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I. Introduction

Sensitivity, stability, and disturbance attenuation are
important properties which should be considered in any feedback control
design. These are called feedback properties and can be quantified by
the Hoo norm of a sensitivity function S and/or a complemetary
sensitivity function T [11, [2], [3]. It is desired to establish a
control theory about the minimization of Ho -norm type cost function of
S and T.

Since Zames pointed out the importance of H., norm and
considered the minimization of qul Vijw)S(jw) | for a single-input
single-output continuous time system [4], there have been many studies
reported [31, [5]1-1[9]. In these studies a few different approaches are
reported corresponding to the mathematical tools; interpolation theory,
functional analysis, or a polynomial approach. In this paper, the
polynomial approach is examined for a single-input single-output
discrete time system.

Polynomial approach is first taken by Kwakernaak and he solved

the minimization problem of ch=ggx {Q} where d = | V(w)S(jw) |2 +
| ¥W(ijw)T(jw) |2 for a single-input single-output continuous time

system [3]. The optimum controller is given as the controller which
minimizes A in the class df equalizing controllers which satisfy

Q(s)=A2 with the stability condition of the closed loop system.

The solution is reduced to the solution of a polynomial equation, and
the existence of the solution was shown. Grimble solved the problem by
embedding the Ho, optimization problem in the framework of LQG optimal
control problem. The solution also reduced to the solution of another
polynomial equation but the existence of the solution was not shown [8].
The relation between both results is not clear. A multi-input multi-

output case is reported in [11].



In this paper, the optimization problem is solved for the
discrete time case of [3] following the idea of [8], and it is shown
that the polynomial equation corresponding to that of [3] can be
derived straightforwardly from the eqhation obtained for the LQG optimal
control problem. The existence of the solution is also shown.

In Section II, the Ho, optimal control problem is derived. In
Section III, a ficticious LAG optimal control problem corresponding to
the Ho optimal control problem is introduced, and then the Hos optimal
control problem is solved by applying the LQG optimal control solution.
In Section IV, the relation between the obtained equation and that of
[3] is examined. In Section V, the existence of the solution for the

equation is proven.

Notation

Rnxm space of nxm real matrices

P(z-1) space of polynomials of z-! with real coefficients

deg(A) degree of A € P(z !); the largest integer i for which ai =0
where A(z ')=ag+ai12"1+ ... + an2"

* adjoint of a rational function of 2z-7;S"(z2-1)=S(2)

+,0,- superscripts +, 0, - denote that the zeros of the polynomial are

inside, on, or outside the unit circle, respectively.

strictly Hurwitz A €P(z!) is called strictly Hurwitz, if all the
zeros of A are inside the unit circle |z | =1.

Hurwitz A <P(z-') is called Hurwitz, if all the zeros of A are inside

or on the unit circle.



II. Ho- optimal control problen

Consider the single-input single-output discrete time system
shown in Fig. 1. The transfer functions of the plant and the controller
are given by
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respectively. 4, B, Aw, Bn ¢ P(2'). The plant is assumed tu be free

of unstable hidden modes. The sensitivity function S and the

complementary sensitivity function T are given by
S = 1/(14GH) and T = GH/(1+GH) (3)
respectively. Consider next the Ho.-norm type cost function:

Joo
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sup {V*VS*S + WHT'T} 4)

z.i=1

The weights V and ¥ are
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where A, By, A., Bo € P(z-'), and & and A. are Hurwitz and have

simple poles on the unit circle. This cost function corresponds to that
of the continuous time case of {3]. The Hx optimal control problem is
to obtain a controller which minimizes J., under the constraint that the
closed loop system is stable.

Note: & dual performance index of [8] can be represented in the form of



(4) where V'V = [(AuA4B)* (AuAsB)1-tL: and W'W = [(AuAsB)* (AuAaB)]-'L2.
Therefore if B has no zeros on the unit circle, i.e. B = B*B-, then

A, and A, of (5) can be chosen strictly Hurwitz, i.e.

Av = Ay = AvAeB*(B-)*2-" and B.*Bv = L1 and B.*B, = L2. Thus, the

results of this paper such as the existence of a solution, which is not

u

proved in [8], can be applied to the problem of [8], if B has no zeros

on the unit circle.

III. Solution of Ho optimal control problem

In the following, the argument z-! is often omitted for

simplicity. The next lemma links the Ho, optimal control problem and

LQG optimal control problem [3], [8].

Lemma 1 (8]

Consider the auxiliary problem of minimizing
J=Q2rj) & Az )2 (zt)zt dz (6)

Suppose that for some real rationmal 2 (z-')= Z-(z-t) > 0 on | z]| =1 is
minimized by a function Q(z-1)=Q* (2-1) for which Q(z-')=A2 where A is

a real constant. Then this function also minimizes sup_ Q(z-t). =

Then the next ficticious problem can be introduced. The system
is given in Fig. 2 where & is a white noise with zero mean and unity

spectrum. Ao € P(2-1) and Bo- € P(2-1) are assumed to be strictly

Hurwitz. The cost function is given by



J=2mi) § {VV0eo + WO, 1zt dz (7)

where V and W are defined by (5) and ®.. and ®,, are the specira of

e and y, respectively. ®., and ®,, are represented as

@ea = S‘SE q)ss and (Dyy = T'TZ (Dss (8)

where X 2Ba *Bo (A *Ao-)-! and ®.. =1 by assumption. By substituting
(8) into (7) obtain

J=(/2m)) § {VVSS + WHTTIZz! de (9)

From (4), identify @ = V-VS*S + W-WI*T so that (9) strictly
corresponds to (8).

The controller which minimizes J of (9) subject to the
constraint that the closed loop system is stable is found by solving the

LQG optimal control problem. The solution is given by the next theorem.

Theorem 1

Introduce factorizations:

A= A*A?A- and B = B*B?B- (10)
The spectral factor D € P(z-!') is defined by

DD = Av:ABu*Bu + Au*AuB.*B - an

where D is assumed to be strictly Hurwitz. Introduce the polynomial

equations with respect to X1, Y1, 21 € P(z1):



B."B.& "B *Au*Ba 2 ™= (12)

"

DBz "2X1 + ZiAvAa

Bu*BuA "B *A/*Ba 2" 13

D&z "2V1 - ZiAuho-

If n2 = deg(D) and ns = deg(DA-B-), equations (12) and (13) can be
solved for the unique minimal degree solution with respect to 2. ( a
solution Z: which satisfies deg(Z:)<n: always exists and is the unique

minimal degree solution). Hence, the optimal controller which minimizes

(9) is given by

H= (BeB*A.Y:) 1 (APA+AuX1) (14)
and the minimum value of the cost function is given by

Jain = (1/275) § { _Zi"Zi____ + Bu'By BB, Zlz! dz (15)
tz =1 ﬁ:ﬁ:ﬁ_,B—_— Y ¢

Proof) Appendix A.

The proof of Theorem 1 is similar to that of Theorem 3.1 of [8].
The different points are that the factorizations of A and B in the form
of (10) are introduced for the exact proof, and that attention is given
to reducing the degrees of the coefficient polynomials and the unknown
polynomials in the derivation of (12) and (13). This simplification
is necessary to show the relation between this theorem and the

Kwakernaak’s condition in Sectien IV.

Application of Lemma 1 and Theorem 1 gives the next Ho optimal

control solution.



Theorem 2
Let D, no, and ns be defined as in Theorem 1. Assume that
D*DA2 - By*BuB.*B, is positive on | z| =1, and that there exists a

solution (X4, Ya, Zi1~, Ao-1, A) which satisfies

D*'DB-z-"2Xa + Zi-AvAgr1 = By*BiAurZis2 ™2 (18)
DDA~z "2Ys ~ Zi Avhort = B.“BuAv*Zi1s-2 T2 (17)
Ao 1% A1 = D'DA2 - B.*BuB.*B. (18)

where deg(Zi-) < ns, Zi- has all its zeros outside the unit circle or
constant, Ao+ -is strictly Hurwitz, Zis- = (Zi-)°2-™ and ne=deg(Z:-).

Then the optimal controller which minimizes (4) is given by

H = (B2B*A.Ya)-t (82A%A,X4) (19)
and the minimum value of Jo is 2z, L]

Proof) Appendix B.

IV, Relation to Kwakernaak'’s equation

Kwakernaak considered the class of controllers which satisfy

@ = A2 and obtained the controller which minimizes A with condition

that the closed loop system is stable. Optimality was proved by
applying the continuous time case of Lemma 1 [3]. Grimble considered

the class of controllers which are the solution of LQG optimal control



problem and obtained the controller which satisfies Q@ = A2 depending

upon Lemmal. Theorem 2 was derived following Grimble’s idea for the
discrete time case of Kwakernaak’s problem. The relation between

Theorem 2 and the result of [3] is clarified by the next Lemma.

Lemma 2 _
Equation (16) and (17) is equivalent to

AB Xs + AVA Ys - Z4s- = 0 ) (20)
Bu*BuAv“B-2""2X4 -~ By*BvAu A2 "2Ys + Z1i-Ag1 = 0 1)
n

Proof) Appendix C.

From Zis- = (Zi-)*2z-™, (21) is represented as
B.*BuAv*B-2-"2Xs - Bv*BvAu A 2-"2Ys = - (Zis~)*2- ™ho 1 (22)
By setting
B. = a2, Av = B1, B = ¢+, Xa = &, B, = a1, Au = B2
A~ = ¢+, Ya= 0, Z1s- = X, koot = Ay , 21~ = X°* (23)

the equations (3.8), (3.15), and (3.16) of [3] are obtained from (18),
(20), and (22), and vice versa. Thus the exact correspondence between
these polynomial equations are shown.

The above results can be summarized as the next theorem, which

is the alternative representation of Theorem 2.



Theorem 3
Let D, ne, and ns be defined as in Theorem 1. Assume that
D*DA2 - B.*BuB.*Bv is positive on | 2| =1, and that there exists a

solution (X4, Ya, Z1-, Bo-, A) which satisfies

A.B-Xs + AVA Y4 - Z1s- = 0 (24)
B.“BuA/*B2z-"2Xs - B.* BiAu*A-2-"2Y4 + 21 A1 = 0 (25)
AG‘I*AGAI = DDA2 - B.*BuBv*Bv (26)

where deg(Z:1-) < nsz, Z1- has all its zeros outside the unit circle or
constant, Ae is strictly Hurwitz, Zis- = (Z1-)*2-™ and niadeg(Z:-).

Then the optimal controller which minimizes (4) is given by

H = (BBB*A\&YA)_l (Aaﬁ*AwXA) (27)

and the minimum value of Joo is A2. [

V. Existence of a solution of the polynomial equation in Theorem 3

Consider first, the permitted range of A. Since D is assumed
to be strictly Hurwitz, there exists a value of A which satisfies

DDA2 - Bu*BuBv*Bv 2 0 for all z on | 2z} =1. Denote the minimum value
of | A ] as A, , i.e.

__10._



Ag = r max Bu'Bva’Bv/(D" D)
\/‘0§9§2n
2 = @i®
= V/' max VUW-W/(V-V + W W) (28)
0565~
z = ei®

This shows that A, is determined by the weights V and W and is not

affected by the system parameters A and B.

For | A | >A: As 1 can always be well-defined as the strictly

Hurwitz factor and Theorem 3 can be applied. When the optimal value of

A coincides with Ay , 801 cannot be strictly Hurwitz and Theorem 3

cannot be applied in this special case.
The existence of a solution for the polynomial equations in

Theorem 3 is examined next. Solving (24) and (25) for B-xs and 4-Y.

yields:

B X | By *ByAu-z- "2 A Zis-

= 1 ‘
DDz~ ™ (29)
A-Ys Bu*BuAv*2- "2 - Au ~Z1 Ao

From this equality, the degrees of X4 and Y need to satisfy
deg(Xs) S deg(Zi-) - deg(B-) - min (deg(A.), deg(B,)) (30)

deg(Ys) S deg(Zi-) - deg(A) - min (deg(B.), deg(A.)) (31)

Since deg(Z1-) < ns from Theorem 3, the degree of Z:- is bounded by
deg(Z:-) £ deg(DA-B-)-1. Thus the degrees of Xs, Ya, and Z:-satisfy

deg(¥4) £ n«z=deg(d-) + max (deg(4.), deg(B.)) - 1 32)

_11_



deg(Ys) £ nyadeg(B-) + max (deg(A.), deg(B.)) - 1 (33)
deg(Zi-) £ n.= deg(A-)+deg(B- )+ max (deg(A.B.), deg(AuB.))-1 (34)

The next theorem corresponds to Theorem 1 of [3].

Theorea 4

a) For | A | 241, the polynomial equations (24), (25), and
(26) have a family of solutions Xa, Ye, Zi-, Aov1, With deg(Xe) Snu+l,
deg(Ys) £ ny+l, and deg(Zi-) = n.+1, unique within multiplication by
a continuous function of A, whose coefficients are continuous functions
of A, such that | A | sufficiently large the polynomial Z:s- has
degree n-+1 and has all its zeros inside the unit circle.

B) Let Zisene and Zis-—ss -be the solutions Zio- of (24), (25),
and (26) with deg(Zis~) = n.+1 for A = A, and A = -4, ,
respectively. Suppose that Zis+x. and Zis-n, have at least one zero
outside the unit circle. Then there exists a A with | A | >A, such
that deg(Xa) S n«, deg(¥s) S ny, deg(Z:i-) S n. and Zis- has all its

zeros inside the unit circle.

Proof) Appendix D.

Note that the coprimeness of A, and A, is assumed in [3] and

this assumption is not required. Theorem 4 can be proved without this
assumption by slightly changing the proof of Lemma A.1 of [3]. Alseo

note that there is no restrictions on the degrees of A., 4., B., B., A4,

and B whereas there are some restrictions on these degrees in [3].

As a result the degrees of the unknown polynomials X4, Ys, and Z:- are

_.12_.



given in a more general form as (32), (33), and (34) than those of [3].
The proof of Theorem 4a is exactly the same as the last half of
the proof of Theorem la of [3]. The first half of the proof of

Theorem 1la of [3]‘is not necessary, because the factorized form (25) has

already been obtained.

Theorem 4b assures that if Zis+)qa Or Zis-ay have at least one
zero outside the unit circle, there exists a solution which satisfies
the condifion of Theorem 3. This means that a controller can be found
which gives @ = A2 in the class of LQG optimal controller wherebac\and
Bs- are parameters, so the Ho, optimal control solution is also the LQG
optimal control solution for appropriately chosen Aq and Bo .

Consider the case that Zis«x, and Zis-q have all their zeros
inside the closed unit circle. Since the zeros of Zis+yq on the unit
circle are cancelled in the equations (24) and (25) as shown in the
proof of Theorem 4b, it can be assumed that the solution Z:s- of (24)
(25), and (26) is strictly Hurwitz and deg(Zis~) < n.+1. The minimum
value A, can be attained by this solution, because the solution
satisfies @ = A2 and the poles of the closed loop system are the zeros

of Zis-. This result corresponds to Theorem 2 of [3].

The above results can be summarized as follows.

Theorem 5

a) If Zis«sq Or Zis-3q have at least one zero outside the unit
circle, the Ho optimal controller exists and is given by Theorem 3.
b) If Zis+xq and Zis-xa have all their zeros inside the closed

unit circle, the minimum value of | A |is A, and the Ho optimal

controller is given by H = (B®B*A.Y«)- ' (A°A+A.X4) where Xs and Ya
are the solutions of (24), (25), (26) with A=A, and deg(Z:-) =< n:+1.

.._13...



VIII. Conclusion

Firstly, the LQG optimal control problem is solved where much
attention 1is paid to decreasing the degrees of the coefficient
polynomials contained in the polynomial equations and to the
factorizations of A and B (Theorem 1). Then, the H.. optimal control
problem is solved by using the LQG optimal control solution with the
same attention to degree (Theorem 2). Secondly, it is shown that the
solution of the obtained polynomial equation agrees with that of
Kwakernaak’s (Theorem»S). Whereas Kwakernaak determined the form of
the controller by several insights to transfer functions, in this papér
the form can be determined straightforwardly by the LQG optimal control
solution. Lastly, the existence of a solution of the equation is proved
under a less restrictive condition than that of Kwakernaak about the
coprimeness of the polynoﬁial denominators of the weights in the cost
‘function and the degrees of the coefficient polynomials (Theorem 4 and

Theorem 5).

~-14-



REFERENCES

[1] J.C. Doyle and G. Stein, “Multivariable feedback design: Concept
for a classical/modern synthesis, ” IEEE Trans. Automat. Contr.,
vol. AC-26, pp. 4-16, 1981.

[2] M.G. Safonov, ALl Laub, and G.L. Hartmann, “Feedback properties
of multivariable systems: The role and use of the return difference
matrix,” IEEE Trans. Automat. Contr., vol. AC-26, pp.47-65, 1881.

[31 H. Kwakernaak, "Minimax frequency domain performance and robustness
optimization of linear feedback systems,” IEEE Trans. Automat.
Contr., vol. AC-30, pp. 994-1004, 1985.

[4] G. Zames, “Feedback and optimal sensitivity; Model reference
transformations, multiplicative seminorms, and approximate
inverses,” IEEE Trans. Automat. Contr., vol. AC-26, pp. 301-320,
1981.

[5] G. Zames and B.A. Francis, “Feedback, minimax sensitivity, and
optimal robustness,” IEEE Trans. Automat. Contr., vol. AC-28,
pp. 585-601, 1983.

[6] M. Verma and E. Jonckheere, "L -compemsation with mixed
sensitivity as a broadband matching problem,” Syst. Contr. Lett.
vol. 4, pp. 125-129, 1984.

[7] B.A. Francis, "Optimal disturbance attenuation with control
weighting,” in Proc. Twente Workshop on Systems and Optimization,
LNCIS vol. 66, A. Bagchi and H. Th. Jongen, Eds. Berlin: Springer-
Verlag, 1984.

[8]1 M.J. Grimble, "Optimal Ho, robustness and the relationship to LQG
design problems,” Int. J. Contr., vol. 43, pp. 351-372, 1986.

[91 B.A. Francis and J.C. Doyle, ”Lingar control theory with an Ho

optimality Criterion,” to appear SIAM J. Contrel and Opt.

-15-



Appendix A ( Proof of Theorem 1)
Define F as F = H(1+HG)~*, then S = 1-GF and T = GF from (3).
J defined by (7) is expanded with respect to F:

J=@Q/s2xi) § {(VV+W W) ZGGF-F-V-VE G F-
tzl=t ~V*VEGF +V- VX )zt dz

By setting
MM 2o (VYW WG G (a.1)
NN & 2 , (4.2)
U= VVZ06 (4.3)

J = (1/72xj) § {(MFN - U )(MFN - _U_)*
HE-AIERT "'N'

M N-

+ V¥ - U0  lz-' dz
N-HN-N

Define D. and Dr as
Do = DDoB?2 and Dr = DaA?Bo ~ (A.4)

where strictly Hurwitz spectral factors Da and D» are defined by
Da*Da = (A*A-)°(A*A-) and Do Do (B*B-)*(B*B-). Define

M= Do/(A Aul) and N = Di /(Abo ) (4.5)
then
U = Bv*B.D:“DeB* Ay (A.5)
NN Do De Ay Ao A

The righthand side of (A.6) can be expanded by use of the polynomial

-]16-



equation:

DeoX + ZAAVACT" = By*BeD¢*DeBrAuvz- ™

where ns = deg(DcDr) and Dre = De* Doz ™.

U= _X o+ Z
M* " A AO‘ ch

The term MFN is expanded as

MFN = De D¢ By
T P R T TN

From (A.8) and (A.9),

MFN - U_ =  (DoDr-XBA.)Bn-XAsAA
LB AAVAG\TfL%" BBy

Further introduce the polynomial equation:

Then,

DtoY - ZBAwAo- = B*BA.*Bu*BuA*Bo- “Bo-2- ™

Then (A.10) becomes

MFN - 1 = YA XAL A
N [ ﬁ:%:r(” AYBrE)

From (A4.7) or (A.11), Z has the form :

Z_
Dre

n =2 deg(A°B?A*B*Bos-). Equations (A.7) and (A.11) become

n

D'B-2-"2X + Z1A%A* A/ Ao

DA-2-"2Y - Z1B¢B* AuAo-

-17-

B.“B.B*B2A-*B-*A."

B.*BvA*A-"A®B-*A.*Bo 2" s

Bo- 27 s

(A.7)

(4.8)

(4.9)

(4.10)

(4.11)

(2.12)

= Z1 (A°B?A*B*Bo- )*2-™ and

(4.13)

(A.14)



where n- =deg(D) and ns = deg(DA"B-). From (A.13) and (A.14), X and Y

have the form:
X = A9A* Xy and Y = BeB* Y, (8.15)
Then (A.13) and (A.14) can be simplified as

B.*BvA-"B-*A.*Bag- 2" (A.16)

1

D*B-2-"2 X1 + ZiAvAo

DA 2-"2Y1 - ZiAubo Bu."BuA-"B A/ *Bg 2" " (4.1
By using (A.15), each term of (A.12) becomes

Ti (2) .é_”XALBn—XAMQ%_E)
h

Av Ad‘ Awm
= Y1 | BaB2?B* _ - X1 | AnA%A*
AwA Ah A“"Bh rvAc‘ h "‘Bh
To(z) 2 2_ = -Zy(A*Br)rz-¢™-" (4.18)
te D*Do*Dar

The rational function T:(z) has all its poles inside or on the unmit

circle and the poles on the unit circle are simple, because Ag is

strictly Hurwitz, A. and A, are Hurwitz, their poles on the unit circle

are simple, and the assumption of the asymptotic stability of the closed
loop system guarantees the asymptotic stability of the rational

functions inside the parenthesis [ 1. The rational function T-(2) has

clearly all their poles outside the unit circle. J can be written as

= (1/271:}'), §,_1{T1"T| + To*Te -~ TiTzr - T1* T2

+ VYR - UU Yzt odz (A.19)

~-18-~



From the above consideration T:*T- 1s regular inside the unit circle, so

(1727 j) ¢ {Ti*T=}z2"1 dz

tzi=1

T:*(0)T-(0) + a and

H

(1727 j) ¢ {TiT=*tz"t dz = T1*(0)T.(0) - « where a is the sum of the

rzi=1
residues at the poles on the unit circle. Let F be the minimal degree
solution of (A.7) and (A.11), then deg(Z) < deg(Dro) and T (0)=0.
Since Te(2z) is regular inside the unit circle, Ti*(0)T2(0)=0. Thus J
has the minimum value for Ti=0 from (A.19), which means that the

controller is given by

H= An-tBn = (YAV)_‘XAM
=(B®B*A Y1)~ ! (A%A* AuX1) (A.20)

and J becomes

J=Q/72nj3) § { _ 7212
tzi=1 DDA A BB

+ _fiu_‘__&ﬁ._%x:_& Ztz-t dz (A.21)
4 solution (Xe, Ya, Za) of (A.13) and (A.14) which satisfies

deg(ze) < deg(DA-B-) always exists and is unique, and Zo is the least

degree representative of Z: modulo DA-B-, i.e. Z1+ can be expressed

as Z1 = Zo + DA-B-p(z-!) where p(z-') is an arbitrary polynomial. Since

clearly Z1"Z1 2 Za*Ze on the unit circle, J of (4.21) takes the minimum

value if Z: is the minimum degree solution Zs. |

-19-



Appendix B (Proof of Theorem 2)
By Lemma 1 the LQG optimal controller which satisfies
V' VS*S+W WT*T=12 is the Ho, optimal controller. This equality can be

represented as

YARA = B -.'_B . (B.l)
F B A DA “ B BB B Aehe

Note that this equation can be also obtained by setting the integrand of

(15) equal to X A2 as in [8]. Since Ao and Bo- need to be strictly

Hurwitz and the denominator of the righthand side of (B.1) has no zeros

on the unit circle by the positivity of DDA2 - B,*BuB.*B. on the unit
circle, the numerator Z, cannot contain any zeros on the unit circle and

so Z: can be factorized as Zi1=Z21*Zi-. Then choose Bs- as

Ba = Z1*Z1s- (B.Z)

where 2is—2 (Z1-)*z"™ and na = deg(Z:-). Ao~ is the strictly

Hurwitz factor defined by
Ao ‘Ao~ = B *B-A-+A-(DDA2 - Bu"B.B."B.) (B.3)
Define X1 =X>2Z:* and Yi1=Y2Z:+, then (18) and (19) are simplified to

D*B-z-"2Xe + Zi~AvAo B.*BuvA "B *An*Z1s"2" s

(B.4)

i

D*A-2-"2Y2 - Zi~ Avhe Bu*Bu&-*B-*Av*Z1s-2" "¢

This equation has the same form as (12) and (13) by identifying X», Yz,
Z1-, Z1s- as X1, Yi, Z1, Bo. Therefore if (B.4) has a solution with
deg(Zi-)<nz and Zis- is strictly Hurwitz, the controller

__20_



H = (B2B*A.Y2) ' (A?A*AuX-) is optimal from Theorem 1.
By defining Xe=XsA "B *z™ and Yo=YzA Bz~ " where
ns = deg(A-B-), (B.4) is further simplified to

DB 2 "2Xs + Zi AvAo 1 B.*ByAu*Zis~2 M2 (B.5)

Bw.Bwﬁv*ZIs_z' iz (B-S)

D*&-z2-"2Ys -~ Zi Aulad

where Ao~1 is the strictly Hurwitz spectral factor defined by

Ao~ 1" Ac~1 = D*DA2 - Bu*BuBv*B. (B.7)

¥; and Y: are shown to have a common factor D as follows. Evaluating

(B.5) and (B.6) at a zero of D-, which is denoted z=2., gives

Zi AvAo 1 = B.*BvAu*Zis-2" ™ for z=2c
(B.8)
- Z1  Auha 1 = Bu*Bulv*Zis 2" T2 for z=2
It follows from (B.7) that As-1*As~1 = - Bu*BuBv*Bv for 2=z.-!, and

Zi B la 1 Z1s 2™ A8 1" = B.*B AvZi—2™e+* e for z=2."!

- ZI'I"Aw"Ad‘i' = _leﬂzn‘Aw'AO1" = Bw’BwAin“ZnZ'"' for z=2z2.-!
where ne = deg(Zi-). Substituting in (B.5) and (B.6) gives

DBz "zX3Aax 1" = BV‘BV(ZI—Ava“Bw*'Aw'le-z_ h?Ac“l‘)=0 for z=2z.!
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DAz "2Ys 81 = Bu “ Bu (’Zl"Ava‘Bv*‘Av*ZIs—z"nzﬂa'»!')‘—"0 for z=z¢1

It follows that X; and Y have a common factor D. Namely Xz=DXs4 and

Y:=DYs and equations (16) and (17) are obtained. |

Appendix C (Proof of Lemma 2)

Equation (16) multiplied by Aw plus equation (17) multiplied
by A, gives

D*D(AuB-Xsa + AVA-Ya) = D*DZ1s-

This equation can be simplified to (20). Equation (16) multiplied by

B.*BuA.* minus equation (17) multiplied by B.*BvA.* gives
D*D(Bw‘BuAv‘B‘Z‘"ZM - Bv‘BvAw‘A—_z-nzYA) = -D*D Zi Aot

This equation can be simplified to (21). Equations (23) and (24) can
also be obtained from (27) and (28). |

Appendix D (Proof of Theorem 4)

First prove the next lemma which corresponds to Lemma A.l of

[3], but which does not assume the coprimeness of A, and A..
Define new variables X « Xu/4, Y =2 Yo/A, Z 2 Zi1s~, and
An & Ao-1/A, and rewrite (24), (25), and (26) as
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AB X + AVAY - uZ= 0 (0.1)

B.*BuAv*B-2z- ™ X - Bv*ByAuA 2" T2Y + Z'z*nzA}L =0 (D.Z)

AH ‘AN = DD -~ }IaBu'Bqu'Bv (D.3)

From the above equations,

B.*BvA~*A Y'Y + B.*BuB-*B XX = 22 ‘ (D.4)

is obtained. Consider the existence of a solution of (D.1) and (D.4).

Lemma D.1
For | # | sufficiently small, the polynomial equations (D.1)

and (D.4) have a unique family of solutions X, Y, and Z with

deg(X) = n.+1, deg(Y) = ny+1, and deg(Z) = n-+1 where n«, ny, n. are
defined by (32), (33), and (34), whose coefficients depend continuously

on g, such that Z is monic and has all its zeros inside the unit

circle. =

Proof Lemma D.1)

First show that (D.4) has a solution at x« = 0 and then use the
implicit function theorem to show its existence for | u« | sufficiently
small. For x = 0, (D.1) reduces to AuB-X + AVA"Y = 0. Let the
greatest common devisor of A, and Ay be Ay, namely Au = Au14s and
A, = AviAg. Since Au,1B- and AvtA- is coprime, the equation
A.tB-X + A.1A"Y = 0 has the general solution X = Av1A-a and
Y = -As1B-a, with a an arbitrary polynomial. Substituting (D.4) yields
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YA (Bv'BvAwi'Awi + Bw‘BNAvi‘Avl)A"'A—B""B"a'a (D.5)

From (D.1) Z always contains a factor A, so a‘a needs to include

As*As as a factor from (D.5) by continuity, i.e., 3*a = Ag"Agar~ai:.

Thus 2o = aiDA-“B-*2-™ where nr = deg(4"B-), Xe = AvA a1, Yo = -AuB-a
are obtained. It is shown that (D.1) and (D.4) have a solution such
that Z has degree n.+1, has all its zeros inside the unit circle and is
monic where a: is a constant such that Z is monic. Now apply the
implicit function theorem to the set of equations for the coefficients

of the polynomials X, Y, and Z that results when (D.1) and (D.4) are

expanded in powers of z-' and the coefficients of like powers are
equated. It is verified that (D.1) and (D.4) yield the same number of
equations as unknown coefficients if we look for a solution X, Y, Z of
degrees nx+l, ny+l, n-+1, respectively with Z monic. The number of
equations is given by max{deg(A.B-)+n.+1,deg(A-A-)+ny+1,n-+1} +

max {deg (B, A-)+ny +1, deg(B.B-)+n«+1,n.+1}, and this agrees with the
number of unknowns, i.e. n.+n,+n.+2. It follows from the implicit

function theorem that these equations have a solution for | x |
sufficiently small, if the Jacobian of these equations is nonsingular at
the solution that is obtained at z = 0. This Jacobian is nonsingular

if and only if the homogeneous set of equations:

— o

A.B-X + AVAY = 0 (D.B)

YoY) + Bu*BuB "B (XaX* + Xo*X)
0 0.7

B.*BuA-“A- (YaY*
- (Za-i' + ZB‘E)

-+

1l

with deg(@=n., deg(X) = n«+1, deg(Y) = n,+1, has the unique solution
X¥=0,Y=0,7=0. (D.6) has a general solutionX = Av1A-c and

Y = -8,1B-¢c with ¢ an arbitrary polynomial. Substituting these into
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(D.7), we obtain after rearrangement

AcA-*B-*Di (c*A"BDi* - Z°) + (c*A"B-Di* - Z°)*4:"AB D" = 0 (D.8)

where Di*Di = Bo*BvAuw1*Au1 + Bu*BuAvi-Av1 and D: is strictly Hurwitz.
Now if a is a polynomial that has no common roots with a*, the
polynomial equation ax+a*x* = 0 has the gemeral solution x = a*w where w
is any polynomial such that w* = -w. As a result it follows from (D.8)
that cA-*B-*Di - Z = AgA-*B-*Diw where v is any polynomial such that
w* = -w. From (D.1) Z always has a factor Ag, so Z also has this
factor. Therefore ¢ can be expressed as ¢ = Agc: and X = AvA~c: and
Y = AuB-ci. Since Y, Aw, B- €P(z'?) and A. and B- do not contain z-!
as a factor, ¢ €P(z-!'). Z is represented as Z = (ci-w)A-*B--D.
Since deg(Z) = n., necessarily ¢1 - w = 0. From v = -w and
¢t =W €P(z'), ¢t = 0 and w = 0, which proves that (D.B) and (D.7)
have the unique solution X = 0, Y = 0, Z = 0. This completes the proof.
|
Proof of Theorem 4a)

For a given u, Ao is given, and (D.1) and (D.2) form a set of
homogeneous linear equations in the coefficients of the unknown
polynomials X, Y, and Z. This linear set of equations is over-
determined. Let us arrange the unkown coefficients of the polynomials
X, Y, and Z in a vector x, then (D.1) and (D.2) can be put into the form

I'x = 0, where I" is a rectangular matrix. This equation has a

nontrivial solution if and only if I'"I" is singular. Since a

nontrivial solution exists for u small enough, it follows that

det(I""I") is an analytic function of « for | # | £1/Ae, and hence

(D.1) and (D.2) have a nontrivial solution with the properties stated in

Theorem 4a. ||
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Proof of Theorem 4b)

Suppose that Zis.xq has a zero outside the unit circle. Track
the solution of (D.2) with deg(Z) = n-.+1 as u is increased from 0 to
1/Aa. Since the coefficients if Z vary continuously with x, for some
# < 1/Aa at least one zéro of Z crosses over to the outside of the

unit circle. Consider what happens to the polynomials X and Y. Solving

(D.1) and (D.2) for B-X and &Y yields

B-X Bv*BvAu 2" "2 Av #Z

= 1
D“Dz~ "2 (D.9)
A-Y B.*BuAvt2-T2 - A -2‘"=Z*AH

/s

Suppose that a real zero of Z crosses over the unit circle. Then the

zero must be 1 or ~1 and Z has the factor z-1+1 or z-1-1. From the

above equation, X and Y also include this factor and this factor cam be
cancelled in (D.1) and (D.2), leading to a solution of reduced degree.
Suppose that a complex zero of Z, whose imaginary part is not zero,

crosses over the unit circle. Then the zero has the form ei® and Z must
have the complex conjugate zero e-i° at the same time. Therefore X and
Y have a factor (z-1-ei® )(z-1-e-i® ) and this factor can be cancelled

in (D.1) and (D.2), leading to a solution of reduced degree. |
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