ISE-TR-86-59

A LOOSELY COUPLED MULTIPROCESSOR SYSTEM : ADM.S
LLOGICAL CONFIGURATION & OPERATING SYSTEM —

by

Sanae AMADA
Yutaka SATO

Syu-ichi SUZUKI

October 16, 1986

A LOOSELY COUPLED MULTIPROCESSOR SYSTEM : ADMS

--—-LOGICAL CONFIGURATION & OPERATING SYSTEM---

by
Sanae AMADA¥*, Yutaka SATO**, and Syu-ichi SUZUKI#***

* Institute of Information Sciences & Electronics, .
University of Tsukuba.

** Doctral Program in Engineering,
University of Tsukuba.

*%% Intel Japan Co. Ltd.

Abstract

We have described on the basic design of ADMS, already
|Ama86| . In this paper, we add some results of our works
concerning with the logical configuration and the operating
system of ADMS to the preQious report. The reaéons of use of
the capability-based addressing, the addressing mechanism,
the executive environment of the program, the object oriented
environment, and the basic configuration of the operating

system are discussed.

Contents
1. Introduction
2. Capability-Based Addressing
3. Addressing Mechanism
4, Executive Environment of the Program
5. Object Oriented Environment
6. Basic Configuration of the Operating System
7. Conclusion
Acknowledgement

References

1. INIRODUCTION

ADMS has an object oriented architecture, and its object
corresponds to the model of objects as encapsulated data in
the definition by Ishikawa and Tokoro |Ish84|. They said on
needs of increasing of the parallelism in this model . ADMS
has the high parallelism by introducing of the concept of the
process.

As well known, in an object oriented architecture, the
operation of an object is restricted to a procedure defined
with the type, so we can have enough protective ability with
this architecture. And further, we use the architecture
because of it can fit for the loosely coupled multiprocessor
configuration. N

Because we made every effort to hide the multiprocessor
configuration to the user, ADMS could have good and easy
interface for the user. |

In following chapters, we describe on the logical con-
figuration and the operating system of ADMS. The total image

of ADMS is described in |Ama86|, already.

2. CAPABILITY-BASED ADDRESSING

We have to use logical addresses which is independent
to the physical system configuration, and we apply a capabil-
ity-based addressing method for our system. This method is
studied for the flexible protection |Fab74| and applied on
commercial systems |Hou81||Tyn81|, recently. We use this
method not only for the protection but to realize an enough

fitted addressing method for the system.

The 1st reason

The capability can be used as an unique address for any
resource in the system. In a loosely coupled system, we must
access a target which exists in another physical addressing
space, or an addressing space belonging to anotﬁer processor.
The capability can be a logical unique address, so we can
construct one uniform logical addressing space with it on the
system. This construction will have following features.

1. A caller has no influence by the migration of a target
among the processors.

2. The execution of a éaller itself have no restriction about
the migration of it among the processors. This will bring
advantages for load balancing and the reliability of the

. system.

3. Even if we change the hardware configuration, there is no
effect on the construction of the logical addressing space.
This means easy extension or recénfiguration of the system.

4. We can describe the software independent of the hardware
configuration. It gives more easy programming.

The 2nd reason

With the set of capabilities or the capability list, we
can define and control all executive environments on the
system. Here, the environment means a set of access rights.
By applying of this method, '"principle of least privileges"
|Lin76| can be realized dynamically, truely, and with the
high efficiency.

The 3rd reason

In "right-list method" the access right is checked at

the object side after the access has occured. In "capability
method" the access right 1is checked at the subject side in
the first stage as the resolution of the object name occurs.
In the loosely coupled system, there will be a status that
the subject exists separated from the object physically. So,
the feature of the capability method, in which the check is
completed without accessing on the different space, is impor-
tant in a viewpoint of efficiency.
To implement a capability-based addressing mechanism,
following items must be studied.
1. The generating method of the unique address in the system,
and the guarantee method for the uniqueness.
2. The method to convert a logical unique address into a
physical address on each processor.
3. The control of access rights in a fine-textured and high-
efficient manner.
4. The method to lighten the overhead caused by referring to
the éapability list.
5. Problems caused by the fact thét we have no way to notify
of the change of status of any object to the subject.
To solve these pfoblems we selected following mechanisms.
The reference mechanism to the capability is woven into the
addressing mechanism as the hardware. As the convert mecha-
nism of the logical address into the physical one, a newly
designed hash mechanism 1is used, and it concerns with the
communicating function via busses. Besides, the generating
function of the unique address and keeping up of the unique-
ness of the address are 1left to the hash mechanism. To

realize these functions, a new distributed addressing system

—3-

is introduced. To increase the flexibility of the protection
and the writability of the program, two special capabilities

are prepared. Details are described in following chapters.

3. ADDRESSING MECHANISM

The first problem on addressing is the decision of the
logical size addressed by a capability. Though there are
many terms to be discussed for the decision, we select as the
size as a segment which contains a series of 64 KB area on
the physical storage space. That is, a storage space 1is a
set of segment$, and each segment is addressed via capability.
The protection of the smaller sized area 1is realized by a
special capability.

We put the information of attribute of segments in the
segment descriptor. By a viewpoint of efficiency, the infor-
mation of attribute ought to be put in the capability. But,
in our system, the informatioﬁ which may be changed after the
creation of the segment can not be put in the capability.
The reason is ; plural capabilities can point one segment and
we have no way to find a capability which points a specific
segment. This configuration brings the relatively short
capability in its length. |

The segment and the corresponded segment descriptor are
placed in a porcessor, and the latter is in a local segment
table. Meanwhile, to prevent unreasonable accesses on the
capability, we prepare C (capability) segments and D (data)
segments. The configuration will bring us the enough protec-
tion of capabilities and the high efficiency on the operation

to executive environments and addressing.

A

INSTRUCTION

{ operand |
! ®
| segment [offset]
PROCESS current CONTEXT LOCAL SEGMENT TABLE PHYSICAL ADDRESS SPACE
OBJECT ; ;
@ capability ® segment descriptor
ACC T_UID “Tindex é
attribute @ _itarget SEGMENT !
; . storage - ‘1 _
S S object type -
base address /J
@ link i | target OPERAND
, UID —J .
; mapper P

address cache

L

Fig.1l. The Address Conversion Mechanism.

In Fig.1l, we show an address coqversion mechanism on
each processor. In the figure, we get a segment designation
part and an offset designation part from the operand part in
the instruction. The check of accéss right and attribute of
the object is executed in the mechanism. For instance;
in route 1 : comparing of contents of the instruction and the
access right written in the capability, and checking of the
mode bit in the capability,
in route 3 : comparing of contents of the instfuction and the
segment type in the segment descriptor, and
in route 5 : comparing of offset value and the segment length
in the segment descriptor.

To lighten the overhead of the addressing mechanism, we pre-

~5=

pare two associative address caches; and implement the hash
mechanism and segment table with hardware elements.

In the UID (unique identifier) conversion mechanism, we
have functions to prevent the duplication of the UID and to

search segments all over the system.

3.1 Creation and Destruction of the Segment

To create the segment, we have to generate an UID and
register a Segment descriptor on the segment table. To.de-
stroy the segment, we have to abandon an UID. We put an UID
generating counter on each processor and promise to express
the processor number with higher 4 bits -of the UID. of
course, each segment can travel between processors after the
creation.

At the creation of the segment, by checking of the col-
lision in the hash mechanism we can confirm‘that the prepared
UID is out of use. At the destruction, by testing with the
count of the capability we can check whether the said UID is
in use or not. Thus, we can keep the one to one relationship
between the UID and the segment. The count of the capability
is renewed or tested by copying or destroying procedure of
the capability.

In our algorithm, if the collision has occured by hash-
ing, we repeat to generate the UID until we can find any
empty entry on the table. We prepare a '"'segment exist bit"
in the segment descriptor and keep said entry as ''wvalid" till
the capability which points said segment has deleted. The
test of count of the capability and the deletion of the entry

will be executed in the deleting procedure of the capability.

In the algorithm, there will be no collision in hashing
at the reference.l Because the collision 1is avoided at the
generation in advance. As a result, though the overhead at
the generation is pretty large, the total overhead will be
small by the reason that thé reference will occur much more
’times than the generation.

In addition, we separate UIDs as parmanent and temporary
ones. The number of generating times and the life time of
them will be compensated each other, and it will reduce the

collision.

3.2 Import and Export of the Segment

On the occasion of registering of an imported segment,
we cannot apply the previous mentioned algorithm. We must
apply a collision management just same in case of the ordi-
nary hash mechanism. When we have a collision, we put said
segment descriptor on a link-storage and link it to same
hash-valued segment descriptor.

It must be noticed by the export that we cannot rub off
the segment descriptor of the exported segment. That is a
mark to show that the corresponded UID is in use. To show
the absence of the segment, we turn off a '"local bit'" in the
segment descriptor.

In our system, we transfer data in not the segment form

but the object form.

3.3 Reference of the Segment
As a basic search procedure, we have the 'local segment
search'" procedure.

In a case of the capability is transfered from another

-7-

processor or the segment is exported, there may be no target
segment in own processor. Then, a procedure which asks some
operations to other processors is started. By the start, the
control of the execution is transfered to another processor.
In our system, a processor does not contact with the physical
storage spaces of other processors, and the control is limit-
ed to the operation of the object and the system procedure.
An asking procedure '"external request send" 1is a proce-
dure which transfers a message to other processors. By
receiving of the message, the ''external request serve'' pro-
cedure starts its function containing the '"local segment_
search'" procedure. At first a processor ‘which has created
the target segment is selected. We are able to know the pro-
cessor with higher 4 bits of the UID. If the target segment
cannot be found in the processor, the request 1is sent to
plural processors at a time by a broadcast function prepared

in the BIU (bus interface unit).

3.4 Garbage Collection
In ADMS, when the count of the capability in the segment
descriptor come to zero, the segment descriptor is rubbed off

. and the storage area of the segment is released.

3.5 The form of the Capability and the Segment Descriptor

CAP : record

status : record
| valid : boolean;
mode : capability_type;

end record;
self right : record
delete right : right;

/*

SD

copy_right : right;
move right : right;
end record;

access _right: record
right 1 : right;
right 2 : right;

right n : right;
end record;

uid : id;

end record;

boolean =4 on, off}

right = on, off }

capability type = {base, abstract)

id ={0 ... maxuid}>

: record
index - ¢ record

valid : boolean;
d_type : descriptor_type;
uid : id;

end record;

storage : record
exist : boolean;
local : boolean;
move : boolean;
limit flag : boolean;
cap limit : ordinal;
cap,_count : ordinal;

end record;

attribute: record

s_type : segment_type;
segment length : ordinal;

end record;

base address : ordinal;

object_type ¢ id;

link pointer : record
link flag : boolean;

‘ link : ordinal;
end record; '

end record;

/* descriptor_type = {SD, RD, IDY
segment type = {Capability, Data)
ordinal =40 ... max)}

3.6 Special Capabilities

A refinement (a serial part in a segment) is defined as
a virtual segment and a capability is given to it. Informa-
tion of the mother segment and the refinement itself is de-
scribed in the refinement descriptor. The refinement de-
scriptor is treated just same as the segment descriptor. The

access path is shown in Fig.2.

SEGMENT TABLE

Sp SEGMENT
——
REFINEMENT
REFINEMENT CAP. N\ RD /r—
— N b {

Fig.2 The Access Path of the Refinement Capability.
An indirect capability is prepared, too. This is effec-
tive for the selective cancellation of the transferred capa-

bility and the dynamic indirect operation of the executive

-10-

environment |[Mye80|. The access path is shown in Fig.3.

C sesgment

SEGMENT TABLE
““‘\\\\ﬂ- 1D
| T

/ target SEGMENT

(: C segment

}/ sD
normal CAP, /" ’

et

INDIRECT CAP,

Fig.3 The Access Path of the Indirect Capability.

3.7 Operational Procedure on the Capability

DELETE, COPY, and MOVE procedures are prepared for the
capability, and flag bits in the self right field of the
capability are corresponded to_them. At the creation of the
capability, all flag bits are set in "on'", and controlled by
the RESTRICT procedure afterwards.

A procedure wused to increase self and access rights is
AMPLIFY. At first, '"amplify control object'" 1is created by
type managers. And this object has a cast of‘right field of
the capability. The AMPLIFY procedure receives amplify
control object ‘as an argument and executes "or" operation on
the right field of the target capability. Thus, the AMPLIFY

procedure is a privilege operation of type managers.

-11-

The RESTRICT procedure receiVes "restrict control object
" which has a same configuration with the amplify control
object, and executes '"and" operation on the right field, All
sub jects can create this object.

We have ''set capability limit" proceduré to set the
upper limit of number of capabilities corresponded to one

segment.

4. EXECUTIVE ENVIRONMENT OF THE PROGRAM

4.1 The program Module

In ADMS, the executive environment is défined'as the set
of capabilities. An address space shown by this set is
called as a domain. We have three‘ system object types to
define the program module.

INSTRUCTiON is a D segment composed of abset of machine
instructions and the heading containing control information.
This is an entity which defines one sub-program, and is pre-
pared to protect the series of instructions from undesirable
operation. Contents of it can be changed only by a renewal
operation defined by the system.

DATA is a D segment which has no types. Contents are
static variables 1in the program and constants generated by
the compiler.

DOMAIN is a C segment composed of a set of capabilities,
and shows an access space corresponded to a static executive
environment of the program. And this defines a program mod-
ule putting together instruction objects, data objects, and

other typed objects in logical. The inner format of it is

-12-—

defined by the compiler.

Fig.4 shows the relation of these three types of object.

DOMAIN - INSTRUCTIONs

other DOMAIN
etc.

— s

Fig.4 The Definition of the Program Module.

The accessability into other modules is shown whether
the own domain has a capability for the doméin representing
the target module or not. Of course, - thebcapability must
have a proper access right. For the access right of a part
of module, a refinement capability is used. To control the
target after the transfer of the access right, an indirect
capability is used.

To keep higher efficiency, it is preferable that links
between a domain object and instruction and data objects are

not ranged over from processor to processor.

4.2 Control of the Executive Environment

To define the dynamic executive environment of a program
module, we prepare a system object type named context. The
context object is created dynamically by the call of the sub-
program and linked up to the old context object. Thus, the
change of the executive environment of programs is expressed

~as a linear list composed of links between context objects,

-13=

and the last context object shows the current executive
environment.

A context object 1is composed of from 2 to 4 C segments
(CCSO~CCS3) and a D segment (CDS). CCSO~CCS3 are set in the
capability list in the address conversion mechanism. Namely,
capabilities in CCSO~CCS3 define the sets of physically ac-
cessable targets.

The designation part for the segment in the instruction
has following form. |

<segment_selector > ::=<CCS_number > < index >
The construction of thevcontext object and the path to

designate segment is shown in Fig.5.

segment selector

[CCS# |index 1} - ' target segment
'I QJ
— DOmAIN ——
PROCESS /|
object - .
s — INSTRUCTIONs

i’w\\Lj

S local data
previous CONTEXT - CDS

Fig.5 The Configuration of the Context.

CCSO contains capabilities for links and has a role as a
root segment (CRS). We put the domain object on CCS1. CCSs2
and CCS3 are prepared for the indirect access. For the indi-
rect access operation we have ENTER CONTEXT procedure and
REMOVE CONTEXT ‘procedure. CDS is a stack for storing of the

program status block (PSB).
—14—

4.3 Change of the Executive Environment

Following three operations are prepared for the trans-
portation of the control among sub-programs, and shown in
Fig.6.

- BRANCH is the simple transportation of the control among
instruction objects. PSB must be changed by BRANCH operation.
This is used to link the multiple instruction objects those
show large sized sub—programs as over 64 KB.

LCALL/LRETURN is used for the call/return of procedure
of the instruction object in current domain. By the opera-
tion, ”push/poP” of PSB, local variable data, and local stack
data in CDS are carried out.

CALL/RETURN is used to call the procedure in the other

domain and takes with context switching.

current INSTRUCTION

current CONTEXT

|
l'—LDOMAIN—'——:__
. BRANCH

R\ INSTRUCTION Va
—(En)

vINSTRUCTION

Ly

Ll

g
!
;

DOMAIN
.

Fig.6 The Transportation of the Control.

-15-

5. OBJECT ORIENTED ENVIRONMENT

In ADMS, we construct the object oriented environment in
which"all’résources in the system are defined as abstract
entities having unique names and types, based on the address-
ing mechanism and the control mechanism of the executive
environment as mentioned above. Here, an object is a passive

entity, and the internal construction of it is hidden by the

type.

5.1 The Definition of the Object

An object is composed of a C segment and a D segment, or
- a hierarchical ‘construction linked with a C segment. The C
segment is called as a root segment.

We call a Capability for a root segment of an object as
""a capability for the object'", and usé for addressing to the
object. A capability for the object 1is defined as an "ab-
stract mode'" capability distinguished from a basic mode capa-
bility. The latter recognises the target as the physical
segmeﬁt. To the former, it is applicable only an abstract
operation defined by the type manager.

The type of the object is defined by the information of
the object type field in the segment descriptor of root seg-
ment. A form is usable which contains ones defined as object
previously, instead of the segment. The refinement is appli-
cable.

As mentioned already, we avoid the distribution of one
segment construction to plural processors. This is able to
realize by the restriction of the transportation of data be-

tween processors in a unit of object.

-16-

5.2 Accessing to the Object

Accessing to the object 1is started by sending message
from the accéssor to the type manager which defines the type
of the target object. The type manager operates the object
directly according to the received message. Said object and
the type manager must be in existence on a same processor.

The message includeé a capability for the object, a name
of the operétion and arguments. The type manager send back
the result of the operation to the accessor. On the object

of the system type, there is no type manager.

5.3 The Configuration of the Typé Manager

In ADMS, a type manager is defined as an object with
type form, and treated equally to general objécts. The rea-
son of this adoption is as follows.

* In our system, thé expandability and the easiness of crea-
tion of the type are attached great importance. By the adop-
tion, we can create types with ease and without any réstric—
tion in number.

* A complex configuration as hierarchical fofm and so on is
realized easily.

* The protection mechanism is applicable for the type manager
just same to objects.

The type form is one of the object type offerd by the
system, and 1its type manager (type-type manéger) is woven
into the system. The type-type manager prescribes the con-
figuration of the type manager, and has a role to create the
types.

The internal configuration of the type manager is copied

-17-

TYPE MANAGER

//,' main routine
root C segment

type UID ‘\\
[::%f%:::::::ff _ y/"r’—_——-_——‘\\ command table

PORT B \
4 / 7 TC0 table
- TCOs
MESSAGE / \g >
procedure table INSTRUCTIONs
L¥ /

|
e -/

Fig.7 The Configuration of the Type Manager.

from the type definition of the language, and shown in Fig.7.
The main routine of it is composed of a message analyzer and
a routine which checks type rights. The type manager re-
ceives the message and analyze it using the command table and

TCO (type control object) table, and searches the correspond-

ed procedure in the procedure table, and then starts.

5.4 SEAL/UNSEAL Function

| SEAL is a procedure to set the type for the set of seg-
ments, and UNSEAL is a procedure to release the type for the
ob ject. And, TCO is an object to qualify for the start of
procedures. At the time, we must designate TCO as an argu-
ment. TCO is given to the type manager from type-type manager
at the creation of the type, ‘and it is an independent ob ject

by the reason .of the protection. SEAL/UNSEAL procedures of

-18-

types are privilege operations of type managers by owing ca-
pabilities to TCO in type managers.

SEAL/UNSEAL procedure send back the capability which
contains proper access rights. If needed, the capability is
converted to the abstract mode by SEAL, and is converted to
the basic mode by UNSEAL.

If we try to apply a procedure call mechanism used in
Hydra|Wul81|, iAPX432|Tyn81|, etc., we meet some ploblems.
In these systems, the procedure call mechanism is based on
the sequential processing mechanism. So, by the application
of this mechanism,‘ the parallel processing ability by plural
processors in ADMS cannot be wutilized. And then, if an
object and a corresponded type manager are distributed in two
processors, the efficiency of the execution cannot be kept in
high level. Thus, we prepared following new mechanism. In
the new mechanism, a type manager is executed as a process,
and an access from accessor to object 1is executed as the ex-
change‘of the message between an accessor process and a type
manager process.

We prepare REQUEST procedure to send messages, and the
procedure has the object level message as the argument. In
the procedure, the'object level message 1is converted to the
process level message. And then, ;he message communication
between processes are started. We will write on.the message
communication in chapter 6.

As a result, the system environment 1is constructed of
the set of resources defined as objects and the message pass-
ings between resources, 1in logical. In physical,_ they are

the set of processes and the message communications between

~-19-

processes.

Thus, all physical active entities are defined as pro-
cesses, and have an unified interface. The process 1is the
basic unit of concurrent programs, and an accessor process
and a type manager process can be operated indépendently and

in parallel.

5.6‘Access Management

" Each processor has a TPT (type process table) which is a
set of type descriptors, and UID of the type manager is regé
istered onto it at the creation of.the type manager. Then,
to some processors, they may use said type, the registration
is carried out by brdadcasting. This configuration makes
the easy dynamic system reéonstruction.

The access to the system type object and other type ob-
ject are equally started with REQUEST procedure, but the
progresses are somewhat different naturally. By the access
to the object on other processors, roughly speaking, the same
progress 1is started after the search operation over the

system.

5.7 The Harmonization with the System Configuration

Type managers are managers of resources, and so the op-
erating system of ADMS is the set of type managers. In our
system, resources are distributed in response to the func-
tion of each processor, and the management of each processor
is satisfied by the distribution of type managers. If we are
needed to set the same function on plural processors, there

will be no problem by the distribution of the same type man-

ager. For the management of the status, a system type table

-20-

is prepared in a system control processor (PU #0).
This configuration will have a result of 1load distribu-
tion by itself. In the case, to improve the efficiency, we

set up following rules.

%

When the target type manager exists on own processor, that

type manager is selected.

>

* If not, request messages are transmitted to all or specif-
ic processors by the broadcast function.

* The first arrived answer to the request is picked up, and
others are cancelled.

Please notice to the distributed control of the function. In

addition, busses of our system has a function to watch the

flow of the information, and the problem caused by the un-

suitable location of the specific type manager can be cor-

rected.

6. BASIC CONFIGURATION OF THE OPERATING SYSTEM

6.1 Moduiar Configuration

Basically, the modular configuration of the operating
system (0S) is preferable to fit to the multiprocessor envi-
ronment, because of it is convenient for the distribution of
needed parts of OS to plural processors. The efficient par-
allel processing, striking off of the redundant part of 0S
will be prepared easily by the configuration.

However, the decrease of communicatioﬁ between modules
and the increase of parallelism between distributed tasks
must be considered. In this viewpoint, we devided the 0S in

modules as to have a logical sizable function.

~21-

The fact that the OS of ADMS vis a set of type managers,
as meﬁtioned in previous section, will support the modular-
ization. Each module is a server which provides a specific
function in the 0S, and in same time it is a type manager for
the object. Thus, the OS in our system is modularized in an
unit of type manager, each module is executed as a process,
and the communication between modules, and between user and
0S, are executed both as the communication between processes.

The last item brings the unification of communication
mechanism which are separated in case by case (for example,

0S/0S, 0S/user, user/user) in the traditional system.

6.2 Communication Mechanism

The communication must be executed irrelevant to the
location of target process. That will bring the independency
of the software from the hardware, make easy to increase oOr
decrease the number of the server process, and have thecim-
proved availability of the system in case of trouble.

The communication must be protected. We can execute the
communication between user and 0OS as the ordinal inter-proc-
ess communication. That will have the conveniency on the
modularization of 0S, the dynamic reconstruction of it, and
the wide area communication in the system.

For the design of the mechanism, we apply the concept of
"the self-identification of data''|Mye78| on the communication,
to apply generic instructions and to keep the independency of
data by making an explicit unit for the communication.

In our system, the message and the port are prepared as
tools for the communication. The message is independent from
the port, and they are realized as objects. By the communi-

-22-

cation, messages are transmitted to the port from not only
sender but receiver, too. Now, we call them as sending mes-
sage and recelving message.

In case of one way communication, sending message brings
data to the port, and data is copied to the receiving message
on the port. If the response is needed, the sending and the
receiving message are transfered both to the receiver from
the port, and sending message brings back the result of the
needed operation in the receiver to the sender.

By the mechanism, it is easy to receive data from the
port which exists on other processors. Messages can be re-
used, \and each message has a fixed port address. The fact
means that the address of a specific message can be decided
or changed by the parent process or the system. If we put
the processor ﬁumber in the address, the information can be
utilized for the routing of the communication.

The details of the communication method can be stored in
the message itself, and we can execute the communication in a
generic mode.

Each process has plural messages corresponded to the
ports to which said process may communicate. The side effect
of this mechanism is the limitation on the number of message,
if needed.

As above mentioned, we use a port object and appoint it
as a communication media for the communication. The mecha-
nism of appointing of the communication media is used in pipe
of UNIX*|[Rit74|, Port of Hydra|Wul74|, and Mailbox of StarOS

|Jon79|, etc.. By the mechanism following functions can be

*UNIX is a trademark of the Bell Laboratories.

-23=

realized.

3%

A multi-server mechanism can be carried out.

b

The making of libraries from processes is promoted.

b

It is effective for the abstraction of the interrupt and

I1/0 process.

%

There are few problems by the communication to the not yet
created process.

The destroy procedure of the port is same to other objects.

6.3 Mode of the Communication
The conditional send/receive 1is applicable. The mode
signal is put in the message itself.
| The nonblocking send/feceive, the multiple wait communi-
cation are available, too. The heading’of the message has
the address to the port, so the procedure to send messages to
the remote port 1is approximately same to the case of local

port.

6.4 Process Management

In ADMS, processes under management have one of following
status; running, ready, wait, wait-suspended (a status in
which a waiting-process 1is put out from dispatching by the
suspended-process), suspended (a status in which a ready-
process 1is put out from dispatching by the suspended-proc-
ess), and dormant.

And for the transition of the status, following opera-
tions are prepared; create-process, start-process, delete-
process, exit-process, abort-process, terminate-process,
suspend-process, resume-process, sleep~proceSs; and wake-up-

process.

~24—

READY ' RUNNING

\ wake-up sleep
WAIT e/
suspend ‘resume
WAIT-
SUSPENDED
wake-up
resume
SUSPENDED
suspended
terminate
start
DORMANT
terminate exit, abort
: delete ’ create
NON-
EXISTENT

Fig.8 The Status Transition of the Process.

The relation of these items are shown in Fig.8.

On the scheduling of the process, 8 priority levels are
prepared and the queue is composed in each level. Then the
length of time slot is decided as:

T=Tox2P
here; T : the length of the time slot.
To : unit length.
P : priority level number (0~7).
Still more, the priority level is limited in some ranges by
the character of each process, the priority of a process
which is brought to the 'wait'" is changed to one level upper,
and the idle process level is introduced as the lowest prior-

ity level to keep the processor in ready status.

-25-

The operations prepared for the scheduling are; sched-
ule-process, dispatch-process, change-priority, change-ready-
queue, set-process-status, disable-interrupt, and enable-
interrupt.

The process control block (PCB) is prepared and the im-
~ portant information on processes are stored in it. The PCB
is devided in two parts as D-PCB and C-PCB. D-PCB has infor-
mation of data, and C-PCB has information of capabilities for
D-PCB or context. The substance of the C-PCB 1is the C seg-
ment. We have no special fearure on the interrupt operation,

and the timer management.

7. CONCLUSION

In htis paper, we have discussed on a loosely coupled
multiprocessor system to use for the distributed processing
system, especially on the idea concerning to the logical
configuration and the operating system. |

The implementation of the system is not yet completed
now, however, we have no interference with the investigation
in present. We are under designing of language processors
and the hardware for the system, and we will be able to re-
port on them in near future. Then, we will describe on the

result of the evaluation of our works.

ACKNOWLEDGEMENT

We thank to Mr. Takeo WAKAMOTO, who has designed on the
process management mechanism and proposed many effective
ideas to us. And we thank to Mr. Norio OHASHI, Mr. Kazuhiro
WATANABE, and Mr. Sada ji ASANQ as exellent cooperators of our

works.
~26—

REFERENCES

Ama86: S.Amada, M.Tsuchida, Y.Sato: A Loosely Coupled Multi-
processor system: ADMS--Basic Design--, The Tech. Report of
Institute of Information Sciences and Electronics, Univ. of
Tsukuba, ISE-TR-86-56, pp.1-16, (June 1986).

Fab74: R.S.Fably: Capability-Based Addressing, Comm. ACM, 17,
4, pp.403-412, (Dec. 1974).

Hou81: M.E.Houdek, et al.: IBM System/38 Support for Capabil-
ity-Based Addressing, The 8th Symp. on Comp. Architecture,
pp.341-348, (1981).

Ish84: Y.Ishikawa, M.Tokoro: The Design of an Object Oriented

| Architecture, The 11th Annual International Symp. on Comp.
Architecture, pp.178-187, (1984).

Jon79: A.K.Jones, et al.: StarOS, a Multiprocessor Operating
System for the Support of Task Forces, The 7th Symp: on
Operating System Principles, SIGOPS, pp.117-127, (1979).

Lin76: T.A.Linden: Operating System Structures to Support
Security and Reliable Software, Computing Surveys, 8, 4,
pp.409-445, (Dec. 1976). _ '

Mye78: G.J.Myers: Advances in Computer Architecture, John
Wiley & Sons, (1978).

Mye80: G.J.Myers, B.R.S.Buckingham: A Hardware Implementation
of Capability-Based Addressing, Comp. Architecture News, 8,
6, pp.12-23, (Oct. 1980). |

Rit74: D.M.Ritchie, K.Thompson: The UNIX Time-Sharing System,
Comm. ACM, 17, 7, pp.365-375, (July 1974).

Tyn81: P.Tyner: iAPX432 General Data Processor Architecture
Reference Manual, Intel Corporation, (1981).

Wul74: W.Wulf, et al.: HYDRA: The Kernel of a Multiprocessor
Operating System, Comm. ACM, 17, 6, pp.337-345, (June 1974).

Wul81l: W.Wulf, R.Levin, S.P.Harbison: HYDRA/C.mmp: An Experi-
mental Computer System, McGraw-Hill, (1981).

27—

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

' REPORT N .
REPORT DOCUMENTATION PAGE | o o o o e s6-59

TITLE
A Loosely Coupled Multiprocessor System : ADMS

---Logical Configuration & Operating System---

AUTHOR(S)

Sanae Amada
Yutaka Sato

Syu-ichi Suzuki

REPORT DATE NUMBER OF PAGES
October 16, 1986 27
MAIN CATEGORY CR CATEGORIES
MuLt] c.1.2, C.1.3,
ultiprocessor System D.1.3 D.4.1
. . , L] ° L]
KEY WORDS ‘ ,

Distributed Processing, Multiprocessor, High-Level Architecture,
Capability-Based Addressing, Object Oriented, Operating System.

ABSTRACT

We have described on the basic design of ADMS, already
| Ama86 | . In this paper, we add some results. of our works
concerning with the logical configuration and the operating
system of ADMS to the previous report. The reasons of use of
the capability-based addressing, the addressing mechanism,
the executive environment of the program, the object oriented

environment, and the basic configuration of the operating

system are discussed.

SUPPLEMENTARY NOTES

