ISE-TR-86-56

A LOOSELY COUPLED MULTIPROCESSOR SYSTEM : ADMS
—— BASIC DESIGN ——

by
Sanae Amada
Masashi Tsuchida

Yutaka Sato

June 6, 1986

A LOOSELY COUPLED MULTIPROCESSOR SYSTEM : ADMS

—---BASIC DESIGN---

by
Sanae AMADA*, Masashi TSUCHIDA**, and Yutaka SATOQ**%*

* Institute of Information Sciences & Electronics,
University of Tsukuba*¥***,

** The System Development Laboratory,
Hitachi Manufacturing Co. Ltd..

**% Doctoral Program in Engineering, University of Tsukuba.

*%***Sakura-mura, Niihari, Ibaraki, 305 Japan.

Abstract

In the recent status of increasing of the distributed
processing system, the computer architecture must be con-
sidered more seriously for the improvement of the system
throughput. We have an idea to apply a loosely coupled
multiprocessor configuration as a computer for the system.
In this paper, we describe on the basic design of above
mentioned configuration containing the introduction of a

high~level architecture.

Contents
1. Introduction
2. Requirements for the Specification
3. Loosely Coupled Multiprocessor
4. Basic Configuration
5. Introduction of the High-Level Architecture
6. Logical Configuration and Operating System
7. Hardware
8. Languages
9. Conclusion
Acknowledgement

References

1. INTRODUCTION

In these ten years, distributed processing systems have
taken the place of centralized processing systems. Reasons
of the replacement are;
econveniences of the distributed system on the user,
ethe remarkable cost down of the hardware introduced by many

innovations of semi-conductor processes, and
ethe progress of software technologies, etc..

However we found that computers applied to the distri-
buted system were not enough tuned for the system. Because,
super-minis and medium or small size general purpose compu-
ters were used as processing elements for the system, and
they had the same architecture to ones developed for the
centralized system. Thus, we started our investigation in
1981.

The final target of our study is to develop a computer
most fittable to the distributed environment. In the way of
our study, we found that a loosely coupled multiprocessor
architecture might have the enough fitness for the system.
The architecture would have many not enough understood pro-
blems to use as a processing element in the distributed en-
vironment. However, the introduction of so-called high-
level architecture might have many advantages to realize a
general purpose processing element with the loosely coupled
architecture.

We named our system as ADMS (advanced distributed

multiprocessor system).

2. REQUIREMENTS FOR THE SPECIFICATION
A computer to use with a distributed environment ought
to have following features.[1]

* Extremely high reliability.

b3

Enough flexibility of the system.

%

High level security.

* Good interface for the user.

* High performance for generalvpurpoée uses.
* Multi-language applicability.

Ordinarily, in a distributed systems, plural computers
are placed at plural ‘iﬁdependent sections of the organiza-
tion. The fact that the'computerzis set up in not a centra-
lized computer room but a work-shop has to be considered cau-
tiously. ‘Spééifications of the computer ought to be influ-
enced by the evaluation of the following items.

(1) The computer will process the information of the work-
shop 1in more direct manner than the case of centralized
system. That is the highest cause of conveniences of the
distributed system. However, 1if the computer: goes out of
order, the tasks of the work-shop may be stopped and the in-
fluence will be fatal. And, computers may placed at a long
distance from some service point of the system manufacturer.
So that, the computer has to have extremely high relia-
bility.
(2) In the centralized system, the fluctuation of the volume
of tasks in many work-shop in the organization is summed wup
and averaged. This averaging will have an effect to reduce
the fluctuation of the load of the computer. In the distri-
buted system, the fluctuation df the tasks in a work-shop

—2—

will have a direct influence to the computer both in
quantity and in quality. So, the computer for the distri-
buted system must have the enough flexibility for the
variety in quality and the enough expandability for the
fluctuation in quantity. It is preferable that the computer
will be able to correspond te these transitions without
the replacement of the whole computer system.

(3) In the distributed system, the computer will be operated
by a large number of person in the work-shop. Still more,
the majority of them are not so skilful as the person in the
computer room on the operation and programming. As a result,
they may violate the computer with some misoperations or
malicious attempts. So, the computer must have the enough
ability for the security. Still more, it must have a good
interface for the user.

(4) Various kinds of tasks will be processed with the comput-
er. For instance, tasks concerning with a personal manage-
ment, a transaction process, CAD, CAM, and a management cont-
rol of the section may be processed with a computer at a
time. So, the computer must have the high performance for
general purpose uses, and have the enough - multi-language

applicability.

3. LOOSELY COUPLED MULTIPROCESSOR

By intuition, we understand that a multiprocessor archi-
tecture must be effective for the clearance of requirements
mentioned in the previous chapter. Still, we must prove the
effectiveness of it 1in the engineering level, of course.
Certainly many multiprocessor systems are under practical

-3-

uses at present, but we find the fact as follows.

Multiprocessor systems to use for the general purpose
use have relatively few processors in the system. As well
known, they have a tightly coupled architecture and the col-
lision of the access to their storages or internal busses may
limit the progress of the performance expected by the in-
crease of the number of processors. The augmentation of
their operating system is another problem. Though we can
obtain a few systems having many more processors recently(2],
the responsibility for the performance of the system rests .
with the user. After all, a tightly coupled architecture can
not satisfy our requirements for the performance.

Another type of the multiprocessor system is a loosely
coupled one, and it can have so many processors, for example
128 processors in a system(3). However, their application is
limited in some special areas, for instance, as the treatment
of graphic data, calculation of the differential equation,
etc.. To realize our computer, we must study and understand
the reason why the loosely coupled architecture canﬁot be ap-
plied to general purpose uses. Our computer must have the
high performance in not the SIMD (single instruction multi-
data) mode but the MIMD (multi-instructions multi-data)mode.

There will be essential questions as follows.

(1) How many processors can be connected in a system?

(2) How ought to be the information path between processors?

(3) How ought to be the algorithm and the practical size of
the partition of tasks into processors?

(4) How ought to be the logical communication, including
synchronising between processors?

A

(5) How ought to be the basic configuration of the operating
system?

(6) How ought to be the characteristic of the system imple-
mentation language?

(7) How ought to be the physical configuration of each pro-

cessor?

4. BASIC CONFIGURATION

We assume the number of processors in a system as up to
16. The number is relatively small, but it will be suffi-
cient for the purpose. For instance, we suppose the through-
put of each processor as 2 MIPS, so the total throughput will
excel 20 MIPS. (A few number of processors will engaged in
not the problem solving use but the special function use in
the system).

Then we use busses as the information path between pro-
cessors. The reason of the selection is the high throughput
of the communication and the easier expandability of the
system. A feature of our system is the use of plural busses,
and yet, they are allotted for the type of the information.

One message bus communicates short messages (for example,

64 bytes length, and used for the control of the system) in a

short response time, and one or more memory busses communi-

cate long data blocks (for example, 1 Kbytes length) with the
high transfer efficiency. This configuration of busses may
be effective to have the high performance on the communica-
tion{4)}. The information are transmitted in a form of bit
parallei and word serial, and the transfer rate is set up to
20 Mbytes per second. The value is confirmed to be enough

-5-

for the intra system communication by a preliminary simula-
tion. Fig.l shows the system configuration of our system. A
bus—arbitor is prepared to have the quick response 1in the
use of the message bus. And the message bus has a broadcast
function to use for the scheduling and the search of the spe-
cific object. The control bus in Fig.l has a role of the ex-
clusive control between processors and the transmission of

the clock signal.

PU : Processing Unit

request/reply_line

ARBITER

— control_bus=—/—/————>

l BUS
<= / message_bu

— T W il:ﬂ:Ii
< : memory _bus

PUO PU1l | .- PUn

n=135
Fig.1 System Configuration of ADMS.

In generally, the most important and difficult problem
is the partition of a process into processors 1in case of
multiprocessor systems. However, we assume that our system
will have so many independent processes and each process has
not so large program size, when the total volume of the task
is very large. This hypothesis will lead us to set up the
following conclusion. There is no inevitability to divide a
process into plural processors. Each processor will have
plural processes at a time in generally. Problems are; how
ought to allocate many processes into plural processors, what

—6—

is the most efficient method to communicate between processes
each othér, and what is the most efficient processing way in
a processor. On the first problem, we consider that a speci-
fic processor may have a specially tuned feature and a speci-
fic process will be allocated into the said processor by the‘
operating system. Namely, our system has a functiohally dis-
tributed feature 1in company with a load-balanced distributed
feature. The third problem is quite same to that of single

processor system.

5. INTRODUCTION OF THE HIGH-LEVEL ARCHITECTURE

In a viewpoint of the loosely coupled configuration, we
introduce a so-called high-level architecture in;our system.
The concept of the architecture 1is proposed by G.J.Myers(5]
et. al., and contains the object oriented architecture, the
capability-based addressing, and the tagged data.

In our system, all distinguishable resources in the sys-
tem are recognized as objects. Each of them is’an abstrac-
tion and identified with an UID (unique identifier), a type,
and an expression. The type is a operatiohal procedure per-
mitted to operate on the object, and defines the character
of the object. The object is an unit for accessing, and it
is accessed using a capability which is a sort of pointer to
the object. This logical configuration lead us to conclude
that the physical multiprocessor environment 1is transparent
for the user, because the subject can access to any ob ject
using a capability in a same procedure when the target object
exists on a same processor with the subject or on a different
processor. And, the system has the higher security by the

-7

reference and the check of access grant using the type in case
of the accesé. The fact that the relationship between a sub-
ject and a calléd objéct is relatively loose, gives the
decrease of amount of the communiéation. That 1is, thé archi-
tecture is suitable for’the multiprécessor environment, be-
cause of the simple access pfocedufe and less amount of the
communication.

The procedure of the operation on an object is shown in
Fig.2. Here, a subject send a message to a type manager

which exist on the same processor with the called object,

Type Manager

<:::> } Operation

,

Target ObJect

Message

Capability

C —

Sub ject

Segment
Descriptor «— Data Flow
— Reference

Fig.2 Basic Access Mechanism of the Object.

and asks to it to operate the object. The subject does not
operate the object in direct manner, but call the procedure.
Here, the type manager is a collection of operations, and it
is an identity which identifies the operation on various
objects.

The capability is a logical unique address and an access
grant for an object. And, the possession of a capability
means an addressability. The fact that the capability is an

-8—

address. and that is not depend on the physical location of
the called object 1is advantageous for ‘the multiprocessor
environment. Primarily, the concept of the capability is
introduced for the protection of resources, and the function
is kept in our system.

We don't adopt the tagged data, because of the wunfit-—
ness to some languages and the complexity of the management
of tags. The introduction of the high-level architecture
gives many conveniences on the loosely coupled multiprocessor
system as mentioned above. In addition, the so-called seman-
tic gap 1is reduced 1in its width by the introduction of the
architecture, énd so, the good interface is prepared for the

user.

6. LOGICAL CONFIGURATION AND OPERATING SYSTEM

The systems architecture of ADMS is shown in Fig.3.

User IF:Interf
Application Xl : User sintertace
IF e
Systems Software High-Level
System-Call Language Processor %;nguage
IF -
Logical Resource
Management Intermediate
= Language IF
Intermediate
- L
Physical Res, Pigﬁzzigr
Management Ob ject
—_ _—— — - IF
Type Interpreter Machine
“* La
Firmware Ianuage
Hardware
Hardware IF

Fig.3 Systems Architecture of ADMS.

-9-

It seems to be relatively complexed, but the reader will be
able to understand its inevitability. The portability of the
software, the use of VLSI as the hardware, and the efficient
interpretation of the object oriented architecture aré ref-
lected in the systems architecture.

The accurate address coversion mechanism 1is shown. in

Fig.4, which is shown conceptually in Fig.2. The explanation

INSTRUCTION _

| operand |
: ®
l segment | offset |
PROCESS - current CONTEXT LOCAL SEGMENT TABLE PHYSICAL ADDRESS SPACE
OBJECT - ; ;
) capability ® _segment descriptor
, ACC | UID “|__index ; ;
P attribute @ _: target SEGMENT
P 5 storage \\
U I object type -
base address ! /J
®@ link i | target OPERAND
b uiD — :
P mapper E:

address cache

Fig.4 Address Conversion Mechanism.
of the figure will be mentioned in the following paper, and
by the mechanism, the capability is converted to the physical
address. A hash mechanism is applied as the UID mapper, and
the use of the mechanism is effective to search objects and

-10-

to avoid the collision of the UID.

Features of the operating system (0S) are as follows.
(1) It has a moduled construction to match with the object
oriented configuration énd to have high executive efficiency
by the concurrent operation on piural processors.

(2) The size of each module is comparatively large to avoid
the increase of communications. Concretely, each module have
the function of a type manager.

(3) Each module 1is executed as a process, and the inter-
module communication 1is quite same to the inter-process
communication.

(4) The communication between wuser and OS 1is the inter-
- process communication, too.

(5) Especially, it must have the high efficiency in the
communication between processors.

The executive environment of programs on ADMS 1is shown
in Fig.5. The context and domain object have a function to
link objects with the capability, and by linking we can set
up the executive environment. The link can be effective over
processors.

For the inter-process communication, we prepare
"message'" and 'port'", and they have a feature as a sort of
ob ject. The port object is a communication media, and in
case of inter-process communication, the sending process and
the receiving process send out message objects equally to the
port object. By the mechanism, we can prepare various types

of communication.

-11-

PROCESSOR

\\\\\\\\\\\\\PROCESSOR

Processor
Space

/ / "Process

J s Space
Dynamic
Executive Static
Environment Executive
Environment

Fig.5 Executive Environment on ADMS.

7. HARDWARE

The inner configuration of the processor is shown in
Fig.6.

Here, DPU (data processing unit) is the main processing
device and has a role of system control, storage management
and protection, input and output management, compiling of the
source program, etc.. DPUs in a system have an equal archi-
tecture, and so, ADMS is a homogeneous system in the system

-12-

BUS

|

BIU

F address) .
P DPU | MSU
U < data >

V.

[O0U

Fig.6 Ihner Cinfiguration of a Processor.
level.

FPU (functional processing unit) has a role to execute
the object program in high efficiency, and the architecture
can be tuned for the role of the processor. For instance,
the front-end processor and back-end processor will have
special inner architecture. Thus, ADMS is a heterogeneous
system in the application level.

The use of two processors means tuning up of processors
just mentioned above and the realization of the high perfor-
mance by the parallel operation with two processors.

BIU is the bus interface unit and shapes an interface
for busses. It has buffer storages to have the high through-
put on the communication between processors.

IOU is the I/O interface unit and shapes an interface
concerning with input and output between DPU and peripherals.

MSU is the main storage unit prepared to each processor.

DPU and FPU have an inner configuration of 32 bit word

-13-

architecture, and it will be realized with VLSIs and the
micro-code technology. Details of the hardware will be

mentioned in the following paper.

8. LANGUAGES

The system impleﬁentation language of ADMS (SIL—ADMS) is
based on concurrent Pascal and expanded in its sbecification
to apply to the multi-user environment. In addition, some
concepts are imported from Ada. We prepare objects on‘whicﬁ
the system can recognize, as follbws. ”
* System management objects (processor, process, storage).
* Execution management object (instruction, data, domain,

context).

* Inter-process communication object (message, port).
* Access management object (type, template).

An outline of the function is:
* All sorts of object ought to be declared with an identifi-

cation name.

*

The process 1is an object which can operate concurrently,

and it is defined and declared explicitly in SIL-ADMS.

* The non-determinacy 1is designated by a revised select
statement.

* The concurrency is designated explicitly by a cobegin
statement.

* By the inter-process communication, all entries are de-
clared on its name and type, and they must be linked each
other.

The intermediate language of ADMS is based on the Actor
model [6M{7), and implemented using expanded Pascal-P. How-

14—

ever, we use it under following conditions.

* We use the Actor as its attribute is a sort of data.

* We put an acquaintance on a sort of the message which can
be sent to an Actor.

* By the communication, we predicate the existence of the

reply.

s

We don't allow the dynamic generation and destroy of the
Actor.

Several instructions are added for the communication and
logical operation, and instructions concerning with the file

are struck off.

9. CONCLUSION

In our study to develop a computer which is most fit-
table for the distributed processing system, we have arrived
to an idea to apply a loosely coupled multiprocessor configu-
ration. In addition, it seems the introduction of a so-
called high-level architecture have many advantages for the
computer.

We have decided a basic design and rough specifications
of the computer system as mentioned in previous chapters, and
added some reasons on the decision. The concrete and detail-
ed design 1is a future problem, but we are confident of our

plan.

ACKNOWLEDGEMENT

We thank to Mr. Katsumi GOTO, Mr. Masamitsu BABRA, Mr.
Syuichi SUZUKI, Mr. Atsushi FUJIOKA, and Mr. Norio OHASHI,
they were good colleagues of our investigation.

-15-

References

1. S.Amada, M.Tsuchida, Y.Sato, et al. : The System Archi-
tecture of a Computer to use for the Distributed Processing
System, IPS Japan, SG Computer Archi., 48-3, pp.1-10,(1983),
(Japanese).

2. Shiva Product Line Technical Description, Shiva Multi-
systems Corp.,(1985).

3. T.Hoshino, Y.Oyanagi, et al. : Monte Carlo Simulation of a
Spin Model on the Parallel Computer, Comp. Physics Commun.,
Vol.34, No.1/2, pp.31-38, (1984).

4, G.Ricart : An Optimal Algorithm for Mutual Exclusion ' in
Computer Networks, Comm. ACM, 24,1 pp.9-17, (Jan. 1981).

5. G.J.Myers : Advances in Computer Architecture, John Wiley
& Sons. Inc. (1978).

6. C.Hewitt : Viewing Control Structures as Pattern of Pass-
ing Messages, J. of Artificial Intelligence, Vol.3, pp.323-
364, (1977).

7. A.Yonezawa : A Tutorial on ACTOR Theory, J. IPS Japan, Vol.

20, No.7, pp.580-589, (1979), (Japanese).

-16-

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
REPORT DOCUMENTATION PAGE ISE-TR-86-56

TITLE
A Loosely Coupled Multiprocessor System : ADMS

---Basic Design---

AUTHOR(S)

Sanae Amada
Masashi Tsuchida
Yutaka Sato

REPORT DATE NUMBER OF PAGES
June 6, 1986 16
MAIN CATEGORY CR CATEGORIES
c.1.2, C.1.3, D.1.3
Multiprocessor System D.3.2, D.4.1

KEY WORDS
Distributed Processing, Multiprocessor, High-Level Architecture,
Operating System, System Implementation Language.

ABSTRACT

In the recent status of increasing of the distributed
processing system, the computer architecture must be con-
sidered more seriously for the improvement of the system
throughput. We have an idea to apply a loosely coupled
multiprocessor configuration as a computer for the system.
In this paper, we describe on the basic design of above
mentioned configuration containing the introduction of a

high-level architecture.

SUPPLEMENTARY NOTES

