ISE-TR-86-58

A SIMPLE REALIZATION OF LR PARSERS
FOR REGULAR RIGHT PART GRAMMARS

by
Masataka Sassa
and

lkuo Nakata

July 8, 1986

S

A simple realization of LR parsers

for regular right part grammars

Masataka Sassa and Ikuo Nakata

Institute of Information Sciences
and Electronics

University of Tsukuba

Abstract

A Regular Right Part Grammar (RRPG) is a context free
grammar in which regular expressions of grammar symbols are
allowed in the right sides of productions. In this note, a
simple method for generating LR parsers for RRPG's is presented.

The idea of the LR parser is to store so-called count values
for counting the length of grammar symbols generated by the right
side of productions.

Although the parsing efficiency of the method is not the
best, the generation of the LR parser is simplevand can be done
with a slight refinement of the usual LR parser generation
techniques. No grammar transformation nor computation of

lookback states is necessary.

1. Introduction

A regqular right part grammar (RRPG) (or an extended context

free grammar) is a context free grammar in which regular
expressions of grammar symbols are allowed in the right sides of
productions [1-6]. RRPGs are useful for representing the syntax
of programming languages naturally and briefly, and are widely
used to specify programﬁing languages.

An RRPG is called an ELR(k) grammar if its sentences can be
analyzed from left to right by the LR parsing method with a
lookahead of k symbols. More precisely, an RRPG is an ELR(k)
grammar if (i) S }, S is impossible and (ii) if § 2> aAz => aBz,
s £> YBx => a8y, and FIRST)(z) = FIRST,(y) implies A = B, o =7,
and x = y, where all derivations are rightmost [6]. The
corresponding parser is called an ELR parser in this paper. 1In
the following, we deal with the case k=1.

The main problem with ELR parsing of ELR grammars is in the
"reduce" action when the right side of a production is
recognized. The problem is that in ELR grammars the length of
the sentential form génerated by the regular expression of the
right side of a production is generally not fixed and thereforé,
extra work is required to identify the left end of a handle tolbe
reduced.

Three approaches have been proposed so far for ELR parsing
of ELR gfammars: (1) Transform the ELR grammar to an equivalent
LR grammar and apply standard techniques for constructing the LR
parser [1,2]. - (2) Build the ELR parser directly from the ELR
grammar [another method of 1,3,4,5]. (3) A method similar to

(2), but transformation to another ELR grammar is necessary in

1

some cases [6].

In approaches (1) and (3), extra nonterminals are added to
the transformed grammar and the correspondence of semantic rules
with syntax rules is broken off.

In this paper, we present a simple method based on approach
(2). No grammar transformation is necessary. In previous
methods based on approach (2), the addition of readback machines
[3,4,5] or the investigation of the lookback state [5,8] at
reduction time was necessary. The algorithms for these methods
were rather complicated. In our method, an ELR parser can be
realized with a slight refinement of the usﬁal LR parser

technique, by storing so-called count values for counting the

length of grammar symbols generated by the right side of
productions. Although the parsing efficiency of the methed is
not the best, the generation of the LR parser is simple and

practical.

2. Outline of the method
The outline of our method is explained using the following

grammar [3,6].

Example Grammar

Gl: #0: 8'-> 85 %
#1: S ->{alb
#2: S -> a A ¢

#3: A -> {a}

where {al means that a is repeated 0 or more times.

Suppose that the input "aaab$" (input 1) is given. This is
derived by
s' 22, ss El, (aips
In order to perform correct reductions for such input, it
suffices to count the position of each grammar symbol in the
right side of the corresponding production. We will save the
count values into the usual parsing stack as follows.
parsing stack: a 1 a 2 a 3 b 4 remaining input: $
At the above situation, the parser will reduce by production #1.
The number of symbols to be popped from the parsing stack is 4
which can be found at the top of count values.
On the other hand, suppose that the input "aaac$" (input 2)
is given. This is derived by
s' 10, ss %2, ancs %3, afalcs
Thus, "aa" must be first reduced to "A". In this case, the count
values are different from those for input 1. They must proceed
as follows.
parsing stack: a 1 a 1 a 2 remaining input: ¢ $
Since there is no‘distinctiqn between input 1 and 2 during
the parsing of "aaa", multiple cases many arise for count values.
Thus, we save the multiple count values to handle both cases as
follows.

parsing stack: a(1,1) a (2,1) a (3,2)

remaining input: b % or c$

n_n

If the next input symbol is "c¢", the parser reduces by
production #3. Since the count value corresponding to production
#3 is the second value, 2, of the array of count values, (3,2),

the parser will reduce after popping 2 symbols from the parsing

stack.

3. The proposed ELR parser
The proposed ELR parser for ELR grammars can be organized
with a slight refinement of the usual LR parser generation

techniques [7].

3.1 Constructing LR states and LR automaton

First, according to the convention of ELR grammars, the
regular expression in the right side of a production is
represented by the corresponding finite state automaton [6,8].

The finite state automaton is called the right part automaton.

In this paper, we assume that it is a deterministic finite state
automaton. The right part automata of grammar Gl are shown in
Fig. 1.

Similarly, an LR item is represented using the states of the
right part automaton. For example, the LR item [S -> - {a}l bl
of Gl is represented as "3".

A set of LR items or an LR state of an ELR grammar is
defined as usual. An LR state is defined as the closure of a set
of LR items (kernel of the state). The set of items which are
included into the state by the closure operation is called the
nonkernel of the state. For example, if LR items "3" ([S -> -
{a} b]) and "6" ([S -> a * A cl) are in the kernel of an LR
state, LR item "9" ([A -> - {al}l) is included in the nonkernel of
this LR state by the closure operation. The LR state is also

represented using the states of the right part automaton, e.qg.

"{3, 6 |] 9 }". We use "|" to separate the kernel and the

nonkernel of an LR state.

Next, we build an LR automaton as usual using the goto
relation and the closure operation. The LR automaton for gfammar
G1 is shown in Fig. 2. (Fig. 2 contains some refinements as
described below.) In this figure, the annotation "#p {17, 1o,

... }" denotes the reduce action by production #p when the next

input symbol is in the set {14, 1o, ...}.

3.2 Refinement of the usual LR automaton

In the following, we borrow some notations from [5] and [7]
with slight modifications: Concerning right part automata, Q
represents a finite set of right part states (states of the right
part automata), §: @ x V -> Q is the transition function where V
is the set of grammar symbols (nonterminals and terminals), and
FCQ are the final states.

The following notational conventions are used: A, B, C,

... and S, S' are nonterminals; a, b, ¢, ... are terminals;
X, ¥, 2, ... are grammar symbols; a, é} Y, ... are strings of
grammar symbols, g; € Q is a right part state; t; is an LR item
of the form [g;, a] where a is a lookahead terminal; I; is a set
of LR items; s; is an LR state. We often identify a set of LR
items with an LR state.

Now, we make some refinements of the goto relation. A goto
relation usually represents a transition from an LR state to
another LR state. Here, in order to deal with multiple possible
cases for count values, we introduce a refinement of the goto

relation called gotol. It represents a transition from a pair

(LR state, LR item) to another pair (LR state, LR item), together

with the information whether the source LR item of the transition

is from the kernel or the nonkernel.

Definition (gotol relation)
Let 1I,., I, be LR states, and X be a grammar stbol satisfying
goto(Iq, X) = I,. From the definition of goto [7], there should
exist LR items t4 € I4 and t, € kernel of I, such that

tq =lgq, a7] and £ty = [6(91,55, asl (g1 € Q)
for some lookahead terminals aq and a2o. In this situation, we

say that there is a transition by X from (I4, tq) to (I,, t5).

- If t, is in the kernel of I;, it is denoted by

M((.I_‘]I _t.‘])l 2(./"'):(_1_2! Ez) or
(L‘]I E‘]) __2(-_/_+_> (12, _'l_'__z).

- If tq is in the nonkernel of I, it is denoted by

gotol((L4, £q), X/1) = (I, tp) or
(I1, t) 20 0 (1, £,)-

Example The arcs in Fig. 2 represent the gotol relation.

Another modification of the usual LR parsing method is that
all LR items in the initial LR state are assumed to be in the
nonkernel instead of the kernel. This is for satisfying the
property to be described below. An example is the initial state

Ip={1] 0,3, 51} of Fig. 2.

With the above refinement, we can consider a sequence of (LR
state, LR item) pairs connected by the gotol relation such that

the first pair in the sequence is really the first one connected

by the gotol relation. Let call it a path [5]. The following

property holds for a path.

Property (of a path) A path corresponds to an occurrence of
the right side of a production. The first item in a path is a
nonkernel item and it corresponds to an initial state in a right
part automaton. The remaining items in a path are kernel items.

This can be schematically shown as
nonkernel kernel kernel kernel

Example In Fig. 2, the path
nonkernel kernel kernel kernel kernel

corresponds to an occurrence of the right side of production #1.

3.3 The handling of count stacks in the ELR parser

From the above "Property", we can see that when the parser
makes a transition by X corresponding to the gotol relation
we must initialize the count value to 1 since the first symbol of
the right side of a production is read, and when it makes a

transition corresponding to

we must increment the count value by 1 since the parser is
processing the middle part of the right side of a production.

In the following, we use a configuration of the ELR parser

to denote the status of the parser. Our configuration is

similar to the usual one [7] but is augmented with count values:

(50 Co X1 81 &1 X2 82 C " Xp Sp Sy 24 2541 777 21 %) (%)
Here, s; is an LR state, C; is an array of count values, X; is a
grammar symbol, and aj ... a1$% is the remaining input. (g is
actually empty.

A count value in C; designates the length of a path to sjy
(ending with X;). If s; has kj kernel items, then the number of
possible paths to s; is kj. The count values in C; is stored in
a way such that
* C;[j], the j-th element of C;, contains the count value of the

path to the j-th LR item in the kernel of the corresponding LR
state s;.
Thus, the array size of C; is limited by the number of kernel
items in s

j- Note also that cases where multiple count values

are necessary correspond to the stacking conflict of [6] and [8].

4. Formalization of the ELR parser and its construction
In this section, we summarize the above discussions and

present formally the ELR parser and its construction.

Move (of the ELR parser)

The move of this parser is similar to the usual one [7]. To
include the handling of count values, we divide the usual "shift
s" operation into a simple shift and a goto to s handled with the
count values. Assume that the present cbnfiguration is (*)

above.

1. If actionlsg,a;] = "shift" and

gotolsp,a;] = "state s,
incr((iq,3q), (i5,35) =),
init(kq,ky, =)"
("incr" and "init" indicate the operation to increment and
initialize count values, and are constructed by the
algorithm shown below. They may be empty),

then the parser enters the configuration

(50 Co %1 81 C1 X252 C " XpnSpn Cp 23 S Cr @541 °°" 2a1$)

where
Cliq1 = Cpliql + 1, Clis1 = Clin] + 1, ==- , and (a)
Clkql = 1, Clkol = 1, *=-.
2. If actionlsg,2;] = "reduce #p,j", and
gotols,_,,A] = "state s,

incr((iq,349),(i,32), ="),
init(kq,ky, =")",
then the parser enters the configuration
(50 Co %7 81 &1 X252C5 """ Xp_r Sp-r Cn-r 2 8 G
aj 8j41 77T 2y %)

where

Il

= Cpl3) if 3 # € (r = 0 if j = €. This is an e-rule),

A is the left side of production #p,

Te!

(341

Cp-rliq] + 1, Clip) = Cp_plinl + 1, ==+ , and (b)

Te!

[kq]

1, Q[EZ] =1, == .

3. If actionlsg,a;] "accept", parsing is completed.

4. If actionlsp,a;] = "error", the parser reports an error.

The construction of the ELR parser is also similar to the

usual one [7] except for the handling of count values.

Algorithm (Construction of the ELR parsing table)
Input: A grammar G augmented by production "S' -> g"

Output: ELR parsing table functions action and goto
Method:
1. Construct {Iy,I4, °**, I,}, the collection of LR states for G.
2. The parsing actions for state I; are determined as follows:
a) If LR item [g,b] is in I; and
there is a transition by a from g in the right part
automaton (This means that g roughly corresponds to the
form "A -> o * a 8"),
then set action[I,,al to "shift".
b) If [g,a] is in I; and g € F (final states)
(except fof case c¢)),
then set action[li,g_] to "reduce #p,3"
where production #p has g as a final state in the
corresponding right part automaton
and j is the index of [g,al] in the kernel of I;.
(If g is in the nonkernel, then set action[;i,g] to
"reduce #p,e". It is an e€-rule.)
(Note. LR items with the same core [7] are collected together.)
c) If [8'->S$°,] is in I;, then set action[I;,] to "accept".
3. The goto transitions for state I; are determined as follows:
| If goto(I;,X) = Ij,
and there exist tjq, tip, *°° € I, £517 Ey2, "7t €L
such that }
gotol ((I;,tix), X/+) = (I5/L5%)

where iq,i,, °°* and j¢, jp """ are indices of tj4q, tio, °°°

10

and Ej1, t520 °°° in the kernel of I, and Iy

respectively

and there eXiSt ti1" Ei2|,G _:_[_i, Ej']'l _t;jzll = G ;[_j

such that

gotol ((Ii,tsx'), X/1) = (I4,E5")

where j¢', i,' °** are indices of ty1's ty2vs tt in the

kernel of Ij (tix' is in the nonkernel of I;),

X] = "state I.,

iner((i4,39),(ip,32), """)

lnlt(l-]',lz" e s o)ll

Example The ELR parsing table for G1 is shown in Fig. 3. 1In
the figure, the action table and the goto table are merged.
Depending on the implementation, this may allow a reduction in
table space. An example parsing for grammar G1 is shown in Fig.

4.

5. Grammar class
The following holds concerning grammars which can be dealt

with by this method.

Theorem An RRPG G can be parsed by the proposed ELR parser if
(i) parsing conflicts in inadequate LR states cah be resolved by
using lookahead symbols, and (ii) for L1, I, and X satisfying
goto(Iq, X)= I,, and for each t, ¢ kernel of I,, there is a
unique t4 € I, which satisfies

gotol((Iq,t9), X/+) = (I5, ty) or

11

M((E‘IIE‘I), §/1) = (12' Ez)'

(Proof) We have to show that the "Move'(of the ELR parser)"
(section 4) is correctly and uniquely defined if (i) and (ii)
hold. Since the ELR parser is an extenéion of the standard LR
parser, no parsing conflict occurs if condition (i) holds. What
is left is to show that the number of elements to be popped at a
reduction is correctly and uniquely determined if (ii) holds. As
can be seen from the "Move", possible count values are correctly
Vstored in doing a transition by a grammar symbol. If (ii) holds,
the incr or init operation in the goto table (3. of the
"Algorithm (Construction of the ELR parsing table)") 1is
determined uniguely for each .t5, ¢ kernel of I,. Thus, the
bperations for assigning values to each count value ((a) and (b)
of the "Move") are uniquely defined since those operations are
defined from the goto table. At reduction time, "r" = "C, (31"
elements of the stack are popped (2. of the "Move"). Since the
count value C_[j] has been uniquely defined in the above
discussion, the reduce operation is correct.

Condition (ii) of the Theorem is essentially the same as
condition (ii) of the definition of LALR(1,1) grammar in [5]
which says "the readback machines for all reductions are
deterministic" and condition (ii) of the theorem for ELALR(1)
grammar in [8]. This seems to be an essential condition of the

class of ELR grammars for which LR pafsers can be directly built.

6. Concluding remarks

We have described a simple realization of ELR parsers for

12

regular right part grammars. An early idea of this paper
appeared in [9]. Other examples and suggestion to a possible
optimization are given in [10].

The proposed method belongs to the second of the three
approaches given in the introduction. The LR parser is directly
built from the given ELR grammar, and no grémmar transformation
is necessary. The ELR parser can be easily built by a slight
refinement of the usual technigues for building the LR parser.

In exchange for the easier parser generation in our method
there is some overhead needed for handling count values at
parsing time. Our method involVes additional count value
handling operations during state transitions to simplify the
action at reduction time. This is in contrast to other methods
[5,8] which dp no additional operations during state transitions
but which must investigate the readback machine or lookback
states at reduction times. But on the whole, we think our method
can be a favorable method due to its simplicity in formalization

and implementation.

References

[1] O.L. Madsen, aﬁd B.B. Kristensen, LR- parsing’of extended
context free grammars, Acta Inf., 7 (1976) 61-73.

[2] S. Heilbrunner, On the definition of ELR(k) and ELL(k)
grammars, Acta Inf., 11 (1979) 169-176.

[3] W.R. LaLonde, Regular right part grammars and their parsers,
Comm. ACM, 20 (10) (1977) 731-741.

[4] W.R. LaLonde, Constructing LR parsers for regular right part

grammars, Acta Inf., 11 (1979) 177-193.

13

-

[5] N.P. Chapman, LALR(1,1) parser generation for regular right
part grammars, Acta Inf., 21 (1984) 29-45,

[6] P.W. Purdom and C.A. Brown, Parsing extended LR(k) grammars,
Acta Inf., 15 (1981) 115-127.

[71 A.V. Aho, R. Sethi and J.D. Ullman, Compilers - Principles,
Techniques, and Tools, (Addison-Wesley, 1986).

[8] I. Nakata and M. Sassa, Generation of efficient LALR parsers
for regular right part grammars, to appeaf in Acta Inf. (1986).
[9] M. Sassa and I. Nakata, A simple realization of LR parsers
for regular right part grammars (short note) (in Japanese),
Trans. IPS Japan, 27 (1) (1986).

[10] M. Sassa and I. Nakata, A simple realization of LR parsers
for regular right part grammars, Tech. Memo PL-9, Inst. of Inf.
Sciences, Univ. of Tsukuba (1985), also to appear in Proc.
Symp. on Software Science and Engineering, Res. Inst. for Math.

Sci., Kyoto University (1986).

14

B3
#1 S 3b@

#3 [A @ a

Fig. 1 Representafion of regular right part
grammar 7 by right part automata

15

la

#1{$}

2| | #0
At ls
171
W
#3{c}
()
al+VV #3{c} #2{$)

Fig. 2 LR automaton for &7

aetion — goto
state a b c $ S A

s I3, s 1g, 11,
Io i)

1(1.2) i i(1)
: s1
1 +{(1,1))
I2 (a ¢ ¢ e p t)

(@ sty Tt |)
Ia ' r#1,1
Is s Is, s Ia, 43,2
+((1,1).2.2)) +((1L1)

I s I,
° +((1.1)
I7 r#2,1

s 1i : shift and goto Ii, Ii: goto Ii,
r#p,j : reduce by production #p for the j-th kernel item,

i) sinit(L), +0.) iner(L).

Fig. 3 The ELR parsing table for G7

17

configuration action
‘(stack (note 1) . remaining input)
(Io@ . aaac$)| shift Is
(Io@als(1,1)als(2,1)als(3,2) , c$)| reduce by #3, 2 (note 2)
(Tn@als(1,1)Als(2) , | c$)| shift Iz
(TIo@als(1,1)AIs(2)cI?(3) . - §)| reduce by #2, 1
(Wosn(l) . $)| shift Iz
(To@ST1(1)$12(2) . |)| (accept)

(note 1) stack = WCuNISIC1Xo......sa0n where G = (Gof7] Caf2]. ..)

(note 2) pop 2 elements from the stack since Gy/Z2/= 2. and push A

- Fig. 4 An example. parsing of a sentence

generated by &7 (input = gzac$)

18

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

R
REPORT DOCUMENTATION PAGE | - o oo e

TITLE
A simple realization of LR parsers for regular

right part grammars

AUTHOR(S)

Masataka Sassa and Ikuo Nakata

REPORT DATE ’ NUMBER OF PAGES
July 8th, 1986 abstract, 14p,4 figs.

MAIN CATEGORY CR CATEGORIES

Parsing

KEY WORDS

Regular right part grammars, LR parsers

ABSTRACT
A Regular Right Part Grammar (RRPG) is a context free grammar

in which regular expressions of grammar symbols are allowed in
the right sides of productions. 1In this note, a sfmple method
for generating LR parsers for RRPG's is presented.

The idea of the LR parser is to store so-called count values
for counting the length of grammar symbols generated by the right
side of productions.

Although the parsing efficiency of the method is not the best,
the genération of the LR parser is simple and can be done with
a slight refinement of the usual LR parser generation techniques.

No grammar transformation nor computation of lookback states is

necessary.

SUPPLEMENTARY NOTES

to appear in Information Processing Letters

19 -

