ISE-TR-86-55

CONSISTENT LABELING ALGORITHM USING
THE DYNAMIC PROGRAMMING CONCEPT

by
Seiichi Nishihara
Tsunemichi Shiozawa

- Katsuo |keda

February 18, 1986

T ———
INFORMATION SCIENCES AND ELECTRONICS

Consisten Labeling Algorithm Using

the Dynamic Programming Concept

Seiichi NISHIHARA
Tsunemichi SHIOZAWA

Katsuo IKEDA

Institute of Information Sciences and Electronics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki 305, Japan

Abstract

Being given an object consisting of many subparts and
their locally legal interpretations, problems of finding totally
consistent interpretations are found in many areas, examples of
which are 1image analysis and artificial intelligence. Search
problems of this kind are called cnnsiétent labeling problems
(CLPs). Thefe are two well known principal strategies for the
CLP: the depth-first approach typified by backtracking and the
breadth-first approach typified by constraint propagation. This’
paper proposes another approach that makes use of the dynamic
programming concept, whose basic idea is reducing the given
problem into several smaller subproblems and eliminating

variables one by one.

1. Introduction

1.1 Consistent Labeling Problem (CLP)

A CLP is represented by a quadruple (U,L,T,R), where U is a
set of units (1,...,M}, and L is a set of labels. Labels are
usually possible interpretations, meanings or values being

assigned to the units; T is a set of tuples of units, i.e., TEC

i
1<1<MY

mutually constrain one another. And all of the permitted or legal

Each tuple t in T directs the units composing t to

labelings for t are given explicitly by a #t-ary relation of

labels Rt (g[ﬁt), which is called a label constraint relation;
#t is the dimension of tuple t. And, R={Rt£;L#t!teT}.

Solving a CLP is to find all consistent labelings
A=(11,...1M)» of wunits (1,...,M) satisfying Vt (eT) (Aﬂt)eRt),
where At is the projection (lul""’lu#t) of‘ A on

t=(u,,...,u,,). Below, we give an example of a CLP.

1 #1t

Example 1
U=¢(1,...,9}, L={a,...,j},
T={t

N S

1°° 7
t1=(1,2,4), t2=(1,2,3), t3=(2,3,4,5),
t4=(5,8), t5=(4,6,7), t6=(6,7,8), t7=(7,8,9),
R={R1,...,R7},

R1={(a,b,c),(b,a,c),(b,a,e)},
R2={(b,a,h),(a,b,c),(a,b,a)},
R3={(a,b,c,d),(a,b,e,d),(b,c,c,d)},,

2

R4={(d,h),(e,i)},
R5={(c,d,f),(d,c,e),(c,f,g)},
R6={(f,g,h),(d,f,h),(g,h,i)}.

R7={(f,h,j),(d,f,j),(g,h,h)}.

The above definition of CLP is a generalized version of the
one given by Haralick and Shapiroll]l in the sense that it admits
many multiple constraint relations whose dimensions are not

necessarily the same each other.

1.2 Constraint Network

The constraint network providing an equivalent expression of

a CLP is defined by an undirected graph G=(V,E):
V={(ti,Ri)%tieT, RieR},
E=((v;,v)is(t INs(t)# ¢,
vi=(ti,Ri),vj=(tj,Rj), vi,vjeV}

where s(ti)={u1,...,uk}, letting ti=(u1,...,uk).

As is shown above, a pair (ti,Ri) called 'constraint-pair’',
is assigned to each vertex vi. Thus the term constraint-pair may
often ‘be used to indicate the <corresponding vertex. Our
definition of constraint networks differs from the conventional
ones[2,3] in which each vertex corresponds to a single unit and
only binary reiations are permitted. In the éonstraint networks

proposed here, each tuple in T corresponds to a vertex; thus,

relations with arbitrary dimensions can be expressed in a
straightforward manner. Each edge represents a local constraint
in that the labels associated with the common units appearing in
two vertices (i.e., tuples) connected to each other by an edge,
are to be equivalent. |
Fig. 1 shows the constraint network equivalent to the CLP of

Example 1.

ke s 2k ok 2f¢ dfe 2fc ofe e k¢ vk ok
* Fig. 1 =%
e 2f¢ o s 2f¢ ofe ofe o4¢ dfe ofe 3¢ ok

1.3 Redundant Units

As is seen from Fig. 1, unit 9 appears only in \Z because
t7 is (7,8,9), meaning only unit 7 and unit 8 share constraints
with wunit 9. Thus, by saving relation R7, unit 9 can be
eliminated from the network to reduce the problem to a slightly
smaller one. Units such as 9 are called 'redundant'. Next, assume

two vertices v1 and v2 are joined into a single one, then,

Vig?
unit 1 newly becomes redundant (see Fig. 2) and can be eliminated
this time. The 1idea that redundant units can be eliminated
gradually +to reduce the given problem into smaller ones is

similar to the basic strategy of dynamic programming.

ke ok e o 3k ok sfe o ok 3 ok ok
* Fig. 2 %
3¢ ok ofe fe o ok o o ok ok e ok

((1,2,4).R1) ((4'617)1R5) ((7.8.9):R7)

V1 V5 V7

((6o7)8), RS)

N

Va Vi

Va

- ((1,2,3),R2) ((2,3,4,5),R3) ((5,8),R4)

Fig. 1 The constraint network equivalent to Example 1.

Vi

Fig. 2 The constraint network derived after joining vl

and v2 of Fig. 1.

2. A Method Using Invasion
2.1 Invasion

Consider the following twb cases of joining sequences
applied to Fig. 2: One is to join v12 and v5, and the other is to
join v12 and v3. The constraint network resulting from each of
these two join operations is shown in Fig. 3(a) and (b). In Fig.
3(b), units 2 and 3 become redundant because those units do not

appear in any other vertices except v while no redundant unit

123°
is produced in Fig. 3(a).

sk sk ok sfe sk S sfe ofe o ok o o
* Fig.3(a) *
sk sf¢ >fe o s 3¢ e sfe o sfe dfe ok

3 sk o sk ok ok sfe sfe ok ok sl ok
* Fig.3(b) =*
s ofe ok ok ok 3k ofe ok ofe ok s ok

Thus our example shows that a sequence of Jjoin operations
fully determines when each unit becomes redundant. This sequence
is uniquely expréssed by a series of subgraphs of the given
constraint network, called an invasion after [2], which |is
defined as follows. An 'invasion' of a given network G is a

sequence of induced subgraphs[4] GI’GZ”"’G:T , Wwhere Gi is

-

composed of i vertices and V(Gi)s;V(Gi+1) for i=1,...,1Ti-1. iTH
represents the size of set T, i.e. the number of vertices, since

to each vertex Vi of G a constraint-pair (ti(eT),Ri(eR)) is

(b)

N © T2

(a)

’’’’

!!!!!

))))

)))

The network after joining (a) v12 and v5, and

3

Fig.

(b) v12 and v3.

assigned. In particular, G:TI=G' Fig. 4 shows an example of an

invasion of the network given in Fig. 1.

sfe ok s o o 3 e o ofe s e sk
* Fig. 4 %
sk ke sfe ofe e ofe o e e ok sk o

In Fig. 3(b), units 4 and 5 appear in some vertices other

than v since they are non-redundant components of the tuple

123°

assigned to vertex v Unit 4, for example, appears as a

123°
component of tuple t5(=4,6,7)) of vertex v5. The set of such non-
redundant units is called the 'front', whose concrete definition
is as follows:

Let wus denote the front of Gi’ which is a subgraph of G, as

f(Gi)' Then,

def ;
() & __J (1)) N (L J s(t)),

v(=(t,R))éV(Gi) v(=(t,R))eV—V(Gi)

where V(Gi) and V are the sets of vertices of graph Gi and the
original graph G, respectively. As a special case, f(GO) is
empty, since G0 is natufally assumed to be an empty graph. Notice
that the above definition of front can be applied to any
subgraph of G.

By wusing the above definition of fronts, the set of
redundant units which occurs after joining the vertex of V(Gi)~
V(Gi—l) and its adjacent vertices is expressed as f(Gi_l)—f(Gi).

Let wus call this the redundant unit set of Gi and denote it as

0l

Gs

L~

Fig. 4

G (=Fig. 1)

An example of an

invasion of network G shown in Fig.

1.

r(Gi).

(1 (c¢)

Let G, i be connected components of the i-th

ye00sG
i

subgraph Gi(€G) of an invasion. The 'front length'[3] of Gi’

denoted as ¢i’ for 1<i<n is defined as follows:

: (dyy . if reG.) is empty,
1 Ljsc i

¢.= {max :f(Gi

0 , if r(Gi) is non-empty.

This definition effectively gives a meaningful value only in_ the
case where some redundant wunits are produced. For each i
(1€igiTV), if at least one redundant unit is ©produced with
respect to Gi’ i.e. if r(Gi) is non-empty, the vertex in V(Gi)—

V(Gi) is called a 'merging-point’'.

-1
In the example of Fig. 4, all of the Gi's in which a
merging-point appears are listed below with their merging-points,

redundant units, fronts and front lengths:

G G G G

3 4 6 7
merging-point v, Vo ve ' P
redundant units r(Gi) {1,2,3} {9} {4,6,7} {6, 8}
front f(Gi) {4,5} {4,5,7,8}y (5,8} empty
front length @, 2 2 2 0

2.2 An Algorithm Using an Invasion

Given an invasion {Gi}, i=l1,...,!T! of a constraint network

G, we describe a consistent labeling algorithm which is composed

11

of two main procedures: the forward and the backward phases.

The forward phase generates a solution graph which keeps the
partial solutions derived by each join operation and their
interrelationship. A join operation is actually invoked at each
merging-point, where at least one unit becomes redundant, and
includes finding all label tuples for the front which are
consistent with one or more label tuples for the redundant units.
Thus, a join operation is applied to two or more vertices. Every
pair consisting of 1) a label combination for the redundant
units, which 1is found in the merging-point, and 2) a possible
combination of labels for the front units is checked if it
satisfies the local constraint existing between the merging-point
and its adjacent vertices. The join operation also replaces all
vertices selected for the join with a single vertex.

The forward phase is described as follows:

procedure Forward;
initialize solution graph with only two nodes, S and E;
for every merging-point Vi (eV(Gi)) do
begin

join:find all locally consistent labelings for

(p)

r(Gi) and f(Gi)3

() with a single vertex eliminating

replace Gi
r(G.);
1
extend the solution graph by adding arcs
(associated with labelings for r(Gi)) and nodes

(p)

(associated with labelings for f(Gi))

12

€l

<[1,2,3]

Fig.

(4,5)>

5

<[4,6,7] , (5,8)> <[5,8]

[d,h]

The solution graph produced by the forward procedure

applied to G in Fig. 1 using the invasion in Fig. 4.

(¢)>

{Notice: if f(Gi(p))=¢, add only the arcs
and connect them to node E)

end.

The forward procedure results in a completed solution graph. As
an example, Fig.b is a solution graph derived by applying the
above procedure to the constraint network in Fig. 1 using the

invasion in Fig. 4.

sk sk sk o o oo ok ok sfe e sfe ok
* Fig. 5 %
e sk s s e sfesfe e sfe sfe e ok

The backward phase constructs all the final solutionsv for
the given constraint network, i.e. the given CLP, by tracing the
solution graph backward from node E to node S in the reverse
order of the generation sequence of nodes.

Starting from E in Fig. b5, the arc [d,h]l] and the node (d,h)
are first visited. As a general rule for tracing, if there are
two or more arcs emanating from the same node and being assigned
the same labelings, ali of them must be traced together. Thus one
of the traces that leads to a final solution is

7 (e,d) -»[b,a,bl =8
E > [d,h]l = (d,h) -9[c,d,f]\\
(f,h) =>[d] =S
where [...] and (...) represent labelings assigned to an arc and
a node, respectively. The final solution found by the above

tracing is

14

units (6 8461712389

solution (d hecd fbabd)

2.3 An Analysis of Computational Complexity

Since tracing a solution graph 1is straightforward, the
backward phase requires time and space proportional to the number
of solutions. However, the efficiency of the forward phase |is
affected by the invasion used. In the join step, a part of the
forward procedure, the number of candidate labelings for r(Gi)
does not exceed the size, k, of label constraint relation Ri
lettihg vi=(ti’Ri)' Assume all of the sizes of the label
constraint relations in R is equal to k. The maximum number of
possible combinations of labels for f(Gi) is
=f(Gi)=.

(min{k,iLi}) Therefore, the total number of candidate

labelings to be checked by the forward procedure is given as

2

> ke(mindk,!Li}Y©
1el :

where I is the set of indices of all merging-points. This shows
that the front lengths of the given invasion affect the total

computational efficiency in term of both time and space.

15

3. Optimal Invasion
3.1 Several Characteristics

As a first approximation, 1let us define the front length,
§, of an invasion {Gi), i=l1,...,I1Ti, as §=m?x ¢i’ which gives
the order of the computational upper bound of the forward phase.
Let 'tu be a subset of constraint-pairs where

'tu={(ti,Ri) (evV) | ues(ti)}

for any unit u in U.

Lemma 1. An arbitrary invasion can uniquely be determined by an

appropriate sequence of constraint-pairs, and vice versa.

Lemma 2. Let P(CU) be a set of redundant wunits. Then, there

exists a tuple t in T satisfying P<Ss(t).

Lemma 3. The last subgraph G=T= of an invasion, which is the same
as the original constraint network, always contains a merging-

point, and further, f(G:T=)= ¢.

By using Lemma 1; we can denote the front length of the

invasion wuniquely determined by a given sequence of constraint-

as §

airs v .
P (Vi,...,v'-r|>

v

) I Y

Theorem 4. Assume a sequence of constraint-pairs, vl"“’viTi’ is

given. Let vn be an arbitrary merging-point and r(Gn) be the set

16

of 1its redundant units. Let vm (1<m<n) be the constraint-pair

satisfying that vm_1 is the last merging-point which appears in

the sequence prior to vn. If vn is the first merging-point in the

sequence then m=1. Let wm,...,wn be a permutation of sequence

vm,...,vn satisfying r(Gn)sgs(tn), where tn is the unit tuple of
the constraint-pair wn. Then, the front length of the invasion
determined by the sequence of constraint-pairs whose part
vm,...,vn is replaced by wm,...,wn, is equal to the original

front length .
& §<v,,...,vm>
Corollary b In Theorem 4, any permutation of subsequence

V ye0e,V

n 1 keeps the front length unchanged.

n—
Theorem 6. Let 6 be a (non-empty) subset of s(t), where t(eT)
is a tuple in T. Let rY 0) is a set of constraint-pairs as
r(G')= U ’tu_ .
, WE G

Then,
Qmin 2m;n=f(< ("(0')>G)a,

where § is the minimum front length of the given constraint

min

network G, and <["(6')> is the subgraph of G induced by lq(G').

G

3.2 An Algorithm for an Optimal Invasion

An invasion having a front length less than or equal to that

of any other invasion for a given constraint network 1is called

17

program OPTIMAL_INVASION:

procedure TRY(U'; V's F);
begin
T :={t:] (t:i,R) eV}
for all V(VEUN&(Bt(T-T) s.t. \ﬂss(t))}
Rs(V-(V'U Uz w))=U"-V)
ueV

&(FrKV'U(U z u)>g)<Min_front) @ do
ueV¥
begin
push ¥ to Dummy_solution;
if U'-W=¢ then
begin
Solution:=Dummy_solution:
Min_front:=F;

end
else
TRYW'-V; VU zo)s max{Fr V' Uz u)>).F1)s
ueV¥ ueV
end;
end; {TRY}

begin
Min_front:=oco;
TRY(Us ¢35 0)5
end. {main}

Fig. 6 An algorithm for finding an optimal invasion.

18

optimal. By using Theorem 3 and Theorem 4, we give an algorithm

that finds an optimal invasion.

sfe afe s sfe ok afe ok 3§ o ok ofe o
* Fig. 6 %
ke afe s o sk ofe s e ofe ok ofe ok

The algorithm is shown in Fig. 6, where Solution is a stack
which stores unit identifiers. From the bottom io the top, the
entries in the stack express the sequence in which the units
become redundant. An . entry containing two or more unit
identifiers indicates that those units become redundant together
at some merging-point. In the procedure, the requirement for the
'Q}, which 1is currently being considered as a candidate set of
units that may become redundant all at once, is stated at (:) and
(:). (:) denotes the characteristics of Theorem 4, explicitly.
And (:) checks if the front length for QD is less than the front
length, Min_front, of the invasion in Solution stack, which is
the ©best dne found so far. If that check fails, the procedure
rejects pushing down the current 1P’to Dummy_solution as a
component of a better invasion. Dummy_solution is also another
stack reserving a different possible invasion better than that in
Solution. A concrete optimal invasion is derived easily from the

result in Solution stack by using Theorem 3.

4. Conclusion

A consistent labeling algorithm, whose basic idea is

19

breaking the given problem down into several smaller subproblems,
has been proposed. It was shown that the concept of an invasion,
which gives the order in which the the variables, i.e. the units,
of the problem are to be eliminated, plays an major role because
it has a large affect on the efficiency of the method.

An algorithm for finding an optimal invasion to reduce the
upper bound order of time and space requirements for a given CLP

has also been described.

20

References

[1]1 Haralick,R.M. and Shapiro,L.G.: The Consistent Labeling
Problem, Part I, IEEE Tr. PAMI, 1, 2(1979),173-184.

[2] Seidel,R.: A New Method for Solving Constraint Satisfaction
Problems, Proc. IJCAI, 7th(1981),338-342.

[3] Freuder,E.C.: A Sufficient Condition for Backtrack-Free
Search, J.ACM, 29, 1(1982),24-32.

[4] Behzad,M., Chartrand,G., and Lesniak-Foster,L.: Graphs and

Digraphs, Wadsworth, Inc., Belmont, Calif.(1979).

21

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT DOCUMENTATION PAGE | o orr MR b TR-86-55

TITLE
Consistent Labeling Algorithm Using the Dynamic

Programming Concept

AUTHOR(S)
Seiichi Nishihara
Tsunemichi Shiozawa
Katsuo Ikeda k

REPORT DATE NUMBER OF PAGES
February 18, 1986 21
MAIN CATEGORY CR CATEGORIES
Problem Solving and Search F.2.2, G.2.2, 1.2.8
KEY WORDS

consistent labeling, constraint propagation, algorithm,
dynamic programming, combinatorial algorithm, graph,
constraint network, depth first, breadth first

ABSTRACT

Being given an object consisting of many subparts and
their locally legal interpretations, problems of finding totally
consistent interpretations are found in many areas, examples of
which are image analysis and artificial intelligence. Search
problems of this kind are called consistent 1labeling problems
(CLPs). There are two well known principal strategies for the
CLP: the depth-first approach typified by backtracking and the
breadth-first approach typified by constraint propagation. This
paper proposes another approach that makes use of the dynamic
programming concept, whose basic idea is reducing the given
problem into several smaller subproblems and eliminating

variables one by one.

SUPPLEMENTARY NOTES

