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1. Introduction

At the present time, the numerical algorithms used to solve the H,
optimization problem include a bisection method for the Hankel norm
approach in [l] and theApolvnomial approach in [2]. Thus, more

efficient numerical solution procedures are sought.

In the polynomial approach, the Hoo optimization problem is reduced

to the solution of a certain polynomial equation. The analysis for a
single-input, single-output discrete time system was reported in [3].
The solution equation was found by applying a LQG (linear quadratic guassian)
optimal control method. Furthermore, the derived solution equation was
shown to strictly correspond to that obtained for the continuous time case,
[2]. In [3], a numerical algorithm was proposed for solving the polynomial
equation. The route followed was to first obtain an approximate solution
by solving an eigenvalue problem and then to obtain the exact solution
by a Newton Raphson method.

The purpose of this paper is to propose a new algorithm to obtain
the exact solution by extending the idea of the approximation used in

the first step of [3].

Notation
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where A(Z—1) = ao+a1z~1+...+a 2 "
n

* adjoint of a rational function of z‘1; s*(z7 1) = 5(?)
=Ty . .
A€P(z ') is called strictly Hurwitz, if all the zeros of A are
inside the unit circle.
+, 0, - superscripts +, 0, - denote that the zeros of the polynomial are

inside, on, and outside the unit circle, respectively.

2. H°° optimization problem and the polynomial equation
Consider the system shown in Fig.1 where the transfer functions of

the plant and the controller are given by:

-1 -1 -1 c _(z7)
W(z ') = B(2 )andC_(2)=_°" (1)
=7 P
ACz ) Cogl® )

respectively. A,B, C_g C € P(Z—1). The plant is assumed to be free

o

of unstable hidden modes. The factorizations of A and B are introduced:
A=A*A®A”™ and B=B'B°B” (2)
Consider the H_ - norm type cost function:

1,7 aup @z §E s+ rETH TNETH TETH) (3)
zi=1

The weights Q and R are:

* *
B B _ BB
Q= % q and R = i r : (4)
A A ArAr

-1 . .
where Aq’ Bq’ Ar’ Br € P(z ), and Aq and Ar are strictly Hurwitz. The
return differnece S and the complementary return difference T are given
by S = (1+COW)”1 and T = COW(1+COW)_1, respectively. This cost function
corresponds to that of the continuous time case of [2]. The Hco optim-

ization problem is to obtain a controller which minimizes J°o under the

constraint that the closed-loop system is stable.



This problem is reduced to that of solving a suite of polynomial

equations with respect to A€R and G, H, F, AG € P(z_1) namely [3]:

ABG+AAH-F =0
q s

]
*
*

¥ —-_-n - 5-Nn -
BB A BZ G-B B A ANZ "H+AF =0
r q q c

b *pA2_-B B B B
Ao Ag = D D™ = Bq Bq

where the spectral factor De € P(z-1) is defined by

o]
*.0
*

e

T

0

* * * * *
D D A A_B B +A A B B
e e r' T g q g g r r

and De is assumed to be strictly Hurwitz and n é deg(De). The unknown
polynomials G, H, F , A satisfy deg(F ) = deg(DeA"B')—l, deg(G) <
deg(A—)+max(deg(Aq), deg(Bq))—l, deg (H) é:deg(B—)+max(deg(Ar), deg(Br))
-1, and deg (AO) = n. The polynomial F; EP (2_1) is defined by

- - - - -

Fq 4 (F7)" 2™ where m 8 deg (F7) = deg (De A° B ) -1. The polynomials

A, and F; need to be strictly Hurwitz.

The optimal controller is given by:
_ 0 o+ -1 0 A+
CO = (B” B Aq H) (A~ A Ar G)
and the minimal value of Joo is A%. For details such as the existence of
a solution, see [3]. 1In the later sections it is assumed that the

equations (4), (5), and (6) are well-defined and with an appropriate

solution.

3. Numerical solution procedures[B]

3.1 Algorithm 1

If the value of A is given, AO is uniquely determined by (7) except
for the sign. Then (5) and (6) can be considered as a linear polynomial
equation with respect to G, H, and F . By expanding (5) and (6) in

powers of z_l and equating the coefficients of like powers, the following

(5)

(6)
(7)

(8)



linear algebraic equations obtain:

PLog+T h+T,£=0 (10)
Py g+ Tn+ T, f=0 (11)
n n n

h -
where g € R g’ heR 7, £f€R f, and ngédeg(A )+max(deg(Aq), deg(Bq)),
A - A -
nh=deg(B )+max(deg(Ar), deg(Br)), nf=deg(DeA B )=m+l. The elements of
g, h, and f are the coefficients of the polynomials G, H, F—, respectively.

For example f is defined

T - -1 -
ey fm) where F =f +£. 2 "+ ... +fmz m The matrices

01 n,xn
T'.. (i=1, 23 3=1, 2, 3) are given by I'_. = Toep(a B ) € R g
ij 11 r !

as fé(fo, fl'

n_xn n_xn
- 1"h * * - -n 2

[ = Toep(A A : r.. = 9

12 oep ( q ) € R ’ 21 Toep(BrBrAqB z ) €R

14

* ¥ - -n 27f
T - =
oep ( BquArA Zz ) €R ' F23 TOGP(AG) € R

2 h
I122

il

n_xn

where nlém+l and n2§m+l+deg(De), andI"l3 € R £ is a matrix whose

(i, nf-ifl) th element is -1 for i=1, ..., ng and other elements are zero.

2
By using F13 = I, the equations (10) and (11l) reduce to

- _ ) _ i _
P[g] = {[T51iT5)] F23P13[T113P12]}[g] =0 (12)

Since I' is a [m+l+deg(De)] x (m+l) matrix, (12) has a non-zero
solution if and only if, rank f:; m. The optimality of a solution can be
considered as the solvability of (12) with a non-zero solution. Let

the singular values of T be GL;62; ...26 . Then the reciprocal of the

m+l
/6

condition number of I', i.e. E=0 is adopted as the optimality

m+l” 1’

~

index. When the index E is zero, rank [' <m.

If £ is zero at several values of A, the largest absolute value of X gives

the optimal A. These results are used to construct the following algorithm.
Algorithm 1:

Step 1) Calculate the singular values of T for given values of

A and obtain the index E.

Step 2) The largest absolute value of A for which E is zero gives
the optimal A denoted A\°. The solution g and h of (12) for A° gives

- 4 -



The graph (E, X\) usefully indicates the global characteristic of (12).
The drawback of this algorithm is that the spectral factorization and
singular value decomposition necessary to compute E for each A, makes

the algorithm computationally demanding.

3.2 Algorithm 2
A more efficient algorithm is given in the following.
The optimal XA can be estimated by solving an eigenvalue problem.

From (7) AO‘is approximated as:

~

AG = Dek (13)

This is a good approximation for large values of )\'s.

Then, (12) can be approximated as:

P x = (Fa— A Tb)x:z 0 (14>
D X0

: 1 3 m 1 A T
where.Faé [T21; Tzz]’ r.a F23F13[T1“T12], og = Toep (Dé) €ER

and x=(gT, hT)T. If deg(D ) > 0, T is an rectangular matrix. In
e

this case the approximate equation (14) is usually overdetermined and there
exists no non-zero solution x. Therefore, instead of (14), consider the
generalised eigenvalue problem:

T _ T
Fb Ta X = K(Fb Fb) x (15)

This is a necessary condition for (14). If Ar and Aq are coprime,
the matrix Fgfb is invertible and the problem becomes the usual
eigenvalue problem:
T -1.T

(Fbe) TbTax = Ax (16)
Numerical examples show that the largest absolute value of X gives a
good approximation of the optimal A and the corresponding eigenvector
gives a good approximation of the solution of (14). This solution can

be used as the starting point of a Newton Raphson method to solve the



nonlinear equation:
* N * . 3 2 - - ¥ - -
B B AT ATH H+B B_B B G G=X (ABG+A AH) (ABG+A AH)
q q r r r q T q
as proposed in [2].

These results are used to construct the following algorithm.

Algorithm 2:
Step 1) solve the eigenvalue problem (15) or (16) and obtain an
approximate solution of (12).
Step 2) Solve (17) by a Newton Raphson method with the approx-

imate solution as the starting point.

4, Main Result

In step 2 of algorithm 2, the linearity of the equations (5) and (6)
with respect to G, H, and F™ is not utilized as the result of solving the
quadratic order equation (17) instead of (5), (6), and (7). Since the
linear equation is a sufficient condition for the quadratic equation, it is
expected that an algorithm based on the linear equation (5), (6), and (7)
will be better than the Newton Raphson method based on (17). In this
section a new algorithm to obtain the exact solution is given by extending
the idea of the approximation used in step 1 of Algorithm 2 and utilizing

the linearity.

(17)



Since AO is the function of X\ from (7), denote Ao as AU(A). The

equation (13) is a first order approximation of AO(X ) at X = . A

first order approximation of Aj(X) at a finite value of A = A, is

A= A

~ dA
AZZ A0 + -2 ) P .

dA

¥ *
where A_ (A_) is the spectral factor of D' D X% _-8 B B B
g "o e e g g r r

(18)

and dAG/dA at A= Ao is given as the solution of the polynomial equation:

*
dAO
dA dAi
-1
where dAo/dk, Ao(ko), De € P(z ).

) AL+ A (

*
2x_D_D
0 e e

)

Denote these polynomials as

Ar)=a +a 214 +a z "
g o o 1 n
d -1 -n
o Ag= v+ Vﬁ Z 4.+ VH z
¥ _ -n 1 n
De De = dnz et d1z + dO + d1 z et dn z

Then the equation (19) is equivalent to the linear algebraic equation:

rv=2xd
° T T
where v = (VO’vﬂ"...’vh) y d = (do, d1,...,dn) N
X:Z1+ 22 )
.3 ) an‘ 0
r.o= 0 a .= la :
1 Rt 2 n-1 - _
a @y --.a ag ceeee 01 %n

The coefficients of dAo/dX at A:Xo are given by the solution of (23).

Depending upon the approximation-(lé),-the matrixifz3 of (12)

is approximated as:

r.. 2o

23

n_x
2%y
where @l Toep(Ag(A )) € R = .

0 > .and @2

Toep(dAO/dK|X=xO) € R

substitution of (25) into (12), the approximation of (12) becomes

(19)

(20)

(21)

(22)

(23)

(25)

By the



(T - de)x =0 (26)

r

where I = [T il ]-(@,-A 0T I ,) and T_=0.T [llI

13[rll|
A better approximation of the solution of (12) will be obtained by solving
the generalized eigenvalue problem:
T T
Tch X = XTde X (27)
These proposals are formulated as a new algorithm:
Algorithm 3:
Step 1) Set k=0 and XO.
Step 2) Obtain AG(Xk) by the spectral factorization of
* 2 * *
DDA  -BBBB .
e e ggrr«r
Step 3) Obtain dAG/dX at X=Ak by solving (23).
Step 4) Solve (27) and obtain A. Set k=k+l1 and Ak =A. If

Ikk_kk-ll is sufficiently small, the optimal A is obtained.

Othewise go to Step 2.

The optimality of A obtained by Algorithm 3 can be explained as
follows. Equation (26) can be expressed as:

([T50iT5) - 8715t Tiol) x = A2g)0 r [Ty Ty )% (28)
and (27) is obtained by multiplying (26) to the right of Fg. If |A—A0|=O,
clearly the equation (28) agrees with the original equation (12). Therefore
when Algorithm 3 converges, the equation (27) becomes a necessary condition
for the original equation (12) to be satisfied.

Algorithm 3 needs only the value of A as the starting point, whereas
a Newton Raphson method of Algorithm 2 needs not only the value of A but
also G and H as the starting point. Numerical examples show that Algorithm 3
converges for a wide interval of A which includes A= ® in most cases. Therefore

the starting point of A can be obtained by applying Step 1 of Algorithm 2.

If Algorithm 3 does not converge for )=«, a finite XO can be



set in Step 1 alternatively. If Algorithm 2 does not converge, Algorithm 2

does not give another starting point and fails to obtain the solution.

5. Numerical Example

Consider the case:

A (1+2z‘l)(1-2z‘l), B = z'l(1-4z‘l), Aq=l, Bq=l

4-7"", B, = (1+22" Y (1-227%)

A
r

1§ is an 8 x 6 matrix and the generalized eigenvalue problem need to be
solved for a 6 x 6 matrix. The sequence of Ak are given in Table 1.
Other examples also show that AO may be a good approximation and Ak

will converge. only after a few iteratibns. The Euclidean norm of the
following vector is adoptéd as the index of the accuracy of the solution
XA, g, and h. This vector is the difference between the left and right
handside of (11) after substituting g, h and £ into (11) where f is
obtained from (10). In this example this norm becomes 0.2 x 10—14.

The relation between )\ and aO(X), the coefficient of Z° of AG(A), is
illustrated in Fig. 2, which shows that (14) is a good approximation for
a wide interval of X arbund XO. The other coefficients also show this

tendency. The relation between the optimality indek E and A is illustrated

in Fig. 3.

6. Conclusion
An algorithm to solve the polynomial equation in H, optimization

problem is proposed. The solution can be obtained by solving generalized



eigenvalue problems iteratively. This algorithm is automatic and does
not need trial and error of the bisection method which is wused in [l},
[2]. Numerical examples show that it will converge after only a few
iterations. Therefore, the algorithm is much less computationally
demanding than these methods.

The algorithm is easy to implement. The matrix used in the eigen-
value problem is directly related to the coefficients of Ar, Aq' Ar’ Bq
of the weights of the performance index and the unstable factors A and
B~ of the plant. It is necessary to solve the eigenvalue problem and a
linear equation and to faétorize one polynomial in each iteration.

From the above numerical advantages, the algorithm can be also used

as the online tuning algorithm.
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Fig.2 The relation between the coefficient of AG and A
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Fig.3 The relation between the optimality index E and A
XO -11. 459 147 543 952 44
Xl -11. 482 920 866 057 22
lz -11. 482 920 968 751 89
XB -11. 482 920 968 751 89

Table 1 The sequence of Xk



INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT DOCUMENTATION PAGE | ez sboer

TITLE

NUMERICAL ALGORITHM FOR SOLVING A POLYNOMIAL EQUATION IN H.
OPTIMIZATION PROBLEM

AUTHOR(S)

Masami Saeki and Eddie Kornegoor

REPORT DATE ‘ NUMBER OF PAGES
December 15, 1986 12

MAIN CATEGORY CR CATEGORIES
OPTIMAL CONTROL THEORY

KEY WORDS
Numerical algorithm, H, optimization, polynomial equation,
Eigen value problem, discrete time system

ABSTRACT

A new numerical algorithm is proposed for solving a polynomial equation
arising in the H., optimization problem. The solution is obtained by

solving eigenvalue problems iteratively. The algorithm is not computationally
demanding and is easy to implement. Numerical examples show that the
solution can be obtained after only a few iterations.

SUPPLEMENTARY NOTES




