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ABSTRACT
The aim of the present paper is to develop a method of generating
similarity measures for cluster analysis of the data of free
associations in psychological experiments. The free associations
are regarded as a sequence of various words. A neighborhood of a
word 1is defined to be a subset of words which occur near to the
former word in the associations. Three algorithms of generating
similarities between a pair of words based on the presence in the
neighborhood are introduced. two of which lead to the same
similarity measures when they are symmetrized. Properties of
thesé similarity measures are discussed and normalizations of
them are considered. Moreover a method with weighting
coefficients, nonsymmetric neighborhoods, and several methods
defined on networks and Euclidean spaces are developed. The
neighborhood method is applied for analyzing data of f{ree
associations obtained by a survey by questionnaire on the 1living

conditions and environment of local residents.



1. Introduction

- Various kinds of psychological aSsociations have been
studied 1in different fields of sciences and engineeringl1]l: In
particular, ‘de find application of the associations in the field
of social survey as a mean to have an idea of environmental
cognition of people [2].

In a foregoing study [21 the authors suggested the use of a
free association in a survey to grasp cognitivé structure of
local residents on his living condition. with the purpose to have
macroscopic views for decision makings on improvement of urban
environment. In this paper we present a new method which is
based on a notion of neighborhood for cluster analysis of the
free associations.  The method of neighborhood is used to define
similarity measures between a pair of words in the free

association. Several similarity measures appropriate for this

purpose are introduced and their properties are discussed.

2. Neighborhood method for generating similarities
A. Proximity measures and similérity measures

The method here is introduced in a general framework so that
it can be used in many applications.

Let Ww={a.b,c....} be a finite set of’words: we »heéd not
specify the number of eléments in W. A pair of generic elements
in W is denoted by a and b.v A text T is a finife-sequence of
words in W. A word in W occurs in general many times 1in T,
therefore an occurrence of the word a is denoted as a. with

subscript. For example, To= aibjckal...zr. In application data
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of the free association is considered to be the text defined
above. Sometimes an element in T is denoted by x without
subscript when it does not corréspond to a specific word in W.
Moreover the symbol a may represent twice orvmore occurrences of

a in a text. The set of all occurrences in T is denoted as ITi.

For the above To. }To:={a;,al,bj,ck,...,z?}. For arbitrary
subset SC!T!., m(S) means the number of elements in S. Moreover
the sets of all the occurrences of the words a.b.... in T are
denoted as A={ai.aj,...},B={bk.b£....}, and so on.

A distance d(x,y) between a pair of occurrences is defined

as follows:

d(x.y) = {the number of occurrences of words in T between

X and y} + 1 .

Therefore. in the above, TU’ d(ck,bj)=1, d(ai,a )=3. Then a

k
neighborhood Un(x) is defined for an occurrence:

Up(x) = { v I dix,y) < n. yeiTi }
For the above To. Ui(bj)={ai’bj’ck}°

In a clustering we need a similarity measure s(a,b) defined
on W x W which shows degree of relatedness between a and b. Note

that a similarity should be symmetric:

s(a.b) = s(b.a)



On the other hand, we consider nonsymmetric measures of
representing relations of a pair of words directly obtained from
the text by using the neighborhood. For the latter measures we
use a word proximity p(a.b) instead of similarity. Therefore

pla.b) is nosymmetric in general:
pla,b) # p(b.a)

A purpose in this section is to derive similarity measures
from proximity measures by a symmetrization and a normalization
procedure. First we introduce three algorithms of defining
~proximity measures based on the neighborhood.

(i) (presence or.absence)
Scan the text from‘the left. For each occurrence a; of a,
examine the neighborhood Un(a;). If an occurrence of b is found,
then let p1(ai,b)=1 (two or more occurrences are also reduced to
P, (a;,b)=1). Then a proximity p; (a,b) is given by

pi(a,b)== Z:pl(ai.b)

all aiéA

where the summation is taken over all the occurrences of a.

(ii) (simple counting)
Scan the text T from the left. For each occurrence 3; of a, Let
Pz(ai,b)={number of occurrences of b in U“(ai)}. Then a

proximity pz(a,b) is defined:



pz(a,b) = z:pb}ai,b)

all a‘ieA

(iii) (count and mark)

Scan the text T from the left. For each occurrence a; of a,
count the number of occurrences of b in U“(aii. Let the number
be psl(ai’b)' An occurrence bj once counted is marked so that it

will not be doubly counted thereafter. Then a proximity psl(a,b)

is defined:

Pgp (@b = Py, (a;.b) .

all aieA

That is. Py, (a.b)=m({b;i bjeUy(a;). bgUpylay)

L

for all a,

k‘s which are left side of a; in T}).

1

Moreover scan T from the right. According to the same counting

procedure, we have another proximity

Pyp(@:b) = 3 Py (a;,b) .

all aieA

Note that in algorithm (i) and (ii), the scanning of T from
the 1left that from the right make no difference, - Therefore we

‘l’ p'r-p2£~

need not define p and p,..

Remark The method of neighborhood is based on the idea that a

pair of words which frequently occur nearby each other |is



considered to be related. A simple way to realize this idea
without the neighborhood is to use the distance d(a,b) as the
similarity. However, the neighborhood method is‘\ mére
appropriate, sihce a' pair of wordsb(c,d) whiéh"has a 1ong
distance should have a similarityk s(c,d)=0. Moreover a
similarity ,based ’on thé distance can be considered ‘within the
present ffamework as a mefhod with wéightinq coeffiéients which

is a generalization of P, in (ii).

First proposition implies that the algorithm (iii) defines

an appropriate proximity measure p3.

g

rop. 1 p3r.(a9b) = P

32(a,b)

(Proof) Let

all aieA

and B, = { bjt d(bj,A) £ n., bjerT%}. Also let us give an edge
from ai to hﬁ (ai-> Qj). when bj is counted as a member in U“(ai)
by algorithm (iii). Then for each bjeBl, Qj has one and only one

edge from some 3y by the procedure of forming Pyg For bj¢8 ,’bj
has no edge by the same procedure. In the same way, bJ-GB1 (resp.
bj¢Bl) has one edge (resp. no edge) by the procedure of forming

P

3r Therefore we have as the total number of the edges:

P3 (a,b) = ps

2 r(a,b) = m(B1). o L1

Namely we need not distinguish psl and psk. Therefore we define

<;§(a,b) = psl(afb) = psr(a,b) .



Next proposition shows that p2 is symmetric.

Prop.

2 Pz(a.b) = pz(b,a)

(Proof) Let us give an edge from ai to bj when bj is counted as
a member in U“(ai) by the algorithm (ii) in the calculation of
pz(a.b). Also give an edge from b? to aa in the same way when

pz(b,a) is calculated. It is clear that pjeUTJai) means aieU“(b.)

J
and vice versa. Therefore for any pair of occurrences we have
only two cases:' (a) ai—> bj and bj—> ai; (b) ai and bj have no
edges between them. pz(a,b) and pz(b,a) are the number of edges

in the respective procedures defined above, which means the

required relation. _ Cl

It is clear that the proximities p‘ and p3 are  not symmetric.

Consider the following example:

EXQQELQ 1 Let T‘=alc1b1a2 and n=2. Then

p‘(a,b) = 2, pi(b,a) =1, p3(a,b) =1, ps(b,a) = 2.

These twOo measures p‘ and p3 are proved to be identical when

they are symmetrized.

Prop. (b,a) .

3 | p1(a,b) = Ps

(Proof) Let A‘={ a3 i d(a; ,B) < m, aie{T:} as in the proof of
Prop. 1, where B is the set of all the occurrences of b in T. As
was shown in the proof of Prop. 1, ps(b,a)=m(Ai). On the other
hand, if one connects a€A with some bjeU“(ai) byban edge by the
algorithm (i). each a,eA, has an edge and ai¢A' has no edges. It

is clear that the number of the edges in (i) is equal to pi(a.b),



we have

pi(a.b) psfb,a) = m(AI). [1]

Experiences show that for the purpose of the clusfering a
‘similarity s(a,b) should be normalized in the sense that the
total number of the word occurrences m(A) does not have direct
influences on the 1increase of the similarity. We define
normalized similarities from the three proximities. Especially,

sta,b) derived from pI (and ps) has a correlation-like property.

Let

c‘d)(a,b)

sf“)(a,b) =

m(A)+m(B)-c‘* (a,b)
where

c ®(a,b) = dmax(p, (a.b),p, (b,a)) + (1-d)min(p, (a,b),p, (b,a)).
Prop.3 means that

c‘d’(a,b) =cxmax(p3(a,b),p3(b,a)) + (I—d)min(p5(a,b),ps(b,a)).

The similarity s§°’ (resp. s:‘)) is based on the minimum (resp.

the maximum) of the two quantities p1(a,b1 and p‘(b,a); st/z)

based on the arithmetic mean of the two quantities.

(¢4 a,b) satisfies the following.

1
(a) For 0 < o < 1/2, the relation 0 < 5 *’(a.b) < 1 holds.

Prop. 4 The similarity s

(b) For 1/2 <o < 1, the relation 0 < sf"(a,b) is valid, but

sf“’(a.b)

(c) For 0 < d

7Y

1 does not hold in generaL.

I~

1, s:d’(a,b) = 0 iff for any a;€A and b €B ,



d(ai,bj) > n. (That is. a and b are isolated each other.)
(d) For 0 < < 172, s (a.b) = 1 iff mCA)=m(B)=m(A )=m(B ).

(Proof) Since c‘d’(a,b) < max(m(A),m(B)) it is clear that

sf” (a.b) > 0 for 0 < d < 1. Next, from the identity

“‘(a b) + ¢ V¥ a,p) = p,(a.b) + p (b,a) = m(A) + m(B ).
we have
)
_ (a.b)
s‘“’(a.b) =

m(A-A, ) +m(B-B, ) +m(A, )+m(B, ) -c “*’ (a.b)

d’(a,b) c‘“’(a,b)

<
=4 4. b) c ¢ (5. p)

m(A-A1)+m(B—B1)+c
Since c(d)(a,b) is monotoné nondecreésing relative to &, the last
inequality 1implies (a). = Moreover for 0 {d < 1/2, the abové
relation 1mp11es that s >(a,b)=0 iff m(A—A,5=0, m(B-B,)=0, and
c*a,b) = c""’(a,b). The latter three relations are
equivalent vto m(A)=m(At), m(B)= m(B ), and m(A1)=m(B1), which
prove (d4d). For (b), let us con51der Example 1. Then it is
easily seen that sf"(a,b) = (2401 d))/(2+1-(2d+1 -d3) =
(@+1)/(2-8) > | for 1/2 <d < L. Finally. c @ (a,b)=0, 0 < d.g'1
means that min(p (a,bi,p1(b,a))=0. | If pl(a,b)=m(A1)=0, then fof
any aieA and any b €B. d(a ,b;) > n. That is, 1if either of

J

p‘(a,b) or pl(b,a) 1s equal to zero, then p,(a,b)=pl(b,a)=0.

Conversely. if d(ai,bj) > n. for all ai and bj, then

m(A‘)=m(B‘)=0, which means c(d)(a,b)=0. Namely., (c¢) is wvalid. [1]

)

The above pfoposition means that s: for 0 <l < 1/2 has
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the most desirable properties: among the three measures sf°‘,

b
5,5, and 5", the measure s

all.

(o)

h should be considered first of

On the other hand the above type of the normalization .is not

.adequate for P, . Therefore we define simply

pz(a,b)

sz(a,b) =
m(A) + m(B)

The similarities s?”and s, are dependent on the size n of

the neighborhood U,. When their dependence is explicitly shown
by a superscript as Sf”"‘ and s7', we have |

(dIn n . ? ’ .
Prop. 5 S, (a,b) and sz(a,b) are monotonically nondecreasing

with respect to n.
(Proof) It is clear from the algorithms (i) and (ii) that

P (a,b) and pz(a,b) are mbnotonically nondecreasing With respect

1
to n. Immediately it follows that sz(a,b) has the same property.

On the other hand, monotonically nondecreaSingy propérty of
¢ (3,h) and that of the function f(x) = x/(k-x) for positive x
and positive cOnstaht k mean that the same property is valid for

,sf“’“(a,b). | S

A generlization of pz with weighting coefficients can be
introduced. Let w = (w(l),w(2),...,w(n)), be an n-vector of

nonnegative components. Define

11



pzw(ai’b) = ) w(d(ai.bj))

all bjeUn(ai)

according to the counting procedure in algorithm (ii) with the

weight w, and put

pzw(a,b) = X P, (3D

all aieA

Note that the same type of weighting 1is not applicable in

algorlthms (i) and (iii). Namely, pswz(a’b) # pswr(a’b) in
general.
Prop. 6 le(a,b) = pzw(b,a)

(Proof) According to the process in the proof of Prop. 2, we
give an edge from a; to each occurrence bj in UgpCa;), with weight
w(d(ai,bj)). Then it js clear that pzw(a,b) is equal to the sum
of weights on the edges defined above. In the same way we obtain
P,y(P:a) as the sum of weights of the edges from by's to aq’s.
As has Dbeen noted before, we have only two cases for a pair
iai,bj): (a) a and b have no edges between them; (b) ai->bj
with the weight w(d(ai,b-)), b.-}ai with the weight w(d(bj,ai)).

J J

Since d(ai,bj)=d(bj,a{), we have p w(a.b) = Pzw(b’a) L1

2

B. Nonsymmetric neighborhood
Sometimes it appears that nonsymmetric neighborhood is more
appropriate for the analysis of free associations. since a word b

in the association seems to have more influence on a word

12



occurring after b than a word before b. Therefore we study some
of the measures in nonsymmetric neighbdrhood, although the
results in this subsection are weaker than those in the symmetric

case.

A nonsymmetric neiqhborhood Uﬂﬂéx)'is defined to be a subset

Ilmn(x) = {y { dly.x)

I\

m, y is left side of x, ye!T! }U

{y | dx,y) { n, ¥y is right side of x , ye€ T} }.

For example, in To= aibjc al...z .

k 4
U21(ck)={ai,bj.ck,al}, an(bj)f{bj‘ck}° ‘
: mn MNN ™mn mmn
According to Umn, P1 (a,b), pl {a,b), psL(a’b)’ and psr(a,b) are
defined by the three algorithms (i), (iiy, and (iii),

respectively, where Umﬂ(ai) is used instead of U“(ai).

mn - amn
Prop. 7 psz(a’b) = Pgy.(a,b) .
(Proof) Let 4
BT”= { bj= d(bj ,ai) < n for some aieA which is left side of bj U

{ bj: d(yj,ai) < m for some aieA which is right side of bi}'
By the same way as in the proof of Prop. 1, we have

mn, _ _'mm - mn
Pie(a:b) = Pl (a,b) m(Bl"S 3

Therefore we define

mn _ mn - mn
p3 (a,b) = p3z(a,b) = psr(a,b)
Prop. 8 p, (a.,b) = py"(b,a)
mmn - MM
P3 (a,b) = P1 (b,a) .

13



(Proof) LLet us give an edge from 3; to each bj in Umm(ai) and

from b kto a,1 in Umm(b?) as in the proof of Prop. 2. It is elear

'P
that ’bjeumm(ai) means.aieuﬂﬂgbj) and vice versa. Therefore we
have the first identity. For the second identity, it 1is
sufficient to note that pr”(b,a) = m(B?“) ) !
Note that p?“(a.b) # p;m(b,a) when m # n. Consider T, =a, c, b, a, .

then p:‘(a.b) = 0, p:‘(b,a) = 1. Therefore symmetrization of p

is necessary to define similarities.

Let
c;‘*"’“"‘(a,b) = max(p:ﬂ(a,b),P:ﬂ(bsa))
+ (1—d)min(p:“(a;b),P:ﬂ(bsa))* k=1,2,3,
and
v @ymm 4
@ymn ' Sy (a.b) (aimm
S| (a.b) = Pty = S, (a,b) ,
m(A)+m(B)-c #™ (a,b)
(d)ymn
(a,b)
s;;dmﬂ(a.b)\: 2
‘m(A)+m(B)
C _om ~_om o nm .
Prop. 9 P, (a,b) +p, (b.a) =P, (a,b) (= p,(a.b) ).
25:!/2.)0‘!& (a.b) ='52(|/z)nn (a.b) (= Sz(a,b) ).

(Proof) Let us give undirected edges in the three counting
procedures of forming pg“(a.b), pg"(b.a), and p7™(a.b). Denote

E .. E™b.a), and

the set of edges in each procedure as
E™(a,b). respectively. It is clear that E°"a.0)NE™(b.a) = 8.
since in Eon(a,b) the connected pair has ai as the left element

and 1in Eon(b,a) the pair has bj as the left element. Moreover

14



on on _ onn . .
E (a.b)UE (b.,a) = E""(a,b), since bjeunﬂ(ai) iff bjern(ai) or

aier“(bj). Counting the numbers of elements in the three sets
of the edges, we have the former identity. The latter identity
directly follows‘from the former. [l
Prop. 10 p:”Ya,b) < p:V“(a,b), m<m, ng<n',

k=1, 2, 3.

The proof of Prop. 10 is obvious and omitted.

(00
1

an example T=ab..... ab..... . Then ¢ (a,b) = ¢ (4,p) = 2,

1 1
n > 1, whereas C:mon (a,b) = 0, which means sf“°“ (a,b) = 0. The

Remark The similarity s n (a,b) is not recommended. Consider

measure sf°’°”

(a.b) is inappropriate.
C. Neighborhoods in networks and in Euclidean spaces

Althoush the present method is applied solely to the
analysis of the free association here, the neighborhood
teéhniques is applicable to the analysis of many other
éxperiments. In this subsection the method is considered dn
vnetwdrks and Euclidean spaces. Some of the applications will be
suggested below.k |

Let (V,E) be an undirected graph whose vertices are

occurrences of elements in W. For example vV =
{ai,gj,ck,..,al,..}. The set of all the occurrences in V of a
word a is denoted as A. Distance d(x,y) is defined to be the

minimum number of edges in the edge sequences which connect x and

y. Then U (x) is defined:

15



U () = ¢y | dix,¥y) < n, vyev }.

The algorithms (i) and (ii) in the subsection 2.A is immediately
applied to have p‘(a,b) and pz(a,b) defined on (V,E), whereas the

algorithm (iii) depends on the ordering of occurrences {ai}C V of

aev. If we denote an ordering of A as A‘=(a1.aj,...) and the
resulting proximity p3 according to the ordering as th, we have
Prop. 11 For any ordering A' of A.
(a,b) = (a..b)
Pyya:b 2 P (a.b
aieA
remains constant. In other words, p.(a,b) on (V,E) 1is well-

3
defined.

(Proof) It is sufficient to note that FEK(a'b) = m(Bll, for any

ordering A', where B‘ = { bji d(bj,A) < n, bjeV Y. (1

The proximities pl(a,b), pZ(a,b) and p3(a.b) defined in this
subsection has the same properties as those in the subsection
2.A. Therefore Props.2~5 are valid for the three proximities in
this subsection. Their proofs 'are‘also épplicable with no
essential modification. Therefore we omit the duplicate

statemehts of these facts.

Furthermore, the neighborhood consideration is applicable on
Euclidean spaces. Let V be a finite set of points in a Euclidean

N ’ . . .
space R . Each point in V is labeled as an occurrence of a word

in W. Again, V = {ai,yi,ck,..}. The distance d(x.y), X,V € R~ is

16



defined to be an usual Euclidean distance and the neighborhood
N

Un(x) is defined as a closed spere in R with the center x and the

radius n. Then it is immediate to have p‘(a,b), ‘pzta,b), and

P, (a.,b} according to the previous discussions. Props. 2~5 hold

3
also 1in this case. When the neighborhood is generalized to an
arbitrary closed set of a fixed shape containing x. the same
results do not hold in general. Let U(0) be an arbitrary closed
subset containing the origin. Then define Utx) = { y i
y-x €U(0), yeRN}. ‘The neighborhood U(x) is called stmetric if

U(O) is symmetric about the origin. Then we have

Eggéé 12 If U(ai) is symmetric, then p,(a,b) = P, (b,a) and
P‘(a,b) = ps(b,a). On the other hand, if U(ai) is nonsymmetric,
then the above two identity does not hold in general.

(Proof) The first part is proved in a similar manner as in the
proofs of Props. 2,3, and is omitted here. For the second part
let us note that for a nonsymmetric neighborhood U(0) there

exists a point x€U(0) but -x¢U(0). Let W={x,0} and V={x,0}.

Then PZ(O,X)=1. Pz(x.ﬂ)?O, Pt(O,X)=1, Ps(x,0)=0. 1

Remark An application of the methods in this subsection is
analysis of drawings by subjects. In an experiment subjects are
asked to write down their cognitive structures of a certain
notion as a network. Then the neighborhood method on the network
will be applied to aggregate individual structures into a

structure of the whole group. Another experiment requires

subjects to make a configuration of objects according to their

17



cognitive structures. Then the method on Euclidean space is

applicable.

3. Application to the free associatibn

Here the data of a free association is based on a survey by
questionnaife on'environmental cognition of local residents [21].
Subjects were asked to write freely what they associated with the
notions "the easihess of living" and "habpiness in living”. In
thisv paper 32 selected answers of longer responses which are
selected from the whole 600 answers are analyzed. The 32
answers are considered as one text; since a purpose here is to
aggregate structures in these answers. Each answer of a
responder in the text was separated ffom others by a large number
of blanks so that the neighborhood does not connect word
occurrences of fwo responders.

Figufes 1, 2, and 3 show the results of hierarchical
agglomerative clusterings by the group average method [3]1 based

s(°) luzznnn(a'b)’ respectively. The size

of the neighborhood is n=5 for sf°)

S‘CIIZ?mn

W which have been associated more than four times. Although

on (a,b), sz(a,b), and s

and szz it is m=0, n=5 for

. The item names in these dendrograms are 56 elements in

several words seem to be synonymous. they should be distinguished
at early stages of the data analysis. Otherwise significant

implications may be lost.

Remark The original questionnaire and responses are written 1in

Japanese. The names in the dendrograms are translations by the

authors.
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ITEM NAME ID NO
NEIGHBORHOOD 7
RELATION 20
POLLUTION 21
NOISE 31
RESIDENTS 48
ENVIRONMENT 1
LIFE 11
SAFETY 24
SOCIETY 35
VEHICLES 29
SPACIOUS 10
GARDEN 15
SPACE 39
HOUSE 51
HUMAN 34
FRIENDS 56
RIVER 9
HILL 23
SEA 17
LAKE 42
NATURE 12
BOOKSHOP 40
LIBRARY 44
SCHOOL 27
CHILDREN 54
NEAR 19
STATION 38
ROAD 26
SUNNY 50
WATER 18
GOOD TASTE - 43
AIR ' 8
GAS 49
WATER SUPPLY 55
PUBLIC 22
COMMODITY PRICE 25
CHEAP 45
QUIET 16
FACILITIES S
CULTURE 14
EDUCATION 30
POPULATION 37
TRAFFIC 2
CONVENIENCE 13
SHOPPING 28
CONVENIENT 32
PARK 3
GREEN 4
CLIMATE 53
NEARBY é
TOWN 33
SELF 46
LIBERTY 47
FAMILY 52
SOIL 36
TREE . 41

Fig.

1---1
l___

11
1---1

1---

1
!_-_
1
1
1
1
1
1---1
1
1
1
1
1
1
1
1

an n o e o e o - - - - - - - = - " - o &% L " " e = o = o = = = " = . . - - - - - - - = - n " = - o o~ -

1 A dendrogram by the group average method based on S(O).
The entries are words obtained by free associations
on living conditions.
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ITEM NAME 10
SHOPPING

CONVENIENT

TRAFFIC

CONVENIENCE

" QUIET

GREEN
CLIMATE
FACILITIES
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The entries are words obtained by free associati
on living conditions.
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The three dendrograms show similar categories as a
macroscopic coginitive structure of the subjects. We find several

categories:

~(a) "nature" which contains ‘'river', "hill'. 'lake’', °'sea’'. etc:
(b) "house" which contains °‘space’', ‘'garden’', ‘'house’, etc:
(c) "human relation"” which contains ‘neighborhood’, ‘relation’.

‘liberty', etcs:

(d) "convenience" which contains ‘convenient’', 'shopping’,
‘traffic', etc;

(e) "culture" which contains ‘'bookshop’, ‘'library’', ‘school’,
‘near', ‘'children’;

and so on.

They are considered to be important categories in cognitive

structures on living environment of these subjects.

Bgmggg Changés on the size n of the neighborhood have been
investigated but their results are omitted here. No great
changes on the categories have been observed. It appears that
smaller wvalues of the size n produces a more definite results.
Actually, the wvalue n=3 is rather too small in this example,
since some of the definite structures are 1lost. For example,
related words such as 'library’', ‘bookshop', 'school’', ‘near’

which forms a group in the above three figures do not form a

cluster in the latter case when n=3.

4. Conclusions

22



The neighborhood method considered here is more appropriate
than a method based on distance for generating similarities for
cluster analysis. A multidimensional scaling should be studied
based on the present method; the application is immediate.

Another application of the method here is the analysis of
documents. - When the documents have loose structures to which
syntactic approaches are inappropriate, or if the amount of data
is very large, the present method is useful. Structure on
Chinese <classical literature which is very symbolic has been
already studied by the present method [41].

- Moreover the neighborhood method defined on networks and on
Euclidean spaces suggests a new kind of experiments in the study
of cognitive structures by providing a new technique of the data

analysis.
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