

MONOTONICITY THEOREM, CAUCHY'S INTERLACE THEOREM AND COURANT-FISCHER THEOREM

by

YASUHIKO IKEBE TOSHIYUKI INAGAKI SADAAKI MIYAMOTO

October 28, 1985

INSTITUTE
OF
INFORMATION SCIENCES AND ELECTRONICS

UNIVERSITY OF TSUKUBA

MONOTONICITY THEOREM, CAUCHY'S INTERLACE THEOREM AND COURANT-FISCHER THEOREM

YASUHIKO IKEBE
TOSHIYUKI INAGAKI
SADAAKI MIYAMOTO

§1 Introduction

In this note the following important theorems on eigenvalues of Hermitian matrices are reworked from a unified viewpoint of exploiting a simple dimensional identity for an easier, quicker and independent proof: Monotonicity Theorem, Caushy's Interlace Theorem and Courant-Fischer Theorem (Minimax Characterization). The usual procedure of invoking the minimax characterization or Sylvester's Law of Inertia to prove either one of the preceding ones results in a much longer proof (see, for instance, [1, 186-192] or [2, 99-104]). Sylvester's Law of Inertia can be proved from the same viewpoint, as is well-known, and is demonstrated for the reader's convenience (see §5).

Our proofs depend on the following simple dimensional identity: (1) $\dim(S_1 \cap S_2) = \dim S_1 + \dim S_2 - \dim(S_1 + S_2)$, where S_1 and S_2 are subspaces of a finite-dimensional vector space. Thus, this note may also be viewed as a collection of good instances of application of the dimensional identity (1).

Before proceeding, we state the following basic facts used in the subsequent proofs without explicit reference: (a) the eigenvalues of a Hermitian matrix are real and the corresponding eigenvectors may be taken to be orthonormal; (b) letting $\alpha_1 \le \dots \le \alpha_k$ denote a subset of eigenvalues of a Hermitian matrix A and letting $\alpha_1, \dots, \alpha_k$ denote an orthonormal set of corresponding eigenvectors, we have $\alpha_1 \le x^H Ax \le \alpha_k$ for any x in the span of $\alpha_1, \dots, \alpha_k$, where $x^H x = 1$. (The symbol "H" denotes conjugate transpose.)

§2 The Monotonicity Theorem [1, p.191]

Let A and B be Hermitian and let A+B=C. Let the eigenvalues of A, B and C be $\alpha_1 \le \ldots \le \alpha_n$, $\beta_1 \le \ldots \le \beta_n$ and $\gamma_1 \le \ldots \le \gamma_n$, respectively. Then

(1)
$$\alpha_{j} + \beta_{i-j+1} \leq \gamma_{i}$$
, $(i \geq j)$

(2)
$$\gamma_{i} \leq \alpha_{j} + \beta_{i-j+n}$$
, $(i \leq j)$

(3)
$$\alpha_i + \beta_1 \le \gamma_i \le \alpha_i + \beta_n$$
, (i=j)

Proof. Let

$$Au_{\underline{i}} = \alpha_{\underline{i}}u_{\underline{i}}, Bv_{\underline{i}} = B_{\underline{i}}v_{\underline{i}}, Cw_{\underline{i}} = \gamma_{\underline{i}}w_{\underline{i}},$$

$$u^{H}_{\underline{i}}u_{\underline{j}} = v^{H}_{\underline{i}}v_{\underline{j}} = w^{H}_{\underline{i}}w_{\underline{j}} = \delta_{\underline{i}\underline{j}}, i, j=1,...,n$$

Consider first the case $i \ge j$ and let

$$\begin{split} & s_1 = \text{span} \{ \ u_j \,, \, \ldots \,, \ u_n \ \} \,, \ \text{dim} \ s_1 = n - j + 1 \\ & s_2 = \text{span} \{ \ v_{i - j + 1} \,, \, \ldots \,, \ v_n \ \} \,, \ \text{dim} \ s_2 = n - i + j \\ & s_3 = \text{span} \{ \ w_1 \,, \, \ldots \,, \ w_i \ \} \,, \ \text{dim} \ s_3 = i \,. \end{split}$$

Then §1 (1) gives

 $\dim(S_1 \cap S_2 \cap S_3) \ge \dim S_1 + \dim S_2 + \dim S_3 - 2n = 1.$ This assures the existence of an $x \in S_1 \cap S_2 \cap S_3$ such that $x^H x = 1$. For this x,

$$\alpha_j + \beta_{i-j+1} \le x^H A x + x^H \mathcal{B} x = x^H \mathcal{C} x \le \gamma_i,$$
proving (1). Application of (1) to (-A)+(-B)=-C proves (2).

Setting i=j in (1) and (2) gives (3).

Remark: Writing $\gamma_i = \alpha_i + m_i$ and taking trace of A + B = C, we find $\Sigma m_i = \text{trace} B$. If, in particular, $B = \text{tcc}^H$, where $c^H c = 1$, we have $\Sigma m_i = \tau$.

§3 The Cauchy's Interlace Theorem [1, p.186]

Let

$$A = \left[\begin{array}{cc} \mathcal{B} & \mathcal{C} \\ \\ \mathcal{C}^{H} & \mathcal{D} \end{array} \right]$$

be an n×n Hermitian matrix, where B is m×m (m<n). Let the eigenvalues of A and B be $\alpha_1 \leq \ldots \leq \alpha_n$ and $\beta_1 \leq \ldots \leq \beta_m$, respectively. Then

$$\alpha_{k} \leq \beta_{k} \leq \alpha_{k+n-m}$$
, $k=1,\ldots,m$.

Proof. Let

$$Au_{i} = \alpha_{i}u_{i}, \quad u_{i}^{H}u_{j} = \delta_{ij}, \quad i, j = 1, \dots, n,$$

$$Bv_{i} = \beta_{i}v_{i}, \quad v_{i}^{H}v_{j} = \delta_{ij}, \quad i, j = 1, \dots, m,$$

$$w_{i} = \begin{bmatrix} v_{i} \\ 0 \end{bmatrix}, \quad i = 1, \dots, m.$$

Let $1 \le k \le m$ and let

$$\begin{aligned} &\mathbf{S}_1 = \mathrm{span} \{ & u_{\mathbf{k}}, \dots, u_{\mathbf{n}} \\ &\mathbf{S}_2 = \mathrm{span} \{ & w_{\mathbf{l}}, \dots, w_{\mathbf{k}} \\ \end{aligned} \}, \quad \dim \ \mathbf{S}_2 = \mathbf{k}$$

Again by §1 (1), the existence of an $x \in S_1 \cap S_2$ such that $x^H x = 1$ is assured and we have

$$\alpha_{k} \leq x^{H} A x \leq \beta_{k}$$

Application of this to -A gives $\beta_k \!\! \leq \!\! \alpha_{k+n-m}$

§4 The Courant-Fischer Theorem (Minimax Characterization) [1, p. 188]

Let A be Hermitian and let $\alpha_1 {\leq} \ldots {\leq} \alpha_n$ be the eigenvalues

of A. Then for
$$k=1,...,n$$
,
$$\alpha_k = \min \max\{v^H A v : v \in S^k, v^H v = 1\}$$

$$S^k$$

$$= \max \min\{v^H A v : v \in S^{k-1}, v^H v = 1\}$$

where \textbf{S}^{k} denotes an arbitrary k-dimensional subspace of complex n-vectors.

Proof. Let

$$Au_{i}=\alpha_{i}u_{i}$$
, $u_{i}^{H}u_{j}=\delta_{ij}$, $j=1,\ldots,n$.

Let

 $S_1 = span\{ u_k, ..., u_n \}$ and $S_2 = S^k$, (any k-dimensional subspace)

Then §1 (1) guarantees the existence of an $x \in S_1 \cap S^k$, $x^H x = 1$, giving $x^H A x \ge \alpha_k$.

On the other hand, for any $u \in \text{span}\{u_1, \ldots, u_k\}$, a k-dimensional subspace, we have $u^H A u \leq \alpha_k$ and $u^H_k A u_k = \alpha_k$, proving the first equality of the theorem.

To prove the second, choose

$$S_1 = span\{ u_1, \dots, u_k \}, S_2 = (S^{k-1})^{\perp}$$

and proceed in a similar line of argument as above.

§5 The Sylvester's Law of Inertia

Let A be an n×n Hermitian matrix and let $V_{i}^{H} A V_{i} = \text{diag} \{ d_{1}^{(i)}, \dots, d_{n}^{(i)} \}, i=1,2,$

where the V_{i} are nonsingular. Then

$$\pi_1 = \pi_2$$
 and $\mu_1 = \mu_2$,

where $\boldsymbol{\pi}_{\text{i}}$ (resp. $\boldsymbol{\mu}_{\text{i}})$ denotes the number of the positive (resp.

negative) $d_j^{(i)}$,s, (i, fixed), i=1,2. (The symbol diag{ $d_1^{(i)}$,...} denotes the diagonal matrix with $d_j^{(i)}$ as the jth diagonal element.)

Proof. Suppose $\pi_1 > \pi_2$ and let $S_1 = \operatorname{span}\{ v_j^{(1)} : d_j^{(1)} > 0 \}$ and $S_2 = \operatorname{span}\{ v_j^{(2)} : d_j^{(2)} \le 0 \}$ (dim $S_1 = \pi_1$, dim $S_2 = n - \pi_2$), where $v_j^{(i)}$ denote the jth column of $V^{(i)}$. By §1 (1), there is an $x \in S_1 \cap S_2$ such that $x^H x = 1$ and we have $x^H Ax > 0$ (since $x \in S_1$) and $x^H Ax \le 0$ (since $x \in S_2$), a contradiction. Hence $\pi_1 = \pi_2$. Similarly $\mu_1 = \mu_2$.

References

- 1 Parlett, B.N., The Symmetric Eigenvalue Problem, Prentice-Hall, 1980
- 2 Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford, 1965

INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS UNIVERSITY OF TSUKUBA SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT DOCUMENTATION PAGE

REPORT NUMBER

ISE-TR-85-51

TITLE

Monotonicity Theorem, Cauchy's Interlace Theorem and Courant-Fischer Theorem

AUTHOR(S)

Yasuhiko Ikebe

Toshiyuki Inagaki

Sadaaki Miyamoto

REPORT DATE	NUMBER OF PAGES
October 28, 1985	5
MAIN CATEGORY	CR CATEGORIES
Matrix Theory	5.14

KEY WORDS

Eigenvalues, Hermitian Matrices

ABSTRACT

Monotonicity Theorem, Cauchy's Interlace Theorem, Courant-Fischer Theorem and Sylvester's Law of Inertia are reworked from a unified viewpoint of exploiting a simple dimensional identity for an easier, quicker and independent proof.

SUPPLEMENTARY NOTES