ISE-TR-87-63 '

A LOOSELY COUPLED MULTIPROCESSOR SYSTEM : ADMS
—SOFTWARE ENVIRONMENT ——

by

Sanae Amada
Masamitsu Baba

Norio Ohashi .

May 26, 1987

- INFORMATION SCIENCES AND ELECTRONICS

A LOOSELY COUPLED MULTIPROCESSOR SYSTEM : ADMS

by
Sanae AMADA*, Masamitsu BABA**, and Norio OHASHI¥*%*

3

Institute of Information Sciences & Electronics,
University of Tsukuba.

The Matsushita Communication Industry Co. Ltd..

#*%% The Nippon Electric Co. Ltd..

Abstract

The specification of the system implementation language,
the outline of the intermediate language, and the software
tools for ADMS are described 'in this paper. Namely, this

paper is a part of serial reports on ADMS.

1. INTRODUCTION

Concerning with the system implementation language for
ADMS (SIL-ADMS), the main target of the development of the
language 1is the description of 0S for ADMS. waever, we
tried that the language will appropriate to describe many
application programs.

While, we prépare an intermediate language for the easy
development and portability of software resources.

We prepare many functions needed as commands of 0S by a
set of libraries. A file system is now available in a level
of the specification, and needed tools are listed up.

In this paper, we'll report on above mentioned problems.

2. SIL-ADMS
We prepare foilowing objects which the system can be
recognized.
* System management objects. (Processor, Process, Storage)
* Execution management ob jects. (Instruction,AData, Domain,
Context)
* Inter-process communication objects. (Message, Port)

* Access management objects. (Type, Template)

2.1 The Object

The object is a set of related information and is
defined by a set of operations applicable on itself, and
internal construction of it is hidden and protected. In.ADMS,
programs and hardware resources are classified into objects

and managed by the system.

a. Declaration

All sorts of objects must be declared with an identifi-
cation name of the sort. These objects can be declared as

types. This is not needed to apply on only one object.

ex. type stack=object . . .
type cardreaders=process |)

cardreader 1l:cardreaders;

b. Creation
By the declaration all objects are created. The object

with type is created by naming concretely.

c. Destruction

Executive, or active 6bjects are destroyd when the last
statement has been executed and the coﬁtrol has moved to the
system. Non-executive, or passive objects as abstract data
objects must be destroyd with some instructions. The space
occupied with the concerned object is re-used after the de-

struction by the function of the system.

2.2 The Process

The process is a concurrently executable object. It is
needed to describe the concurrency when processes are execut-
ed asynchronously in parallel just like 0S. In our language,

the process must be defined and declared explicitly.

a. Declaration

The process 1is an active object, and must be declared
just like described in 2.1l.a. If the process has an inner
data structure, and is protected and managed as the abstract
data in the form of the object, we must express concerning

points in the program.

The scope clarifies the right of data managed by the

process.

ex. cardreader=process)
var
buffer=objéct
end

——

end

b. Creation

Same to 2.1.b.

c. Activation
By the cobegin statement which will be written later,
the process 1is activated in the main routine of the parent

process or the main program.

d. Termination
The executing process comes to terminate when the con-
trol has arrived to its end. After then, the control moves

to the proper point of the program.

e. Synchronization/Communication
This function is realized by the inter-process communi-

cation procedure given later.

f. Nesting Construction of the Process

We admit the nesting construction to the process. As a
result, we have a parent process and a child process. The
parent process can terminate after the termination of all
children processes. The creation of the child process occurs

after the creation of the parent process.

3

g. Declaration of the Entry
To use for the inter-process communication, the entry
used in the process must be declared as the interface part of

the process with the reserved word "entry".'

ex. entry out ()y
in ()
process X X)

entry X X X ;
var X X X X X ;

end

2.3 The Designation of the Non-Determinacy
We wuse a reformed select statement to express the

producer/consumer problem, etc.. Two forms are prepared.

a. Waiting for the Selection
A non-determinate branch is expressed, and some functions
as the election of one in plural branches and the waiting

by an input statement in the branch is feasible.

ex. select

when FLAG > ...
or when receive ()
> . . .

end select

The imput statement in the guard comes to the true when

it can execute immédiately; After all eléments in the guard
come to the true and statements following to the guard are
selected, the input statement is execﬁted, and then, these
statements are executed. There are some differences from the

select statement in Ada.

b. Immediate Call
This procedure realizes the control flow in which the
output statement can execute only in the case of the communi-

cation is allowed at once.

ex. Select
send ()y e e e .

else o s .

end select

2.4 The Designation of the Parallelism

In our language, the parallelism can be designated ex-
plicitly, and this function is useful to catch the flow of
the control. The function has a role to activaté the process.

We use a cobegin statement for this purpose.
ex. cobegin Pi(); Pj(); Pn() end

In the example, Pi~ Pn shows the name of each process.
The cobegin block comes to the .termination after the termi-
nation of all processes in the block. The order of descrip-
tion of the process is optional, but the nesting of the block
can not be allowed. In case of thé“nésting of the process,
the parent process can designate the activation of the child

process. If the parent process has bnly one child process,

we describe the program in the form of sub-program, because
the child process can not be executed at a time with the
parent process. If the parent process has children processes
and we need the concurrency on them, we can designate the

activation of each child process by the cobegin statement.
2.5 Inter-Process Communication

a. Entry of the Process
All distinctionable entries of the process must be de-
clared for their names and types. On the standard input or

output media, the application of the rule is not needed.

b. Link of Entries '

The entry declared in the process must be linked to the
target for the communication. The link is realized by the
connection of both entries, and this procedure is described

in an initialization part in a main program.
ex. connect sender. out >receiver, in

As basic instructions for the inter-process communica-
tion we prepare following three pairs.

* send/receive (for the synchronous communication)

A process which has executed these instructions, comes
to the block status and waits the finish of execution of the
corresponded instruction in the target process. After the
matching of both instructions, it comes the transfer of data,
and then both processes are re-activated.

* put/get (for the asynchronous communication)
A process which has executed these instructions, is kept

in its activated status.

* ecall/accept (for the communication with reply)
The sender process comes to the block status wuntil the

receiver process sends out the reply.

2.6 The Mode of the Inter-Process Communication
By the use of above mentioned instructions, we can have
following communication modes.
* Block mode same to CSP.[Hoa78]
* Conditional mode.

* Non-block mode.

%

Reply mode.

* Non-block mode with the interrupt.

>

Conditional reply mode.
* Condition check mode (to use for the realizing of select

statement).
3. INTERMEDIATE LANGUAGE

3.1 Character of the Language

Our intermediate language is based on the model of the
Actor theory.[Hew77] [Yon79] Because, the model seems to be
fitted to the image of distributed processing, and can apply
to describe the parallelism. We put following limitation on
it.
* We set the acquaintance for each sort of message, not for
the Actor. This rule has the advantage as to limit the
flow of message and to inhibit the sending of unjust mes-
sage to the Actor.

* We are on the premise that the every communication needs

the reply. When the sender process needs no reply as the

result of the execution in the receiver pfocess,.thé sender
will need the information‘ of end df the execution in the
receiver.

* We don't allow any dynamic creation or destruction of the
Actor. Of course, the addition of some new Actors 1is
allowed.

We call the Actor which is limited in its functions as
mentioned above as the Capsule. The acquaintance of the

Capsule has the name of the target Capsule and the name of

type of the message which the target Capsule can receive.

3.2 The Outline of Instructions

The execution in the Capsule 1is carried out by a stack-
machine. SIL-ADMS is similar to Pascal and congenial to a
stack-machine. The machine has a script part, or a code
segment which contains the instruction corresponded to the
executing statement of the program, and an inner status, or a
data segment which contains data and an acquaintance.

The instruction set 1is same to the P-code of Pascal

except described in the next paragraph and 3.4.

3.3 The Instruction for the Communication

Next three instructions are added.

o+

To send the message and to require the reply.

* To receive the message.

*

To answer to the requirement.

A message is able to have data and an acquaintance. The
first instruction contains two types. One designates the
target directly, and another designétes the target with the

import of the top of stack. The former has an acquaintance

and a type of reply, and by the execution the message is put
on the top of stack. The later has a type of reply, and by
the execution the message and the achaintancé of the target
are pushed on the stack. In both cases, the message is
popped and the reply is pushed after the execution.

The second instruction contains two types, too. One
designates the pattern of message directly, and another
designates it with the import of the top of stack.

In the third instruction, the message of the reply and

the acquaintance are pushed before the execution.

3.4 Other Modifications

| The standard function and procedure on the file, and an
instruction "End of File" are struck off, because we have no
concept of the file in our intermediate language. Following
instructions are addedi shift right logical, shift left
logical, bit and, bit inclusive or, bit exclusive or. The
properness of the instruction set 1is under‘inspection in

present.

4. SOFTWARE TOOLS

As software resources for ADMS, we must have many tools.

4.1 File System
We are planning to have a file system similar to that in
UNIX*. It ahs a tree configurétion, and for the designation
of each file we use a pass name and a file name. Input and
output ‘devices can be registered as files.
The communication between users 1is realized by the

transfer of the content of communication to the home directo-

* UNIX is a software developed by AT&T.

9

ry of the receiver. The output from the home difectory to

the higher ranked one is regarded as the output to all direc-

tories ranked lower than that. The rule has effects as;

* The concept of inpuf/output is woven into the directory.

* The communication from one to many is realized with ease.
To the protection of the file, we use 1in combination

with a method in which an access right is established and a

method by a mode. The mode‘means a supervisor mode, a pro-

grammer mode, and a user mode. The system assigns the user

number and the group number to the user.

4.2 Tools
We will need following tools.

Text editor.

Pretty printer.

Compiler.

Linker/Loader.

Analyzer.

Debugger.

Command interpreter.

The management tool for the file system.

The mode management tool.

The library management tool.
We are planning to write these tools with SIL-ADMS. Still
more, many libraries are needed for ADMS, and we have listed

up them.

5. CONCLUSION
In this paper, we wrote on the system implementation

language, the intermediate language, and tools for ADMS.

10

This is one of our continued reports [Ama86a][Ama86b], and we
are scheduling to write on the hardware in near future. = And

we are planning to evaluate the performance of ADMS as the

next work.

ACKNOWLEDGEMANT

We thank to Mr. Jun-ichiro OHGAKI, who analyzed about
the file system and the needed tools and librariés. And we
thank to Mr. Toshinori SONEHARA, Mr. Masahiko SAWABE, and Mr.

Masashi SHINOHARA as cooperative investigators of our work.

Refefences

Ama86a: S.Amada, M.Tsuchida, Y.Sato; A Loosely COupied Multi-
processor vSystem . ADMS -—-Basic Design---, Tech. Rep. of
Inst. of Inf. & Electronics, Univ. of Tsukuba, ISE-TR-86-56,
pp.1-16, (June 1986).

Ama86b: S.Amada, Y.Sato, S.Suzuki; A Loosely Coupled Multi-
processor System: ADMS ——;Logical Configﬁration & Operating
System---, Tech. Rep, of Inst. of Inf. & Electronics, Univ.
of Tsukuba, ISE-TR-86-59, pp.1-27, (Qct.1986).

Hew77: C.Hewitt; Viewing Control Structures as Patterns of
Passing Messages, J. of Art. Intelligence, Vol.8, pp.323-
364, (1977).

Hoa78: 'C.A.R.Hoare; Communicating Sequential Processes, Comm.
of ACM, Vol.21, No.8, pp.666-677, (Aug. 1978).

Yon79: A Tutorial on ACTOR Theory, J. IPS Japan, Vol.20, No.

7, pp.580-589, (1979)(Japanese).

11

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-87-63

TITLE
A Loosely Coupled Multiprocessor System : ADMS

----- Software Environment ————-

AUTHOR(S)

Sanae Amada
Masamitsu Baba

Norio Ohashi

REPORT DATE NUMBER OF PAGES
May 26, 1987 E 11
MAIN CATEGORY CR CATEGORIES
. . C.1.2, C'.103,
Multiprocessor System D.1.3, D.3.2,
KEY WORDS

Distributed Processing, Multiprocessor, System Implementa=

tion Language, Intermediate Language.

ABSTRACT

The specification of the system implementation language, the

outline of the intermediate language, and the software toos for

ADMS are described in this paper. Namely, this paper is a part

of serial reports on ADMS.

SUPPLEMENTARY NOTES

