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Abstract

A wide <class of iterative algorithm based on the
conjugate directions is proposed for solving large-scale
linear least squares problems. The linear convergence
of the process is proved.

81. Introduction
Reéently several versions of methods have been proposed for

solving large sets of linear equations.

A x = b G D)

with nonsymmetric coefficient matrix[1,2,3]1. They are based upon

minimizing the Euclidean norm of the residual | b - Ax |2 over
the space x; + SPAN{pi, Piogs --- ’pi—k}' where x; is the i-th
approximation.

- In the present paper we extend this method to a linear least
squares problem which minimizes | b - Ax 2, where A is a large
sparse mXn rectangular matrix. We assume that the coefficient
matrix is so large that the ,ahount of work and the storage
Tequired in the direct methods such as QR or singluar value

(Talk presented at the First IASC World Conference on Computational
Statistics and Data Analysis, Shizuoka, Japan, September 17-19, 1987)



decompositions is nearly prohibitive. A common technique for
solving such least squares ©problem is to apply the conjugate

gradient method[4] to the normal equation
b. (2)

On the i-th iteration, the conjugate gradient method computes an

approximate solution over a Krylov subspace X +-SPAN{ATr, (ATA)

Alr, 0, AT il

the square of that of A, this dependence on ATA tends to make the

ATr}. Since the condition number of ATA is

convergence -slow.

The method we present depends on a Krylov subspace based on
BA rather than ATA, where B is an appropriately chosen nXm
matrix, which we <call a mapping matrix. They require that the
symmetric part of AB be positive semi-definite. |If B is close to
a generalized inverse of A, the convergence would be fast. The
mapping matrix B plavys a role similar to the preconditioner in
solving’ large sparse |linear equation by conjugate residual
method. For the case with m=n, a different algorithm based on a
similar Krylov space was presented in [5], where B is given in
the form of C_i. We note that the sum of squares itself has a
definite statistical meaning and should not be changed by a
preconditioning as, say., [B(b-Ax)]2. ‘ |

In the next section we present CR-LS(k) algorithm for the

least squares problem. In 83 we show the convergence conditions
and the rate of decrease of the residuals. In 84 we discuss the
choice of B. 85 is the conclusion.

82. Conjugate residual methods
A linear least squares problem is to find & € R" which

minimizes
stx) =l b - A x |2 ~ ‘ o (3)

where A is an mXn matrix and b is a vector of dimension m.
The conjugate residual methods is based on minimizing S(x)

along a line S(Xi+api) “where pi is a vector of dimension n and



is called a correction vector. In case A is a square matrix., P,

is chosen to be ri.plus a linear conbination of former correction
vectors., Pi_1s P,_p’ e In our case, however., riis an m-
vector while P, is an n-vector, so that we need a mapping matrix

B, which maps an m-vector to an n-vector.
Adding the mapping matrix to Orthomin(k)[2], we have the

following algorithm

ro = b - AXO' po = B ro
for i = 0 to max-i until convergence do
al= (I’l/ Apl)/ (Apl/ Ap')
Xiep TOXp F Xpy
Figp =0~ O(iApi S e : 4)

for j=0 to min(k-1,i) do
- -(ABri, Api-j) / (Api, Api)
Pier BT B B B P e
Here ai is so chosen as to minimize the new residual ﬂri - aiApi"
as a function of ai along the direction Py We will call this .
algorithm CR-LS(k) method. The number k may be 0, 1, 2, «.. ,
depending on the characteristic of the problem. The work vector

necessary to implement CR-LS(k) is x, r, ABr and k sets of p and

Ap. In order to minimize the multiplication by A, Api is also
updated by
APy = ABry + By Ap, + B Ap, e B ke PP ke
: : (5)
- The residual and correction vectors obey the following

relations due to the construction of p's.

Theorem 1
a) (Ap,, Ap) =0 li-il < k., i#j (6a)
b) (ri, Apj) = 0 0 < i-j < k (6b)
c) (ri, Api) = (r., ABri) (6¢)
d) (ri, ABrj) =0 0 < i-j < k (6d)
e) (ri; Apj) = (ri-k' Apj) 0 < i-j <k (6e)



83. Cdnverﬂéncefpropertieg_g

In the previous section we did not specify the mapping

‘matrix B.” The most trivial choice would be B = A", where A is a
generalized .inverse of A, i.e. AA A = A and AAYT= (AATY. - In
this case the first step in (4) would proceed as

Pg = Br0-= A (b —-Axo)_ ,

(ro, Apo) = (b—AxO, AA b—AxO) = (APO' APO)

a =1

Xy = Xq + Ab-AAx = A b - (I-A A)XO'
so that Xl gives one of the least squares solutions. This choice

is unrealistic, since if we knew A  we would simply compute A b
without applying.any iterative methods.

There is a certain trade-off between the number of
iterations and the complexity to compute Br. The more the B
resembles A , the faster the method will converge. On the other
hand, the cost to compute Br at each iteration will become large
if B is made close to A . We will discuss the rate of conver-
gence of the method and the requirement for the mapping matrix B.

We first define the oprojector P onto Im(A), which is
written as AA using a generalized inverse. The matrix P obeys
the relation P = PT = Pz. We can also write P = Q QT, using the
QR decomposition of A, where Q is an mXp matrix (P=rank A) with

orthonormal column vectors.

We first prove the following lemma.

Lemma 2 .

(Api, Api) < (ABri, ABri). (9)
Proof

If k=0, eq.(9) is an identity. For k>0, the correction

vector p. is given by (4) in the form

P, = Br, + ¥ 5ijpj.

From properties (6) we have

(Ap., Ap,) = (ABr,, ABr,) + 2 Y 5ij(ABri, Ap ) +
2
x B2 (ABr . ABr )



(ABr . ABr.) - Y (ABr .. Apj)z/(Apj, Ap )
(ABr.., ABr.). . QED.

A

Now we will present the main theorenm.

Theorem 3

Let {ri} be a sequence of residuals in algorithm (4), then

the folIoWing inequality holds:

- a2 A 2
ey, -l <1 - Amin(M). (105
- 2 - 2 7
Ir, -+ naxMA L (D p(RIZ
provided
(a) B P =B and )
_ AT T. T . L o
(b) M=Q (AB + B A') Q/ 2 is positive definite. _
where # =.b - A%, R =2Q' (AB - B'A) @ / 2, A Land A are

the maximum and minimum eigenvalues and P(R) is the spectral

radius of R.

Proof

The proof goes parallel with ref.[3]. The displacement from

the minimum residual # is the projection of r to Im(A) as,

roo t = AR - Axi = Pb - PAxi = Pri.

The ratio is bounded from above if the assumption (b) holds,

- 2 2 . 2
"ri+] ?ﬂ= ﬂPri+]ﬂ= . (r o Ap )
“ri - #[2 HPriﬂz (Ap . Ap ) (r o Pr )
(r.., ABr.) (r., ABr.)
<1 ! ' ' o<, an

(ABr ., ABrif (r.. Pr)

Here Lemma 2 has been used.

We now estimate the first factor in the second term of the
RHS of eq.(11). The assumption (a)., BP = BQQT=B, enables us to
estimate the quantities in the subspace Im(A). We suppress the

suffices i.

(r, ABr)/(ABr, ABr) = (Pr, ABPr)/(ABPr., ABPr)



= @Q'r, ABQQ'r)/(ABQQ'r, ABQQTF),

_ o] , -1
= (C ‘v, v) / (y, y) > Amin((c

¢ N2y (12)

with

c=Q  ABQ, v =0Q'ABQ Q'r.

Using the relation X '+y '=xx+¥) " 'v)™!, we have

A e tee sy =2 (MeRMT

nin max " _
> (A M + A . (M) PR
max min

1
2

Ry !

y 7! (13)

On the other hand the second factor can be transformed

Cr, ABr)/C(r, Pr) = (Pr, ABPr)/(Pr, Pr)
= o, viasy vinsoTr, vin
> A LD (14)
min
Combining egqs.(12), (13) and (14)., we have eaq. (10). This

completes the proof. QED.

This theorem shows that the CR-LS(k) method is at least

linearly convergent.

84. Choise of B

CR-LS(k) algorithm covers a wide class of methods. They
differ in the choice of the mapping matrix B and the parameter k.
The particular choice of B critically depends on the application
and cannot be discussed in general. We will give here a few
general comments.

The simplest <choice of B which automatically satisfies the

two conditions (a) and (b)Y in Theorem 3 is B = AT. In this case
C is symmetric and the convergence rate is controled by 1 =
'min(C)/‘max‘C)' As is easily expected, this case is equivalent

to the conjugate gradient method for the normal equation (2) and
CR-LS (k) (k>1) is equivalent to CR-LS(1).

We next consider a family of mapping matrices in the form

B =D A', . o UB)



where D is an appropriate nXn matrix. In practical cases A is a

large sparse matrix, so that multiplying AT from left will not be
too time consuming. The matrix D should not have too complex
structure. In this <choice, the condition (a) is automatically
satisfied. - If the symmetric part of D is positive definite, the

condition (b) is also safisfied, since

2M=a apA" + aAD'AT) @ =a'Aa @ + D) ATa. (16)
We have to make the condition number of M as small as possible.
The extreme choice would be to set D equal to (ATA)-. In this
case, B is a generalized inverse of A. |f the columns of A are
approximately orthogonal, we may take D as the inverse of the
diagonal part of (ATA). Incomplete Cholesky decomposition[6] of
(ATA) will also be applicable.

85. Conclusion

We have shown that the <conjugate residual method can be
extended to the linear least squares problem and pointed out the
computationél advantages with using a mapping matrix B. We have

also presented a vproof for the rate of convergence of this

mathod. One disadvatage may be that we <cannot obtain the
variance matrix (ATA)—] in this algorithm. Extention to the
weighted least squares ©problem with nondiagonal weight is

straightforward.

Several numerical tests have been performed on the data
smoothing problem by discrete splines, which will be discussed
elsewhere.

Finally we would like to remark that the method of the type
presented in this paper are efficiently performed on vector
supercomputers, since the dominant computation is the innner

product of .long vectors and the linked triad operation (x + « v).
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