ISE-TR-87-64

Hyperplane vs. Multicolor Vectorization of Incomplete

LU Preconditioning for the Wilson Fermion on the Lattice '

- Yoshio Oyanagi

August 5, 1987

ISE-TR-87-64
August 5, 1987

Hyperplane vs. Multicolor Vectorization of Incomplete

LU Preconditioning for the Wilson Fermion on the Lattice

Yoshio Ovanagi

Institute of Information Sciences., University of Tsukuba

Sakura-mura, Niihari-gun, lbaraki, 305 JAPAN

We compare the hyperplane and 16-color vectori-
zations of minimal residual and conjugate residual
methods with an incomplete LU preconditioning to
solve the lattice Dirac equation in the Wilson for-
mulation. The performance was assessed in terms of
the Euclidean distance from the true solution for
various hopping parameters on a quenched gauge con-
figuration at B=5.5 on an 8% lattice. The 16-color
vectorization requires 2~4 times more iterations
than the hyperplane vectorization. Even with the
best choice of the acceleration‘pgrameter(the
latter method is preferabfevfhan the former unless
the computing time for one iteration differs by a

factor of two or more.

(submitted to Journal of Information Processing)

1. Introduction

The numerical simulations of the lattice gauge theory., the
quantum chromodynamics on the latticelll, has proven to be useful
for extracting quantitative predictions about the hadron physics
from the first principles. The lattice gauge theory is formulat-
ed on a four-dimensional hypercubic lattice. In the Wilson
formulation[1l., the fermion (quark) field ¢ia(x) is a 12
component complex quantity allocated on a lattice site and has
two indices: one for the Dirac index (i=1, 2, 3, 4), the other
for the color (=1, 2, 3). On the other hand., the gauge (gluon)

field U(x,y) is a 3X3 unitary matrix with unit determinant and is

defined on a link, i.e. the side between the nearest neighbor

lattice sites, x and y. The rows and columns correspond to the
T

color indices. The reciplocity requires U(y,x) = U(x,y) .

In the numerical simulation of the lattice gauge theory.
most of the computer time is spent in solving the Dirac equation

on the léttice,
AY =b (n

where A is a large sparse non-Hermitian matrix which depends on
the background gaugeAfielde and a parameter & éalled "hopping
parameter"” as described in the following séction. The hopping
parameter is a measure of coupling between the quark field compo-
nents at the nearest neighbor sites‘and is relatea to the mass of
the. quark my in such a way that my is proportional to 1/ - 1/k
When # approaches Mc, the equation becomes nearly singular and

difficult to solve.

Since the size of the coefficient matrix A is very large.
the amount of work and storage required in direct methods such as
Gauss elimination is nearly prohibitive except for small
lattices, such as 44, The standard procedure so far has been the
conjugate gradient (CG) method[2] for ATA or AAt-which’gives the
exact solution in finite steps if the round-off error is absent.
In the previous paper[3] we presented a fast method based on the
conjugate residual (CR) method and an incomplete LU (ILU) decom-
position and proposed a hyperplane vectorization of the I[LU
preconditioning. Recently a different vectorization based on a
16-color classification appeared in the literaturel4] and based
upon this vectorization, they claimed that the ILU precondition-
ing was worse than other preconditioning methods especially when
the hopping parameter # is close to the critical value K

In the present paper we will compare the hyperplane and 16-
color vectorizations of an incomplete LU preconditioning és
applied to the minimal residual (MR) as well as the conjugate
residual (CR) methods. For the two ways of vectorization, we
want to assess the performance as a function of the hopping
parameter £ on a quenched gauge configuration at $=5.5 on an 8

]bﬂ, where ¢i is the value

lattice. We measured the error “¢i_ A~
of ¥ at the i-th iteration, as a function of i in the two cases.
The CPU time is not a good measure of the performance., since it
critically depends on the architecture and especially on the
fine-tuning of the codel3].

In the next section we will describe the Wilson fermion on

the lattice: section 3 discusses the conjugate residual methods:

section 4 contains a thorough description of the incomplete LU

decomposition: section 5 discusses the vectorization of
multiplication and ILU preconditioning of the Wilson fermion
matrix: section 6 gives a brief description of 16-color

vectorization: section 7 discusses numerical results.

2. Wilson Lattice Fermions
The coefficient matrix A is defined as a block matrix
{A(x,y)} where x and y represent generic lattice sites on a four-

dimensional hypercubic lattice of arbitrary size nlxnzxnsan.

The site x is specified by four integer coordinates (XI' Xps Xgo
x4) where x# =1, 2, ... n# (“=1, 2, 3, 4).

Each block A(x.,y) has a structure due to the internal
degrees of freedom of the quark field. It is a 12X12 complex

matrix, whose rows (and columns also) are specified by the pair

of Dirac (i, i=1, 2, 3, 4) and color indices (a,B=1, 2, 3).

ln'greater detail the Wilson fermion matrix is given as
follows:
7 = 6 (5 , . L . . i =
A(x y)ia,jﬁ ij %ag . . if vy X
- - R - -)
vA(x'y)ia,jﬁ = k(] 7ij) U(x,y)aﬁ if.y X + M
_ M . _ _ (2)
A(x,y)ia,jﬁ‘ (1 + 7ij) U(x,y)aﬁ if v = x M :
A(x’y)ia,jﬁ-=‘0 : ‘ : otherwise
A
Here v = x * i means that the site v lies next to the site x in
the positive (negative) U-direction. The 4%X4 complex matrices 7“

are the Dirac's 7 matrices defined by

fooo0 -i o 00 -1 00 -iol - [1.0 oo

1 {00 -i o0 2 loo1 o 3 _loo o0 4101 00

Y=lo0i 0o0|/.7 o 100.7 i 000,700 =10|.®
i 0 00 -1 000 0-i 00 000 -1

We note that only one element in each row is nonzero and the
value is either 21 or #i.

Since A is related to the discretized version of the Dirac
equation in the continuum, the matrix A as a whole has a
structure similar to the matrix generated by discretization of
elliptic or parabolic partial differential equation: that is, an
off—diagqnal block A(x.,v) is nonfzéro ohly when x and vy are

adjacenf with each other.

3. Conjugate Residual Methods

A class of iterative methods for solving the system of
linear equations by decreasing the norm of the rgsidua[vector
“A?y- bﬂ2 has been proposed[5-61. The algorithm consists of

iterative steps starting with

r==5bt-A%, p = r

and repeating

& = (r. Ap) / (Ap., Ap)
¥ =9 + ap o
r = r - Ap
update p
till convergence is achieved. Here the complex coefficient & is

so determined as to minimize the norm of the new residual

Ir - aaell,.

The variants differ in the way to update the new direction
vector p. The simplest choice would be to éet P =1r. In this
casé only three vectors ¥, r and a=Ar have to be stored in the
memory. We call this algorithm thé_minimal residual (MR) method.

The convergence would be faster if the coefficient matrix A

is approximately proportional to a unit matrix. More precisely,
if we denote r the residual vector at the i-th iteration, we
havel6].,
2 A 2
I Mi+1 I < 1 - min(H) (4)
r. 2= A (ATAY) 7
i max

provided H=(AT + A)/2, the Hermitian part of A, is positive-

definite. Here A . and A denote the minimum and maximum
min max
eigenvalues, respectively. In the algorithm, the positivity of H
is crucial. If the positivity is lost (e.g. for ¥ > KC)/ the
coefficient & becomes zero or very small and the ¥ is no longer
improved.
In the case of the CG method for positive symmetric linear

equation Ax=b, the conjugacy of the correction vectors {pi} with
respect to A plays an important role in reducing the bilinear
form (x, b - Ax). By only making L conjugate to Py the
former is automatically conjugate to all preceding correction
vectors Pic1? Piop? -+ 7 Py- In our case the conjugacy of the
correction vectors with respect to ATA also plays an important
role in reducing lrll2. The conjugacy, however, is not passed on
to the new direction vectors, s§ that we can make Py conjugate
only to the correction vectors stored in the memory. We call

this class of algorithm as conjugate residual (CR) method.

The simplest choice (CR(1) method) is to make Pt conjugate

only to the previous vector Py - More specifically, we start with

r=>b-A¥%, p =171, a = Ap
and repeating

(a, r) / (a., q)
¥ + ap

r - «q

Ar

~-{q, s) / (a, q)
r + Bp

s + Bq

~ %R
n " [}

2 v ™Yo
n

until the convergence is attained. One step of the CR(1) method
entails one matrix multiplication, three inner products and four
vector addition with scalar multiplication, that is it has one
more inner product and two more vector additions as compared with
the MR. The memory necessary to imp]ement the CR(1) is larger.,
since it has two more working vectors p and s. Although the
upper bound for the ratio of residuals (4) is valid for the CR

methods, the residual for the CR decreases faster than that for

the MR.
4. Incomplete LU Decomposition
Since the relative reduction of the norm of the residual in

the MR and CR methods is bounded by (4), one can improve the
convergence by transforming A to a matrix which is approximately

equal to the unit matrix (or its scalar multiple).

|f we have a matrix A, which is a good approximation to A,
we can expect Ki]A is closer to the unit matrix than A itself. If
the solution of the equation A x =y requires relatively small

amount of computation, it would be easier to solve the equation

o~ —

ATA v = B b, | (5)

in stead of eq.(1). This observation is at the basis of any
preconditioning technique. The more the A resembfes A, the
better will be the convergence of the MR or CR methods. On the
other hand, the solution of A x = yv should not be too time-
exhausting, since we have to solve it once in each step.

Some years ago Meijerink and van der Vorst[7] proposed an
incomplete LU factorization for the matrix originated in partial

differential equations, which approximately decomposes A as
A =1L U-N, (6)

where L and U are lower and upper triangular matrices and N is
the error of decomposition. - By suitably choosing the noh—zero;
entries of L and U, one can make L and U as sparse as the
original A. If the error N is small, the factorized form LU
plays the role of A in eq.(5).

In the case of the Wilson fermions on the lattice, it can

readily be shown[3] that the block triangular splitting of A,

Lix.,y) Alx.,y))) ‘ (x > v)

0 (x < vy)

7

R(x.,y)

0 ; B ' (x > y)

Alx.,y) (x < y)

provides an incomplete LU decomposition due to the projection

operators (1 #+ 7“),'thaf is

LR=AH4+ 02), - (8)

We use the symbol R instead of U for the right (upper) triangular
matrix, since we have to reserve U for the gauge field.

The inequality of x and y.is to be undekstood according to
the site number x (denoted by IX in the program) in the usual
manner.,

X = (((x4-l)xn + xs—])xn + x,~1)Xn, o+ x . - (9)

3 2 2 1 1

The site number runs from | to n, where n = nynongn, is the total
number of the lattice sites. The detailed algofithm of ILUMR and
[LUCR methods is given in [3]. |

We found[3.8] that the convergence rate is further improved
by a Gustafsson-type acceleration[7]. This is a trick of
replacing the hopping parameter ¥ in the preconditioner LR by ck,
¢ being an appropriate constant. This acceleration can be
understood as approximating cA by LR. The error N = L R - cA now

has non-zero diagonal entries
N(x,x) = -Cc=1) | ' (10a)

as well as the usual off-diagonal entries

M V A A
N(x,y) = c262(1-7") (1+77) Ux, x+)UT(y,y-1) (10b)

for the next-nearest pairs (x, y) with y=x+ﬁ-£ﬂ When the gauge
field U as well as the fermion field ¥ are nearly aligned, the
effect of those two errors tends to cancel with each other, so
that (LR)-1A is effectively closer to a constant multirple of a
unit matrix. We found the best choice of ¢ is 1.1~1.3. Unlike
the acceleration parameter @ in the SOR method, the number of

iterations needed to fulfill a convergence criterion does not

critically depend on the choice of c.

5. Vectorization

We now need to discuss how to carry out the computation on a
vector processor. The vectorization of MR and CR methods offers
no problem since they consist of vector operations and matrix
multiplication of a vector. We show in Fig. 1 the core of the
code which gives r = A qa. The arrays QUIX, i, @ and R({IX, i, &)
represent quark field where i and &« denote the Dirac and color
indice%. The link connecting the site IX and its hearest
neighbor in the positive M-direction is numbered as LL = 4XI|X - 4
+ M, so that the link number LL runs from 1 to 4%N. IGAM (i , &)

gives the Dirac index j for which (¥ = GAMC(Ci, M) # 0. The

w i
array elements NRRCIX.,u) and NLL(IX,#) give the site number which

lies next to IX in the positive and negative M-directions

respectively. Due to the periodic boundary condition, NRRCIX,u)
cannot be given in terms of a linear form of IX. The hopping
parameter is denoted by HK. Since there is no data dependency in

..‘]0_

the innermost loop DO 10, it would be straightforward for a
compiler to vectorize the loop.

On the other hand, quite a bit more complex is the
vectorization of the solution of the triangular equations L p = gq
and R s = p. These equations are solved recursively in terms of

the forward and backward substitutions., as

do x = 1, n
x-1 :
p(x) = q(x) - ¥ L(x,y) p(y)
y=1
and.
do x = n, 1, -1
n
s(x) = p(x) - XY R(x.,y) s(y).
y=x+1
The algorithm is hard to vectorize since the previous
variables are referred to in the loops. in order that the

vectorized code may produce the same.results as the scalar
computers, we have to find a subset of lattice sites which are
independent with eaeh other and therefore can be computed
concurrently. This cannot be done by dividing the lattice into
sublattices with doubled lattice spacing. For example p(1.,1.,1,3)
depends on p(1,1,1,1) via p(1.,1,1.,2).

I't is easily seen in the forward substitution, p(x) depends
on p(y) if and only if there exists at least one sequence of

(]), 2(2), 2(3),... z(S)=y for which z(i)

s

lattice sites, x=z

and z(i+]) are adjacent with each other and z(i) > z(i+]% One
can prove by induction that p(x], X0 x3, x4) is dependent on
p(y], Voo Vyr y4) if and only if x#>y# holds for all ¢#. This

]]

statement is alsg valid when.we take the periodic (or
antiperiodic) boundary conditions into account.

In our previous paper[3] we presented a hyperplane
vectorization, which was originally proposed vears ago for |LLIAC
lV[IO]vand later révived for.thevILU ?regonditjoning of partial
differential equations[11]. This approach is based upon the

observation that the sites lying on a p-th hyperplane defined by
Xl+ x2+ x3+ Xq = P = const . : (11

are independent of each other and that if p(x) depends on p(y)
then y lies on a hyperplane with smaller p. We can start with
p=4 and increment the constant p after each step, until p reaches
its maximum value NP=n]+ not ngt ny,.

A slight modification of the program in Fig. 1 vields a
solver of L p = q, which is shown in Fig. 2. Here the solution p
is overwritten on a in order to save the storage. The site
numbers of those lattice sites whose nearest neighbor site in the
positive M~direction has smaller site number than themselves
(i.e. connected in the matrix L) are reordered according to the
hyperplane number P and NNLR(IXP,#) contains the |IXP-th of such
site numbers. The targest IXP on the IP-th hyperplane is given |
in NBLR(IP.#). In the same way, the lattice sites whose nearest
neighbor site in the negative f#-direction has smaller site humber
are stored in NNLLCK.4). We noté NBLR(NP,#)+NBLL(MP,#) = n for:
any M. Since the compiler cannot identify the independency of
the operations on Q@ in the looprs DO 10 and DO 20, we have to put

a compiler directive. " Fig. 2 shows the one for HITAC S810.

]2

6. Quasi—vectofizatfoh by Mult}color Method

" Recently P. Rossi, C.T.H. Davies and G.P.'Lépagef4i
implemented the ILU preconditioning in terms of a 16-color
sublattice "vectorization". They expressed the coordinate x on

the lattice as

2y + 1 , (12)

X
It

with

<
L}
~
<
~
<
N
<« -
<
w
~
<
E-N
s

<
= yu < n#/2

and

‘n =(‘n1/ nzl nsl n4) n#= 0 or 1.,

and treated all the sites labeled by different y but identical 7
simultaneously.

Although the sites with the same % are not connected direct-
ly., theyiare not independent as we saw in the previous sectiqn,
so that this method does not give the same result as the original
LU precon@itioning. I't should be regarded as a different solver
based on the vector iteration iﬁ the sense of Schendel[12].

We show in Fig. 3, the relative error e of the 16 color ILU
preconditioning for a complex random righthand vector b (both
real and imaginary parts are normal random numbers and normalized
as bll,=1). The error e is defined by

e =l uatyd b -0t e, B Ul e, (13)

_13..

where L;; and U;J represent the 16-color vectorization of L—] and

U—1. As is expected, the error is small for small &, whereas it
gets worse when KX becomes larger. One may think that since the
ILU preconditioning itself is an approximation, exact identity of

numerical algorithm may not be necessary in the vectorization.

We will see the effect in the next section.

7. Summary and Results

In in Fig. 4 the Euclidean norm of the error M’i-A_1 bll is
given as a function of i, the iteration number, for the ILUMR
algorithm vectorized by the hyperplane and 16-color methods.
The acceleration parameter ¢ is set to 1.0 (no acceleration).
The gauge configuration was taken from a quenehed simulation at
$=5.5 on an 84 lattice. The hopping parameters are £=0.17, 0.18,
0.181 and 0.183. The critical value Ec for which the pion mass
vanishes in this configuration is 0.1844+0.0009([81. The

righthand side b is a complex gaussian random vector described in

the previous section. The initial value ¢0 is set equal to b.
We do not plot the residual "b—A¢i"2, since it would require an
extra computation. The vector r in ILUCR or ILUMR algorithm is a

modified residual (LR)

(b-A¢i) and depends on the vectorization
and acceleration of ILU preconditioning.

We also show in Table | the number of iterations until “¢i -
A_]b“ < 10_4 is attained for the various choices of ¢ for |LUMR
and ILUCR methods in both hyperplane (column h) and 16-color

(column m) vectorizations. For all values of hopping parameters

the 16-color version requires 2 ~ 4 times more iterations. From.

]4

the result in Table 1, the optimum value of ¢ in 16-color
vectorization is larger than that in the hyperplane method. Even
if we compare the best choices of ¢ for each case., the difference
is large, especially for the range of £ of our interest, which is
close to Mc. The critical slowing down is more striking in the
multicolor vectorization.

This result can be understood in terms of the velocity of
information running across the lattice. In the 16-color
vectorfzation of ILU preconditioning., an element of the residual
vector influences only the elements of ¥ in a hypercube which
lies next to it. The velocity is only J7 per iteration in the
lattice unit. This feature exhibits a striking contrast to the
hyperplane vectorization, in which any element of the residual
can give influence on the value on any other lattice site, albeit
incomplete. |

On the other hand, the multicolor vectorization posesses
some computational advantages. For one thing, the vector length
in the 16-color vectorization is n/16, which is in practical
cases larger than n/2(n]+n2+n3+n4—3), the'average vector length
in the hyperplane vectorization. Moreover the access to the
memory is more regular in the former method, so that the
execution time for one iteration is shorter in the multicolor
vectorization than in the hyperplane one, especially on a vector
machine with slow memory access. This fact may cover the
shortage of the former that more iterétions are necessary than
the latter. It is also to be noted that the multicolor method
can be easily implemented on a highly parallel array of

processors with distributed memory. We conclude., however. that

15

the hyperplane vectorization is superior than the multicolor
vectorization, unless the execution of the former is at least

twice (or more) faster than that of the latter.

Acknowledgement

The numerical calculation for the present work was carried
out on‘HlTAC S-810/10 at KEK., National Laboratory for High Energy
Physics. We thank the Theory Division of KEK for its warm hospi-
tality. We are indebted to M. Fukugita, A. Ukawa, Y. lwasaki. M.
Mori, M. Natori., K. Murata and U. Ushiro for stimulating discus-
sions. We are also greatful to S. Fujino and K. Takeda for
informing us of Lamport's paper[8]. Our work was supported in
part by the Grants-in-Aid for Scientific Research of Ministry of

Education, Science and Culture (No. 61540142).

References

1. K. G. Wilson, Phys. Rev. D10, (1974), 2445-2459.

2. M. R. Hestenes and E. Stiefel, J. Res. Nat. Bur. Standards
49, (1952)., 409.

3. Y. Oyanagi., Comput. Phys, Commun. 42, (1986), 333-343.

4. P. Rossi, C. T. H. Davies and G. P. Lepage., University of
California, San Diego report UCSD;PTH 87/08.

5. P. Concus and G. H. Golub, in : Lecture Notes in Economics
~and Mathomatical Systems, vol. 134, eds. R. Glowinski and J.

L. Lions (Springer-Verlag, Berlin, 1976) p. 56-65."

-16-

10.
1.

12.

FigurevCéptiéﬁsw.k
Fig. roc
Fig.
Fig.

Fig.

P. Ki: W. Vinsome, in : Proc. Fourth Symp. on Reservoir

Simulation, Soc. Petroleum Eng. AIME (1976) p. 140,

. 8. L. Eisenstat, H. C. Elman and M. H. Schults, SIAM J.

Numer. Anal. 20, (1983), 345-357.

J. A. Meijerink and H. 2. van der Vbrst) Math. Comput. 31.
(1977)., 148-162.

M. Fukugita, Y. Oyvanagi and A. Ukawa. Phys. Rev. D 38, 2,
(1987) in press. | |

|. Gustafsson, BIT 18, (1978)., 142.

L. Lamport, Comm. of ACM 1Z. (1974), 83-93.

-Y. Ushifo, M. Nishikata and F. Nagahori, Hitachi Hvoron 65,

(1983), 557-562 (in Japanese) .
U..Scheﬁdel,wlhtroduétion to Numérical Methods for Parallel
Computers, trans. by B. W. Conolly, Ellis Horwood Limited.,

Chichester., 1984, p.35.

1 ‘A program for R = A Q.

"a

2 A program for Q « L

3 Relative error of 16?color preconditioning as a function
of the hopping parameter. |

4 The error "¢i - A-1b" as a function of the number of

iterations i for 16-color preconditioning (upper curve)

and hyperplane preconditioning (lower curve).

..17-

10

3

COMPLEX U(4%N,3.,3),Q(N.4,3),R(N.4,3),QQ1.,Q0Q2,QQ3,GAM(4.,4) ,GM
INTEGER |GAM(4.,4) ,NRR(N,4) ,NLL(N,4) '

DO 5 1ALPHA=1.,3
DO b I=1.4
DO 5 IX=1,N
RCIX, 1., 1ALPHA)Y=QCIX, |, |ALPHA)

DO 10 MU=1.4
DO 10 I=1.4
J=1GAM (I ,MU)
GM=GAM (| ,MU)
DO 10 IX=1,N
NR=NRR (I X, MU)
LR=4%|X-4+MU
QQ1=Q(NR,[.,1) - GMXQ(NR.J,1)
QQ2=Q(NR., |.2) - GM*Q(NR.J,2)
QQ3=Q(NR.,1.,3) - GMXQ(NR.,J,3)
RCIX,1,1)=RCIX,1,1) = HKX(UCLR.,1.,1)%QQ1 + U(LR.,1.,2)%QQ2 +
UCLR.,1.,3)%QQ3)
RCIX,1.,2)=R(IX,1,2) - HKX(U(LR.2,1)%QQ1 + U(LR.,2,2)%QQ2 +
U(LR.,2.,3)%QQ3)
RCIX,1,3)=RCIX,1,3) - HKX(U(LR,3.,1)%QQ1 + U(LR.,3,2)%QQ2 +
U(LR,3.,3)%QQ3)

NL=NLL CIX.,MU)

LL=4XNL-4+MU

QQ1=Q(NL.,I,1) + GMXQ(NL.,J.1)

QQ2=Q(NL,!.,2) + GMXQ(NL.,J,2)

QQ3=Q(NL,!.,3) + GMXQ(NL.,J.,3)

RCIX,1,1)=RCIX,1,1) - HKX(CONJG(U(LL.1,1))*QQl +
CONJG(U(LL,2.,1))%QQ2 + CONJG(U(LL.,3,1))%QQ3)

RCIX,1.,2)=RCIX,1,2) - HKX(CONJGCUCLL.1.,2))%QQ1 +
CONJG(U(LL.,2,2))%QQ2 + CONJG(U(LL.3.,2))%QQ3)

RCIX,1.,3Y=RUIX,1,3) - HKX(CONJG(UCLL.,1,3))*QQi +
CONJG(U(LL.,2.,3))%QQ2 + CONJG(U(LL.,3,3))%QQ3)

CONTINUE

Fig. 1 Aiprogram for R = A Q

COMPLEX U(4%N.,3.,3).,Q(N.4,3).QQ1,QQ2,QQ03,GAM(4.,4) ,GM
INTEGER [IGAM(4.,4) ,NRR(N,4) ,NLL(N,4) ,NBLR(NP,4) ,NBLL (NP.,4),
1 NNLR(N.,4) ,NNLL(N.4)

DO 30 IP=4,NP
DO 30 MU=1.4
~ DO 30 I=1.4
- J=1GAM (I ,MU)
GM=GAM (1 ,MU)
XVOPTION INDEP(Q)
DO 10 IXP=NBLR(CIP-1.,MU)+1,NBLRCIP,MU)
I X=NNLR (I XP.,MU)
NR=NRR (1 X, MU)
LR=4%|X-4+MU
QQ1=Q(NR,I,1) - GMXQ(NR.J,1)
QQ2=Q(NR.,1.2) - GMXQ(NR,J.2)
QQ3=Q(NR.,1,3) - GMXQ(NR.,J.,3)
QUIX,1,1)=QCIX,1,1) + HKX(U(LR.,1.,1)%QQl +
1 UCLR.1.,2)%QQ2 + U(LR.,1.,3)%QQ3)
QUIX,1.,2)=QCIX.,1,2) + HKX(U(LR.,Z,1)*QQ1 +

2 U(LR,2.,2)%QQ2 + U(LR,2.,3)%QQ3)
QCIX,1,3)=QCIX.,1,3) + HKX(U(LR,3,1)%xQQl +
3 U(LR,3,2)x%QQ2 + U(LR,3.,3)%QQ3)
10 CONTINUE

C :
XVOPTION INDEP(Q)
DO 20 IXP=NBLL(IP-1,MU)+1,NBLLCIP,MU)

IX=NNLL (I XP,MU)

NL=NLL C(1X.,MU)

LL=4%XNL-4+MU

QQT1=Q(NL.,1.,1) + GMXQ(NL.,J,1)

QQ2=Q(NL.,1.2) + GMXQ(NL.,J.,2)

QQ3=Q(NL.,1.3) + GMXQ(NL,J.,3)

QUIX,1.,1)=QCIX,1,1) + HKX(CONJG(UC(LL.1.,1))*xQQl +

1 CONJGC(UCLL.,2,1))XQQ2 + CONJG(U(LL.,3,1))%QQ3)>
QUIX,1,2)=Q(IX,1,2) + HKX(CONJG(U(LL,1.,2))*%QQl +
2 CONJG(U(LL,2.,2))%QQ2 + CONJG(U(LL,3,2))%QQ3)
QUIX,1,3)=QCIX,1,3) + HKX(CONJGC(U(LL.,1,3))%*QQl +
3 CONJG(U(LL,2.,3))%QQ2 + CONJG(U(LL.,3,3))%QQ3)
20 CONT INUE

30 CONT INUE

Fig. 2 A program for Q « L_]Q

€ 914

JOIIS SAT}R[8d

0.2

0.18

0.16

0.14

llp; — A7l

s — A7l

k=0.170

100 | 'lllilllllllllllll'lllill‘llll'_l—g
10~1
10~°
10-3 L

—4
10

. Il|lllllllll|l!7 !I|!lll|llll,

0O 10 20 80 40 50 60
k=0.181
100 llllllllllllll'llll

0 100 200 300 400

£=0.180

R LR YT T T T7TTTT rit 17T
10—4) —
‘gl | | | [N I | it | || l L11 I:
0 50 100 150 200 250 300
k£=0.183
100 T T 711 I i1 I T T T l T T I |

JllJllllll!IIllll[llll

=
10~4 i

E .

0

<00 400 600 800
i

1000

4

Fig.

K 0.170 0.180 0.181 0.183

(ma)? 0.83 - 0.24 0.18 0.02
I LUMR h m -~ h m h m h m
c=1.0 31 57 106 265 134 361 270 1045
c=1.1 26 52 79 227 - 97 312 178 838
‘e=1.2 22 48 68 201 81 274 138 687
c=1.3 25 45 78 183 94 244 147 574
c=1.4 38 43 117 168 153 221 394 495
c=1.5 80 42 --- 157 --- 204 -=- 432
c=1.6 -- 42 --- 151 --- 195 --- 400
c=1.7 -- 45 --- 160 --- 204 --- 392
c=1.8 --- 191 ~ --- 239 --- 450
c=1.9 --- 294 --- 386 --- 811
ILUCR(1) h m h m h m h m
c=1.0 26 46 82 183 100 245 191 660
c=1.1 23 43 69 165 82 219 149 543
c=1.2 22 41 66 150 18 197 131 452
c=1.3 24 39 74 139 89 180 139 388
c=1.4 36 37 118 130 149 167 257 345
c=1.5 74 37 --- 123 --- 157 —-- 316
c=1.6 -- 37 --- 119 --- 151 --- 297
c=1.7 - 40 --- 112 --- 152 --- 292
c=1.8 --- 138 --- 169 --- 319
c=1.9 --- 202 --- 254 --- 466
Table 1

The number of iterations needed to attain [¥. - A_]bﬂ < 10-4
in the hyperplane (column h) and 16-color (column m) vectorizations.
The bar (---) denotes the failure of convergence. We underline the best
cho'ice of ¢ in each case.

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

PO
REPORT DOCUMENTATION PAGE | rowmmgs g

TITLE

Hyperplane vs. Multicolor Vectorization of Incomplete
LU Preconditioning for the Wilson Fermion on the Lattice

AUTHOR(S)

Yoshio Oyanagi

REPORT DATE NUMBER OF PAGES
August 5, 1987] 22

MAIN CATEGORY CR CATEGORIES
KEY WORDS

Lattice gauge theory, Wilson fermions, vectorization,
conjugate residual method, preconditioning

ABSTRACT

We compare the hyperplane and l6-color vectorigation of
minimal residual and conjugate residual methods with an incomp-
lete LU preconditioning to solve the lattice Dirac equation in
the Wilson formulation. The performance was assessed in terms
of the Euclidean distance form the true solution for various
hopping parameters on a quenched configuration at B=5.5 on an 8"
lattice. The 1l6-color vectorization requires 2-4 times more
iterations than the hyperplane vectorization. Even with the
best cholce of the acceleration parameter, the latter method is
preferable than the former unless the computing time for one
iteration differes by a factor to two or more.

SUPPLEMENTARY NOTES

