s(«fib,,1>)) because there exist
the left-hand-omitted-rules «ib,1>=s(*X) and «fib,,1>=*X. In this subsection we obtain such
transformation rules that {...—s(s(*X)), «fib,1>=s(*X), ib,,1>=*X, ...} automatically derives
{...—s(«fib,1>)=s(s(<fib,, 1)), ...}

In subsection 6.2 some typical examples of transformations from definite Horn clauses into
rule-sets are given. Through the discussions on the result obtained by eliminating the redundancies,

we can clearly understand the intuitive relationship between the structures of both programs.

6.1.Eliminati6n of redundancies
Definition 20 (subterm) The subterm u of a term ¢ is defined as follows,
(1) The term ¢ is a subterm of ¢ itself.
(2) if t=1f(u,, ..., u,), then u; (n2i21) is a subterm of «.
(3) ift=u~v, then u and v are subterms of ¢.
@) if t=1u,, ..., up)=f(v,, ..., v), then u=v; (n2i21) is a subterm of t.

(5) if uis a subterm of r and v is a subterm of u, then v is a subterm of z.
Simplifying rule-1 1If a rule-set has a left-hand-omitted-rule ~u and also has at least one

other term which contains the subterm ¢, the latter ¢ can be replaced by #=u, and the original

left-hand-omitted-rule can be eliminated from the rule-set. Namely

Simplifying rule-2 If a rule-set has a left-hand-omitted-rule of the form *X=t, , all the
variables *X in the rule-set can be replaced by ¢, and the left-hand-omitted-rule can be eliminated

from the rule-set. Namely

It is obvious that the above rules preserve the meanings of rule-sets.
There is no rule-set which the above rules can be endlessly applied to because the number of
left-hand-omitted-rules in a rule-set is finite and it decreases every time applying the rules. The

transformation procedure to eliminate the redundancies of a program is finitely terminating.

Example 11 (continued) In R(P(fib.L)), the rule-set R(P(d.3)) is transformed into the
following rule-set by applying the simplifying rule-2 to the left-hand-omitted-rules «ib,2>=*Z,
«fib,,1>=*X, «ib,,2>=*W and <plus,1>=*Z.

{«fib,1>—s(s(«fib,,1>)), «fib,2>—<plus,3>,

«fib,1>=s(<fib,,1>), <plus,1>=«fib,2>, «plus,2>=«fib,,2> }. . RM®P(.3)
further applying the simplifying rule-1 to the left-hand-omitted-rule <fib, 1>=s(«fib,,1>) and the
subterm s(«fib,,1>) of the right-hand side s(s(«fib,,1>)), the above rule-set is transformed into

{«fib,1>—s(«fib,1>)=s(s(fib,, 15)), «fib,2>—<plus,3>,

plus,1>=«fib,2>, <plus,2>=ib,,2>}. ~REP@E3)”
In the same way, the rule-sets R(d.5) and R(d.6) are transformed into the following rule-sets,
{<plus,1>—>0, <plus,2>—<num, 1>, plus,3>—<num,1>}, ..R@d.5)
{<plus,1>—>s(<plus,1»), «plus,2>—<plus,2>, «plus,3>—>s(«plus,3>) }. ..R(d.6)’

We find that the t-CCFG program R(P(fib.L)) with the above transformed rule-sets is the same as
the t-CCFG program fib.G when the variable names «fib, 1>, «fib,2>, «fib,,15, «fib,,2>, <plus, 1>,
«plus,2>, <plus,3> and <num, 1> are replaced by Fin, Fout, Fin’, Fout”, Plus,, Plus, Plus; and

Num, respectively.

- 6.2.Typical examples

The program transformation has interesting characteristics as described below. Here we

discuss three kinds of the transformations.

Case 1

One of the most simple definite clauses is an unit clause which has empty body as follows,

p(tys -5 1)- .
This is transformed into the rule-set of the form
{«p,>>1, ...y <p,m>—1,}.

We see that an unit clause is transformed into the rule-set which contains only context-free
production rules, and contains no metasymbols = and no left-hand-omitted-rules. If no variables
appear in the unit clause, then no variables appear in the the transformed rule-set. Otherwise, some
variables appear and they can not be eliminated because there are no left-hand-omitted-rules in the

rule-set and the simplifying rule-1 and -2 can not be applied.

Example 12 The unit clauses composed of only ground terms as follows are called facrs,
likes(joe, fish),
likes(joe, mary),
likes(mary, book),
likes(john, book).
These are directly transformed as follows,

{<likes,1>—joe, «likes,2>—fish},

{dikes,1>—>joe, dikes,2>—mary]},

{dikes,1>—mary, <likes,2>—book},

{dikes,1>—john, dikes,2>—book]}.

The right-hand sides in the transformed rule-sets are composed of only ground terms.

Example 13 The unit clauses which express Lisp's primitive function car are given as
follows,
car(nil, nil),
car(cons(*X, *Y), *X).
These are transformed into
{<car,1>—nil, «car,2>—nil},

{<«cdr,1>—>cons(*X, *Y), «dr,2>—*X}.

These are already shown in the example in section two.

Case 2
In the following definite clause,
Pty woes 1)1-Qq (g 15 wees Uy 1)y woes DUy 15 oes Uy 50)
if every Uik (n2j21, fj=k=1) is a subterm of a term t, (i2m>1), it is transformed into the rule-set
which hés no left-hand-omitted-rules but may have metasymbols =~ by replacing such a subterm U,
of by <qj,k>. If at least two ferm Uiy and Uy is subterms of ¢_, the right-hand side of the

production rule «p,m>—>... contains at least one metasymbol "=".

Example 14 The following clause may possibly appear in a program in the area of stream
processing and satisfies the condition of the above case,
“stream([*XI*Y]):-job1(*X), job2(*X), stream(*Y).
Here *X and *Y are subterms of [*XI*Y]. This is transformed as follows,
{«stream, L [*XI¥Y], jobl,1>=*X, job2,1>=*X, «stream,1>=*Y}.
Applying the simplifying rule-2, it is further transformed into the clause
{<stream, 1>—[job1,1>=job2, 1>kstream, 1>] }
or the equivaleht one |

{<stream,1>—[job1,1>kstream,1>]=[job2,1>kstream,1>]}.

Case 3
In the following definite clause,
p(tys s ti):-ql(ul,l, - ”1,f1)’ e qn(un’l, - un’fn),
if there exists at least one term i, which appears in the body but does not appear in the head of the
clause as a subterm, there is at least one left-hand-omitted-rules in the transformed rule-set which
can not be eliminated from the rule-set by applying the simplifying rule-1 or -2. The reason is easy
. to understand when we compare this case to the previous case in which there are no

left-hand-omitted-rules.

Example 15 The term *F appears in the body of the following clause as an argument of

atoms father(*C, *F) and father(*F,*G), but does not appear in the head,

grandFather(*C,*G):-father(*C,*F),father(*F,*G).
This clause is transformed into
{ <grandFather,1>—*C, «grandFather,2>—*G,
father, =*C, father,2~*F, father,, 1=*F, father,, 2=*G).
Applying the simplifying rule-2, it is further transformed into
{<grandFather,1>—«father, 1>, < grandFather,2>—«father,,2>, «father,2>=<father,,1>}.

‘_The left-hand-omitted-rule <father,2$=<father2,1> can never be eliminated from the rule-set.

- 25 —

7.Transformation from t-CCFG programs into logic programs
We have shown that an arbitrary logic program can be. transformed into the equivalent
t-CCFG program by applying the rule R described in the section five. Here we discuss the inverse

transformation rule R! from a t-CCFG program into the equivalent logic program.

7.1.Transformation rule for the programs of canonical form
Sihce the semantic domains of a logic program and t-CCFG program is similar to each other
and the transformation rule R is simple, the inverse rule R-! is almost trivial except one problem.
The following quintuple ncf.G is, for example, a t-CCFG program,
nef.G = (Nyg g» Foge.60 G5 Qe 62 Ruct. o)
Ny = (A, B, C},
Fic=1{0,1,2,ab,cd,e},

Q=4 B, 0O,

R c={ {A-0,B—1]}, ..(n.1)
{C=2}, «.(n.2)
{A-0, B—0, C—-0}, ..(n.3)
{A—d(A), B—e(B)}, ..(n.4)
{A—a(A), Bob(B), C—c(C)}]. ..(n.5)

This program generates the following set of triplets,
{(@i(0), bi(0), ¢i(0)) 1 iZ0}L{(al(d(0Y), bi(el(1)), ¢'(2)) 11,20},

where al(ar) expfess o for i=0 and a(al"!(c)) for i>1. The reason why the triplet of the form
(d(a(...)), e(b(...)), c(...)) can not be derived is because the derivation proceeds with nonterminal
symbols numbered with the same integer (see the definitions in section two). The start triplet (A[0],
B[0], C[0]) of numbered nonterminal symbols can derive the triplet (d(A[1]D), e(B[1D), C[O]) by
applying the rule-set (n.4). In the next derivation step, A[1] and B[1] can be simultaneously
replaced, but A[1], B[1] and C[0] can not be simultaneously replaced because their numbers are

. different. Then the rule-set (n.5) can not be applied to the triplet. We must pay particular attentions

to such a confusing program.

Definition 21 (canonical form) The set of all the nonterminal symbols appearing in the

left-hand sides of a rule-set r is denoted by left_set(r), and the tuple composed of all the symbols in

left_set(r) is denoted by left_tuple(r). We assume that for any two rule-sets r; and r,
left_tuple(r,) =1left_tuple(r,) if left_set(r;) = left_set(r,).
A t-CCFG program (N, F, V, Q, R) is said to be of canonical form if either it holds that
for any two rule-sets r; and 7, in R, it holds either '

left_set(r,) = left_set(r,) or | left_set(r))Nleft_set(r,) = @.

Remarks We have implicitly assumed that the arity of every predicate symbol in a logic
program is fixed. It is easily seen that such a logic program is transformed into a t-CCFG program
of the canonical form. And further even if the arity is not fixed, we can transform an arbitrary logic
program into a t-CCFG program of the canonical form by treating a predicate symbol p with arity m
and with arity n (m#n) as distinct predicate symbols. For example, if a logic program has the
following clauses,

pA(*X), e(*Y)):-p(*X,*Y).
p@(*Xx), b(*Y), c(*2)):-p(*X, *Y, *Z).,
these can be transformed into
(<p,bod(p, 1), P, 2re(p29),
(" bosa(p’,D), @,—b(’,2), P’3c(p’,3)).

In this way all the logic programs Can correspond to t-CCFG programs of the canonical

form, and in this sense the canonical form is an important concept for the study of CCFG

programs.

The program transformation rule R-! from a t-CCFG program of the canonical form into the
equivalent logic program is gievn as follows. It is easier than the rule from an arbitrary t-CCFG

program which is given in the next subsection.

Transformation rule ! Given a t-CCFG program G=(N, F, V, Q, R) of the canonical
form, we can assume that for every left_tuple(r) for a rule-set r in G there is a corresponding
predicate symbol p whose arity is the same as the size of left_tuple(r), and that the predicate
symbols corresponding to any two rule-sets 7, and r, are the same if left_tuple(r))=left_tuple(r,).

Let

r= (X, ... X8, Uy, o 45}, (121, 320),

be a rule-set in G, where the right-hand sides t,, ..., ;, 4, ..., 4; contain the nonterminal symbols
Y,, ..., Y. Since the program G is of the canonical form, if the set {Y,, ..., Y} can be |
decomposed into the union: left_set(r;)U...Uleft_set(r,), the decomposition is unique. If the set
can not be de_:composéd, the rule-set is not transformed into a definite clause (such a rule-set
contains bugs!). Let p, q;, ..., q, be the predicate symbols corresponding to the tuples
left_tuple(n)=(X;, ..., X)), left_tuple(rl)=(Y 19 wees Ygl), left_tuplc:(r2)=(Ygl +12 e Yg2)’ .y
left_tuﬁle(rn)=(Yg(n_1>+1, o Yp) (15gl<g2<...<m, n2k2>1), respectively. Transform the rule-set
r into the following definite Hom clause,

RYUr) = p(*X ¥ Kip)m GV s Y g1)s oo QY gnoyes oo *Y),

K=t s e MK = U U

where *X 1, ..., *Kiw *Y,, ..., ¥Y_ mean the variables corresponding to the nonterminal
symbols X, ..., X;» Yy, s Yo, and the terms %, oo, 175 8y oo 1 contain *Y;, ..., ¥Y_ in
place of Y, ..., Y ..

Without the loss of generality we can assume that every left-hand-omitted-rule 1, has at least
one metasymbol "=", because we may replace it by u,~*Z if u, has no metasymbol, where *Z is a
new variable which does not originally appear in the rule-set 7.

The metasymbol "=" in the rule-set is re-interpreted as the equality symbol = in the

A deﬁnite clausé. The value of the ground atom z=u is true if ¢ and u are the same ground term, and

false otherwise.

The transformed logic program R-1(G) is defined as the quintuple (P, F, VUV’, s, D},
where P is a finite set of predicate symbols corresponding to all left_tuple(r), V”is the set of

variables corresponding to all the nonterminal symbols, the predicate symbol: s corresponds to £2,

and D is the set of the transformed definite clauses.

Example 16 (continued) The t-CCFG program fib.G is of the canonical form. Here we
know that
lef;_tuple((r.l)) = left_tuple((r.2)) = left_tuple((r.3) = (Fin, Fout),
left_tuple((r.4)) = (Fin’, Fout"), |
left_tuple((r.5)) = left_tuple((r.6)) = (Plus,, Plus,, Plus,),
left_tuple((r.7)) = left_tuple((r.8)) = (Num).

Supposing that (Fin, Fout) is corresponding to the predicate symbol fib, (Fin", Fout”) to fib”,

(Plus,, Plus,, Plhs3) to plus, and (Num) to num, respectively, each rule-set is transformed as

follows,
fib(*Finy,, *Fout,):-*Fin, =0, *Fout,=s(0) <R
fib(*Fin,, *Fout,):-*Fin,=s(0), *Fout,~s(0) LR

fib(*Fin,, *Fout,):-fib(*Fin, *Fout), fib"(*Fin”, *Fout’), plus(*Plus;, *Plus,, *Plus;,),
*Fin, =s(*Fin)=s(s(*Fin")), *Fout, ~*Plus,,*Fout=*Plus ,
*Fout’z*Plusé, . LR3)

ﬁb’(*Fin’h, *Fout’h):-ﬁb(*Fin,*Fout), *Fin"~*Fin, *Fout”, ~*Fout, R4

plus(*Plus,;, *Plus,,;,, *Plus,;):-num(*Num), *PluslhzO,'*PluSth*Num,

*Plus,, ~*Num, RArS)
plus(*Plus,;, *Plus,, , *Plus,):-plus(*Plus,, *Plus,, *Plus), *Plus,,=s(*Plus,),

*Plus,, =*Plus,, *Plus,; ~s(*Plus,), ~RA(r.6)
num(*Num,):-*Num, =0, LR
num(*Num,):-num(*Num), *Num, =s(*Num). ZRAr8)

By eliminating redundancies, the above definite clauses can be further transformed into the same

clauses as P(fib.L) not the exact fib.L.

7.2. Transformation rule for the programs of non-canonical form

The transformation rule for t-CCFG programs of the non-canonical form is obtained by
revising the transformation rule for programs of the canonical form.

In a program of the canonical form, the set of all the nonterminal symbols which appear in
the right-hand sides of a rule-set can be uniquely decomposed into the union of sets just like
left_set(rl)u...uleft_set(rn). In a program of the non-canonical form, on the other hand, it may be
decomposed in several ways. The idea of the revision is that if there afe several decompositions, a

rule-set is transformed into several definite Horn clauses corresponding to the decompositions.

Transformation rule R (revised version) Let r be the same rule-set as in the definition of
the previous transformation rule. We suppose that the union: left_set(r,)u...Uleft_set(r,) is one of
the decompositions of the set {Y, ..., Y,,}. Then the rule-set r is transformed into the same

definite Horn clause R-1(7) as in the previous rule. This transformation is applied for all the

possible decompositions.

Example 17 (continued) The t-CCFG program ncf.G described in the previous subsection
is not of the canonical form. Let the tuples (A, B, C), (A, B) and (C) correspond to the predicate

symbols: p, q and r, respectively. Then each rule-set is transformed as follows,

q(*Ay, *B,):-*A =0, *B,=1, ~R1n.1)
K(*C):+Cy=2, ~R(n2)
p(*A,, *By, *Cp):- *Ah;o, *B, =0, *C,=0, ~R1(n.3)
qQ(*A;, *B):-q(*A, *B), *A=d(*A), *B~e(*B), | ~R1(n4)

P(*A,, *B,, *Cp):- p(*A, *B, *C), *Ap=a(*A), *By=b(*B), *Cy=c(*C), LR 1(n.5)
p(*A, *By, *Cp):- q(*A, *B), 1(*C), *A,=a(*A), *By=b(*B), *C,=c(*C) ~R1n.5)
Note that (n.5) is transformed into two kind of clauses. These are simplified as

q0,D),

1(2),

p(0,0,0),

q(d(*A), e(*B)):-q(*A, *B),

p(a(*A), b(*B), c(*C)):-p(*A, *B, *C),

p(a(*A), b(*B), c(*C)):-q(*A, *B), 1(*C).

The correctness of the transformation rule R-! can be proved in the same way as the rule R.
One difficulty is that the equality symbol which appears in a transformed definite clause acts like a
meta-functional symbol. Then in order to preserve the precise equivalence between TGk(Qi) and

Tyt (G)k(ﬂ) for any k>0, the mapping T; for a logic program L is revised as follows.

Definition 22 (revised version) Given a logic program L=(P, F, V, s, D), the mapping T
of P(B;) is defined as follows,
T (A) = { p(.)¢ | p(.)=q (s s Q) VimemWy, o, S SWE D,
e, |
p(..)9eB;,
qi(...)q)e A, for all n>i21,

(vjz...zwj)q) = X=X, € U(F) forall k>j=1},

where Ae P(B,).

Theorem 3 For every t-CCFG program G, the transformation rule R preserves the

semantics. Namely it holds that SF;[G] = SF F[R‘I(G)].

In other words, every t-CCFG program G can be transformed into the equivalent logic
program L=R"1(G). The relationship between the t-CCFG program G and the logic program L is
similar to the relationship between the logic program L and the t-CCFG program R.(L) described in
subsection 6.2, because G and R(L) (=R(R1(G))) have the same program structure.

8.Discussions

First, we have defined term-based CCFG programming system. Strings the original CCFG
programming system can treat are special terms which satisfy the associative law. Term-based one
has been defined in the same way as in [1] without the associative law.

Second, we have shown the program transformation rule from an arbitrary logic program
(t-CCFG program) into the equivalent t-CCFG program (logic program). Each definite clause in the
loglc program (rule-set in the t-CCFG program) is transformed into the corresponding rule-set
(definite clause). These transformation rules are so simple that it is easy to construct an automatic
program transformation system. Through these transformation rules, the close relationship between
the syntactic structures of both programs has been shown. It can be said that a logic program and
the corresponding t-CCFG program are in the dual relation. Since logic programs and t-CCFG
programs can be mutually transformed, one can solve problems in both programming systems.
However, one should solve the problems which can be naturally expressed as logical deductions in
logic programming system whereas one should solve the problems in which the data structures of
objects can be naturally expressed as (term-based) context-free grammars in CCFG programming
system.

This transformation rule has some effects on our studies of CCFG programming which we
- have begun fér the purpose of establishing a data-structure directed programming system.

First one is to translate the fruitful results that many researchers have obtained in the area of
logic programming into the corresponding ones in the area of CCFG programming. For example,
some unified theories of logic and functional programmings have been already known. From these
theories we will be able to deduce the unified theories of CCFG and functional programmings
straightforwardly. For one more example, we hardly know the theory of negation in the area of
formal grammars, while it has been well studied in the area of logic and logic programming. By
translating the latter into the area of CCFG programming, the negation may also be established in
the area of extended CCFG programming. |

Second one is to establish the unified theory of CCFG and logic programs. The syntax and
the (least fixpoint) semantics of the mixed programs containing definite Horn claﬁses and rule-sets
can be well defined because the semantic domains of CCFG programs and logic programs are
similar and they can be easily extended for the mixed programs.

The authors are now studying these subjects besides the design and implementation of a

prograrhming language based on CCFG.

Acknowledgments

The authors would like to thank Professor M. Sassa for his useful and helpful advice.

References

[1] Yamashita, Y. and Nakata, I. :Programming in Coupled Context-Free Grammars, to be
submitted.

[2] Lloyd, J. W. :Foundation of Logic Programming, Springer-Verlag (1984).

[3] Clocksin, W. F. and Mellish, C. S. :Programming in Prolog, Springer-Verlag (1981).

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-88-71 -
TITLE .
On the relation between
CCFG programs and logic programs
AUTHOR(S)
Yoshiyuki YAMASHITA and Ikuo NAKATA
REPORT DATE NUMBER OF PAGES
Jun. 1, 1988 33
MAIN CATEGORY CR CATEGORIES
Progranmming Languages D.3, F.3, F.4
KEY WORDS

' Logic Program, Context-Free Grammar, Coupled Context-Free Grammar,
Program Transformation

ABSTRACT

CCFG programming is a programming system based on the formal grammar: Coupled
Context-Free Grammar (CCFG) ; . A CCFG is regarded as a program, called a CCFG program,
and its semantics is defined by the language, a set of tuples of derived terminal strings which it
generates. CCFG programs are similar to logic programs, because their semantics domains are
similar in the sense that both represent relations between input/output data objects. In this paper the
relationship between CCFG programs and logic programs is discussed by using program
transformations. The rules for these transformations are so simple and we can clearly understand
the characteristics of CCFG programs by comparing them with those of corresponding logic

programs.

SUPPLEMENTARY NOTES

