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1. Introduction

A time-consuming part of the numerical simulation of the
lattice gauge theory with fermions in both quenched and
unquenched formulations is the solution of large sets of linear

equations,
Ax = b, | (1)

where A is a large sparse complex non-hermitian matrix. For
example, in the case of the Wilson fermion on a 163x32 lattice,
the order of A is 1572964. The quark propagator on a given gauge
configuration is given by the solution‘of (1.1) where b is the
point-like source term. In the Langevin formulation[1] of
dynamical quarks, it is necessary to solve (1.1) twice in each
iteration where the elements of b are independent gaussian random
variables. It is therefore urgent to develop an efficient solver
for such very large systems of linear equations.

Since the size of the coefficient matrix A is very large,
the amount of work and’the storage required in direct methods
such as Gauss elimination is nearly prohibitive. One should
therefore adopt interative algorithms'to'soive (1.1). The
methods used so far were relaxation-type ones such as |
Gauss-Seidel, SOR[2] 6r.time-relaxation[3] methods; The speed of
convergence, however, is not fast enough for large scale
lattices. | ‘

The conjugate gradient(CG) method, fifst proposed by
Hestenes and Stiefel[4] is widely used to solve large sparse

systems of linear equations where the coefficient matrix is real



symmetric (or complex hermitian) and positive definite. Although
A for the lattice fermions is not hermitian, variants of the CG
method are applicable to (1.1) where the coefficient matrix is
A+A[M] or AAY[57 instead of A. Possible algorithms are described
in the Appendix. "An important féature of the CG method that
makes it particularly suitable for the lattice fermions is that
all reference to A is in the form of the multiplication of a
vector by A or A+, 30 that no explicit form of A is necessary.

The CG method gives the exact solution in finite steps if
the round-off error is absent. In the actual application,
however, it is regarded as an iterative decent procedure based on
the conjugate directions and the iteration is terminated in
relatively small number of steps. Recently, a class of different
decent methods are proposed for nonsymmetric systems[6-8], which
are based on minimizing || b-Ax|| over the affine Space. X; + <Py,
Pi,12 =ovs Pj p>e We refer to them as conjugate residual (CR)
methods in general. These methods can be considerably improved
by the use of preconditioning and are in general faster than the
CG method.

- In this paper we present a fast solver based on the CR method
with preconditioning. In the next section we introduce an
incomplete LU (or LDU) factorization originally proposed by
Meijerink and van der Vorst[9 ] adapted for the lattice fermions.
The CR methods and their acéeleration are discussed in section
3. Section 4 contains the comparison of-algorithms and the

details for implementing the algorithm on a vector processor.



2. Incomplete LDU Decomposition

We will describe the fermion matrix A as a block matrix
{Aij}; where i and j represent generic lattice sites ih a
four-dimentional hypercubic lattice with the periodic boundary
condition (Antiperiodic boundary conditions for the fermions can
be easily incorpofated)., If the gauge group is 3U(3), eaeh block
Aij is a matrix of size 12x12 for the Wilson fermion and 3x3 for
the Kogut-Susskind fermion. The generalization to other groups
is straightforward. The striking feature of the fermion matrix
is, like the matrices generated by discretization of elliptic or
parabélic differential equations, that an off-diagonal block Ai‘

J
is nonzero only when i and j are adjacent.

2.1 Definition

An incomplete block LDU decomposition of A is written as
A=LDRS-N (2.1)

where L={Lij} is a block lower (or left) triangular matrix,
D={Di} is a block diagonal matrix and Rz{Rij} is a block ﬁpper
(or right) triangular matrix. We use R instead of U, since we
will reserve the symbol U for the gauge field.

In order to define "lower" or "upper" matrix, we have to
introduce an order in the set of lattice sites. The ordering of
the lattice sites is arbitrary in principle. We will adopt a
natural numbering, i.e.,

(2.2)

i= (((ig=Dnyri =nsi~Dnsl,



where n., n n_ and n, are the linear extensions of the lattice

y' Tz

in the four directions and ix’ iy, iz and it are the coordinates
in the lattice (e.g. ix=1’2’ . nx). The site number i runs from
1 to n, where n:nxnynznt is the total number of the lattice
sites.

The LDU decomposition (2.1) has some arbitrariness, which is

reduced by imposing the relation
L.. = R.. = D. . ' ) : (2.3)

It will be clear later that this choice is more appropriate than

the usual convention L = R = 1.

ii ii
The matrix N in (2.1) is the error of decomposition. In
applying the decomposition to iterative methods as a
preconditioner, the more the LDR resembles A, the faster the
method will converge. On the other hand, we have to solve thé

equation
LDRs =t - (2.4)

during every iteration, so that the number of non-zero blocks in
L and R should not be too large.

Various incomplete LDU decompositions arise by choosing the
the set P of the off-diagonal blocks (i,j) for which Lij = Rys =

J 1]
0. The usual incomplete LU decomposition[9] requires

N.. =0 if (i,j) € P, (2.5)



which imposes n2—p matrix equations, where p is the number of
elements in P. Since the number of independent unknown blocks in
L, D and R is also n2-p, the decomposition is obtained via Gauss
elimination provided the diagonal blocks do not become singular
during the process. The existence aﬁd uniqueness of the
incomplete decomposition are proved[9] for real M-matrix. The
fermion matrix we are considering, however, is complex, so that
the general proof is not applicable. We will show the existence

of the decomposition case by case.
Since the fermion matrix A connects only adjacent lattice

sites, the most natural choice of P would be
P = {(i,j)|i#j, and i and j are not adjacent}, (2.6)
which requires that the relation

(LD R)ij = Aij (2.7)

should hold for i=j and adjacent (i,j) pairs.

When the linear extensions of the lattice are all greater

than three, the set P has a special property that
(i,3) ¢ P and (i,k) € P —> (k,J) €P | (2.8)

for any three sites i, j and k different with each other. 1In

other words any three sites cannot be mutually adjacent at the



same time. This property holds only for n, ny, n,, ng > 3. 1In
case n = 3 for example, three sites with the same iy, iZ
are mutuaily adjacent due to the periodic boundary condition.

and 1t

2.2 Wilson Fermions (nx, Ny Ny, Ny > u)

The Wilson fermion matrix[10] is given in terms of the Dirac

M
unimodular matrix of order 3),

matrices v, (4x4 complex) and the gauge field Uij (a unitary

Ay =1
Ayj = =K (r=v)) U if jzi+n (2.9)
Ajy = K (r+yu) Uij if j=i-i
Aij =0 otherwise

Here j:iiﬂ means that the site j lies next ‘to the site i in.the
positive (negative) wu-direction. K is the hopping parameter.
The parameter r, which satisfies‘|r|i1, is called the Wilson
~parameter. In the usual formulation r is fixed to unity, but

sometimes r may be different site by site.

For adjacent (i,J) with i < j, (2.7) reads

+ L.. D. R.. (2.10)

Due to the property (2.8) the first term in (2.10) vanishes.

Using (2.3) we simply have,



A.. = R... (2.11)
In the same manner, we have for adjacent (i,j) with i > j,

Aij = Lij ' (2.12)

For i = j, eq.(2.7) requires

ii ik "k ki ii Yi Tiie (2.13)
k=1
that is
i-1
Li; =R, =D =1~ ] Ayy Dy Ay, 201
J=1 '

Theorem 2.1

Lii (:Rii) is a constant multiple of I (unit matrix) and the
constant is equal to or greater than unity.
Proof

The proof is given by induction on i. For i=1, (2.14) reads

Li; = 1 (2.15)
Assume ij = o I (cj > 1) holds for j < i. Then we have
i-1
Loy = I - 7' R (p2 = 1)/c; I  (2.16)
i1 = J J o7 )
J=1

using the property



U.. U.. = I. ‘ (2.17)

The summation with prime means to sum only over j's which are
adjacent to 1i.

Since |rj| <1,

c. = 1 + K° y! (1 - r.2)/c. 5 1 ~ (2.18)

1 J j =

Hense the theorem holds for i. Q.E.D.

This theorem implies that the Gauss elimination procedure
(2.16) is numerically stable. To implement the LDU
decomposition, one has to calculate c; in terms of (2.18) once

before the iteration. If r=1, however, the decomposition is

quite simple due to the following collorary.

Collorary 2.2

For the usual Wilson fermion with r = 1,

Lii = Rii = Di = I. - (2.19)

We will consider here the error of the LDU decomposition N
defined by (2.1). The matrix product LDR has nonzero blocks
(LDR)ijvof order O(KZ) for

=1+ -9 (uév ). (2.20)

Since the two sites i and j in (2.20) are not adjacent, Nij is

nonzero.



2.3 Wilson fermions (nu = 3)
If the linear extensions in some of the directions are equal
to three, the property (2.6) no longer hoids, so that egs. (2.11)
and (2.12) are not valid. One could in principle perform a Gauss
elimination procedure using (2.3), (2.10) and (2.13). The
resultant blocks Li' and R,

J ij
diagonal blocks Di would neither be proportional to I. The

would not be equal to Aij and the

beautiful features of the LDU decomposition would be lost.
Instead, we propose to apply formally (2.11), (2.12) and

(2.16) to this case. Since the property (2.6) does not hold, the

incomplete decomposition (2.1) has some error even for adjacent

(i,j) pairs. For example if n_ =3 and ny, n,, n, > 3,

(L D R)23 = A21D1A13 + A23

+ K2(r2-1)U

A23 2‘1U13c1 (2.21)

tnat is

- 2
N23 = 0(K%), (2.22)
where 1,2 and 3 denote the three sites with ix=1,2 and 3 and the
same iy, iz and it' We note that the error N is of order K2 as a
whole.
In the usual Wilson fermion with r=1, the second term in

(2.21) vanishes, so that (2.5) and (2.7) also holds in this case.

2.4 Kogut-Susskind fermion

— 10 —



We will define the Kogut-Susskind fermion [11] in terms of

the following blocks of size 3x3,

Aii =m I
A.. = +2U,. if j=isk
ij = X2%1; J=iL
1 iX . . . A
Aij = i2(—1) Uij if j=i+y
i +i
o Xy co s D (2.23)
Aij = 12(-1) Uij if j=i+z
i +i_+1
I Xy "z I
Aij = i§( 1) Uij if j=i+t
Aij =0 otherwise

where m is the quark mass. We assume the linear extentions of
the lattice are greater than three. Due to the property (2.8),

we have for the off-diagonal blocks,

Rij = Aij (i< 3 O (2.2W)

Lij = Aij (1> 3)

The diagonal blocks are obtained iteratively as

i-1
= mI- z A
j=1

A

-1
i (2.25)

. D A ..
1J J J1

We will prove the following theorem.

Theorem 2.3

Lii(zRii) is a constant multiple of I and the constant is
equal to or greater than m.
Proof

The proof is given by induction on i. For i=1, (2.25)



implies
=m I. (2.26)

If L..:ch (cjim) holds for j < i, then we have from (2.23)

JJ
i—1 l _1 :
that is
i-1 :
1 -
e, =m+ )' TC; ' om. (2.28)
i 321 J ,

This completes the induction. Q.E.D.

3. Conjugate Residual Method
A class of iterative methods for solving the system of linear
equations (1.1) by decreasing the residual has been proposed

[6-8]. They have the following general form

r=b-A%x3; p=rvr

repeat until convergence

o = (r, A p)/(Ap, Ap)

X = x + ap (3.1)
r=r -adflp

update p

The coefficient ® is so determined as to minimize the Euclidean



norm of the residual || r - o A p||2 as a function of o,

3.1 CR(k) methods

The variants differ in the way to compute the new direction
vector p. A good choice would not only decrease the residual
significantly but also require only a reasonalble amount of
storage and computation.

If the sequence of the direction vectors p 1is made fully
orthogonal with respect to A*A, the algorithm (3.1) give the
exact solution to (1.1) in finite steps in the absense of
round-off errors. The amount of storage and computation,
however, to keep {p} orthogonal is enormous for large scale
problems we consider here,

More practical algorithm is to make the new direction vector

P orthogonal to only last k (>0) direction vectorsl7], namely

P=r +B8.pq +B,yDy + ou. + B8, D, (3.2)
with

Bj = -(A r, A pj)/(A Pj» A pj) (J=1,2,..,k) (3.3)
where Pys Py ««s Dy are the last k direction vectors. Instead

of multiplying p by A in (3.1), we may update Ap by

Ap = Ar + B,Ap, + BoAp, + «.. + B Ap, . S (3.8)

The storage required to implement this algorithm is the space for



the (3+2k) vectors: x, r, Ar, {pj} and {Apj}. We excluded the
storage for A since it can be constructed in terms of the gauge
field {U}.

For the special case k=0, (3.2) is reduced to
p=r ' (3.5)

and only three vectors x, r and Ar have to be stored. This

method is also called minimal residual (MR) method.

3.2 Convergence of the CR(k) methods

The algorithm (3.1),(3.2) converges to the solution for
(1.1), if H = (A¥+A)/2, the hermitian part of A, is positive

definite, due to the theorem of Eisenstat et al.[8]

Theorem 3.1

If {ri} is the sequence of residuals generated by CR(k) (k>0)

and H is positive definite, then we have

2 )2
lrs qll Mpin(H)
where A _. and A denote the minimum and maximum eigenvalues,
min max

The proof is given in ref.[8]. This bound (3.6) is not very
stringent since it does not incorporate the effect of
orthogonalization (3.2), but it certifies the convergence of the
algorithm.

The positivity of H is crucial in the theorem. If the

positivity is lost, the coefficient o becomes zero or very small



and the residual no longer decreases.

3.3 Preconditioning

In practice, the convergence has to be accelerated by the use
of preconditioning. We will apply the incomplete LU or LDU
decomposition described in the preceeding section as a

preconditioner. The original equation (1.1) is now replaced by
(LDR)™ " Aax=(LDR™ b (3.7)

which is solved by (3.1). We will refer to the CR(k) method with
the incomplete LDU preconditioning as ILUCR(k) or ILUMR (for k=0)

[121.
For example the algorithm of ILUCR(1) will be as follows:

(LDR)”" (b - & x)

r =
p=r
qg=(LDR) " "ap

~repeat until convergence

(q, r)/(q, q)
X + ap (3.8)

¢

X

r=r - 04g

(LDR) " 'a r

s =
B = -(a, s)/(q, q)
p=r+ Bp
q=s+ Baq

We note the storage requirement is the same for ILUCR(k) as that



for CR(k), since the operation such as
s=(LDR ' ar (3.9)
can be performed without any extra working vectoﬁs.

3.3 Acceleration

The ILUCR(k) method has no adjustable parameter such as
the w-parameter in the succesive overrelaxation (SOR) method.
We found, however, considerable acceleration using a kind of
freedom to replace the hopping parameter K by cK in the
incomplete LDU decomposition, where ¢ is a constant factor.
Since the preconditioner is in principle arbitrary, the hopping
parameter in LDU is not necessarily the same as that in the
original fermion matrix A. If ¢ i3 greater than unity, the
off-diagonal elements are multiplied by c. The effect of ¢ and

its tuning is discussed in the following section.

y, Implementétion

In the previous sections, we have presented a new iterative
solver, which is based on an incomplete LDU decomposition and
conjugate residual method. 1In this section we will discuss the
details for implementing the algorithm on vector computers. We
are mainly concerned about the usual Wilson fermion with r=1,

where D is a unit matrix. Generalization to other cases will be

— 16 —



straightforward.

4.1 Convergence Criterion
In implementing the algorithm (3.1) and (3.8), we have to put
a convergence criterlon. Two kinds of criterion are adopted.

One is the norm of the residual || r|| = ||[b-Ax||. The iteration is

terminated if || r]|| < e or || r|| < ¢]| b]

. Since the theorem 3.1
assures that || r|| decreases monotonically, it is an unambiguous
way to detect the convergence. 1In the case of the CR methods
with preconditioning, however, r is not the residual b-Ax, but
a modifined one (LR)_1(b—Ax). If LR is a good approximation to
A, r is approximately equal to the deviation of x from the true

b, since r=(LR) " 'b - (LR) 'ax = 4™ 'b - x.

solution A~
The other criterion is the change Ax of the elements of x
between two consecutive iterations. We terminate the iteration

if||AxH < ¢']|x||+ In spite of the desirable property that the

change in x is closely related to the error of x, the problem
remains which elements to monitor, since it is not practical to
monitor all elements of x.

In practical applications one of the two or both is adopted

to determine when to terminate the iteration.

4.2 Acceleration

The acceleration similar to SOR introduced in 3.3 was found
very effective in both ILUCR(1) and ILUMR. As an example, the
dependency of the number of iterations on the acceleration
parameter ¢ is shown in Fig. 1. The gauge configurations are

taken from the Langevin simulation of QCD on a 93x18 lattice with



dynamical Wilson fermions (r=1) at g =5.5 and K=0.162[13]. The
number of elements in x is 157461. The right hand side is a |
complex gaussian random noise with unit variance and the
convergence criterion is llr|l < 1. The initial value of x is
set to be equal to the right hand side.

We find the choice c=1.2 is the optimum. The average
reduction at c¢=1.2 is about 25% as compared to c=1. Although the
reduction is less significant for smaller hopping parameter K,
the optimal value of c¢ does not depend on K. Unlike the SOR
method, the number of iterations is not very sensitive to c.

We note that the convergence criterion depends on ¢, because
r is a "modified" residual. In our algorithm, the true residual
(b-Ax) cannot be obtained. Since the off-diagonal elements of L
and R are multiplied by ¢, the modified residual r:(LR)_1(b-Ax)
increases as ¢ becomes large for a fixed x. The criteiron
requires more iterations for larger c. |

The theoretical foundation for the acceleration is yet
unknown. It may effectively reduce the error N of the incomplete
LU decomposition (2.1), namely the non-zero blocks Nij may be in
a sense cancelled by increasing the off-diagonal blocks. We
expected that such cancellation will become more strinking for
smoother gauge. As an example, we tested a gauge fixing to AM =
0. After the gauge fixing, however, the number of iterations for
the optimal ¢ does not decrease or even increases as compared to

the unfixed gauge.

4.3 Hyperplane Method

The computer-time consuming step in the ILUCR method is the



calculation of (LR)_1AP. Since the number of elements are quite
large, the amount of computations makes it worth-while to
investigate the ways for vectorization of the program. A
necessary condition for vectorizability is that in a given loop
the computations pertaining to different lattice sites are
independent of each other. 1In other words, the coimputations
belonging to a site should not refer to the results of the
computation belonging to another sites in the same loop.

The multiplication of a vector by a matrix t=Ar, namely

n
t; = 3-21' Aij Py (4.1)

can be easily vectorized, since the calculation for different i's
is independent of each other. The vector length in (4.1) is the
number of total lattice sites, n.

On the other hand, s:(LR)'1t is not vectorizable as it is,
since it is obtained by applying the forward and backward

substitutions:

do i=12n; -
Zi =ti - ‘Z' Lyi.j Zj (L‘02>
J=1
do i=n,1,-1
n
S, = Z2, =- 'R,.S., ("4-3)

In this case, the calculation for different i's is not
independent with each other, since new values of z or s are
referred to in (4.2) and (4.3). The checkerboard or red-black

ordering, which is often used in the vectorization of SOR or



Monte Carlo, does not work in this case, since the substitution
is not an iterative updating.

The forward and backward substitutions are vectorized in terms
of a hyperplane method proposed by Ushiro et al. in the case of
finite difference method for partial differential equation[14],
We find it can be generalized to the lattice fermions. We define
the a-th hyperplance ha as the set of lattice sites whose

coordinates satisfy
i+ 1+ i_ + it = a (4.4)

where o runs from 4 to n, = N+ N+ N+ N All the lattice

y
sites belong to a hyperplane. Since these hyperplanes are
obligue, any two sites i and j (i#j) on a given hyperplane are

not adjacent with each other, so that
L:.. =0 and R.. = 0. ' (4.5)

We can therefore vectorize the calculation of z; and s; on a
single hyperplane. Except at the boundary, the adjacent sites to
or h

a site on h, belong to h The average vector length

Ot 1 a-1°

is equal to the average number of sites on a hyperplane,

3 .
nxnynznt/(nh-3), e.g. 1700 for 16-x32 lattice.

4.4 Fine tuning
The algorithm was mainly tested on HITAC S810/10 at KEXK. A
standard FORTRAN77 with several compiler directives (*VOPTION) is

supported and all the DO-loops in our program have been



vectorized without difficulty. The ratio of the vectorized part

in the whole computation is more than 99.9%.

A further speed-up was achieved by a fine tuning of the

program. Main improvement was as follows:

a)

b)

c)

The IF-statements in the innermost DO-loops are removed.
Although they are vectorizable in terms of the masked
operation and eight consecutive mask bits are skipped in one
machine cycle, they are not fast enough. In the original
program the judgement whether the nearest neighbor site
j:iiﬁ ( u=1,2,3,4) 1is forward to i or not was implemented
by an IF-statement. We replace it by two index lists in
(4.2), which tabulate the site i for which j:iiﬁ.< i.
Similar lists are also used for (4.3).

Complex multiplication by 1 or i is removed. Since the
nonzero elements of the y matrices are +1 or +i, the complex
arithmetic like GAMMA(ALPHA, MU) * X(BETA, I,...) can be
simplified as + X(....) or +CMPLX(-IMAG(X(..),REAL(X(..))
according to the value of GAMMA(ALPHA, MU). Here ALPHA and
BETA are Dirac indices (1-4). We can thus reduce four
(real) multiplications and two additions.

Loop unrolling. Since HITAC S810/10 has two multiplication
and four addition pipes, the performance is improved if the
six pipes are always active. In addition to this, the store

operations from the vector register to the main memory should

- be minimized. For this purpose we unrolled twofold outer

loops of length 3 with respect to the color indices. The

number of operations in the inner DO-loop became nine times



larger.

By these improvements the execution time for s:(LR)-1Ar on‘a;63x9

lattice was reduced from 0.375 sec to 0.150 sec (Table 1).

4.5 Comparison of algorithms

We show in Fig. 2 how the error || x - A'1b|| decreases in
various algorithms. The gauge configuration was taken from a
quenched simulation at B=5.5 on 93x18 lattice. The critical
value KC, for which the pion mass vanishes, is 0.1844+0.0009
[13]. The right hand side b is a point source. The CPU time for
one iteration is 1.23 sec for ILUCR(1), 1.21 sec for ILUMR, 0.39
sec for CR and 0.66 sec for CG on HITAC 3810/10. We present in
Table 2 the number of iterations needed to reach | x - A'1b||<
10‘” for ILUCR(1), ILUMR, CR and CG methods. We note that,
although ILUCR(1) is faster than ILUMR for c¢=1.0, the number of
iterations for c=1.2 is almost the same in the two algorithms.

The CG methods are not practical when K is close to Kc'

5. Conclusion

We have shown that the conjugate residual method
proconditionediby the incomplete LDU decomposition is suited for
the solution of large sets of linear equations appearing in the
lattice gauge theory. The convergence is accelerated by a
multiplicative factor for the hopping parameter in the
| preconditioner (L D R)_1. The program was fully wvectorized on

HITAC S810/10 vector processor located at KEK and a fine tuning



of the code further increased the performance more than twice.
The algorithm was applied to the Langevin simulation of the

lattice QCD on a 93x18 lattice [13].
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. Appendix Variants of the CG Method

The conjugate gradient method is used to solve a linear
~equation with positive-definite hermitian coefficient matrix. It

is now modified to apply to a linear equation
A x=2>» (A1)

where A is a nonhermitian matrix. The algorithms are based on
the faet that for arbitrary matrix A, A*A and aAT are always
hermitian and positive-(semi)definite. The trick is that we
never calculate A*A or AAT explicitly, since it would require a
large computer time and memory. In many cases A*A or AAYT is less

sparse. There are two variants of the CG method.

1. Least Squares-type method

This method is to solve the normal equation
A A x = AT b (A.2)

instead of (A.1). If (A.1) has a solution Xy Xg also satisfies

(A.2). The algorithm is as follows:

S=A+1"
B = (s, 8)
p=p+ Bs (A.3)



Four working vectors x, r, p and s are needed to implement
the algorithm. Three vectors x, r and p are updated recursively,
while s is a temporary one. During every iteration, two matrix
multiplications A p and A* r are performed, which are the most
time consuming part of the algorithm.

This method minimizes

f(x) = ((x-x4), A*A(x-xo)) = (r, r) (A.4)

1

where x, = AT'b, r = b - Ax. If the equation (A.1) is

inconsistent, it gives one of the least squares solutions.

2. Least Norm-type method

The other method is based on the solution of
A AY u = b, , (A.5)

When the solution U is obtained, the solution xy for (A.1) is

given as
x, = AV u_. (A.6)

The algorithm is as follows:



r=>»-A%x; p=20

repeat until converge
-1

g= (r, r)

p=p+ pA'r (A.T7)
a= (p, p)_1

X = X+ op

r=nr - alAp

We note the vector u in (A.6) does not appear in (A.7) at all.
This algorithm has two advantages over the least-squares-type
method. Firstly, only three working vectors x, r and p are
necessary in (A.7), while four are needed in (A.3). Secondly,
this algorithm minimizes the norm of the error, i.e. the

difference between x and Xyt
£(x) = ((u-uy), AAT(u-ug)) = (x-%5, x-x4), (4.8)

while {A.3) minimizes the norm of the residual r. The amount of
computation in one iteration is almost the same in the two

. . » - +
algorithms. The ingeneous trick [15] to calculate Ap and A'r at

the same time in (A.3) may also be applicable to (A.7).
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Figure Captions

Fig. 1
The number of iterations as a function of the acceleration

parameter ¢ for 7 gauge configurations.

Fig. 2
The error ||x-A"'b|| as a function of the number of
iterations k for various'algorithms on a quenched gauge
configuration at B=5.5 and K=0.18. The symbols denote: A
for ILUMR with c¢=1.2; B for ILUCR(1) with c¢=1.2; C for
ILUCR(1) with ¢=1.0; D for ILUMR with c¢=1.0; E for CR; F for

CG (least norm type); G for CG (least square type).

Table Captions

Table 1
Execution time in 64 bit arithmetio for S:(LR)—1AP on 63x9
lattice. The letters a, b and ¢ denote the three kinds of
improvement described in the text. MULT and ILU denote the

subroutines to compute t=Ar and s:(LR)—1t, respectively.

Table 2

The number of iterations to attain Hx-A_1bH < 10_u

for
various algorithms. The right hand side b is a point
source. The initial value of x is set to be equal to b. The

number in the parentheses is a rough estimate.

— 29 —



Table 1

improvements

version time(sec)
in ILU in MULT
original _— —— 0.375
1 a -—— 0.220
2 ~a,b ———— 0.192
3 a,c -——- 0.190
y a,b,c -——— 0.174
5 a,b,c c 0.150
Table 2
K= 0.17 0.180 0.181 0.182 0.183 0.184
m as 0.91 0.49 0.43  0.37 0.27  0.15
ILUCR(1)
e=1.0 26 90 115 165 275 -——
c=1.1 23 : T4 96 136 224 658
c=1.2 22 70 88 121 200 575
c=1.3 25 88 113 157 236 661
ILUMR ‘
c=1.0 31 113 149 217 386 -
c=1.1 25 84 109 155 263 749
c=1.2 22 70 89 125 212 581
c=1.3 26 93 119 164 265 786
CR
196 (5000) (8000) >1000 »>1000

CG(least squares type)
305 (1400)

" CG(least norm type)

299 (1300)
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