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§1 Introduction

In this note the following important theorems on eigenvalues
of Hermitian matrices are reworked from a unified viewpoint of
exploiting a simple dimensional identity for an easier, quicker
and independent proof: Monotonicity Theorem, Caushy's Interlace
Theorem and Courant-Fischer Theorem (Minimax Characterization).
The usual procedure of invoking the minimax characterization or
Sylvester's Law of Inertia to prove either one of the preceeding
ones results in a much longer proof (see, for instance, [1l, 186-
1921 or [2, 99-104]). Sylvester's Law of Inertia can be proved
from the same viewpoint, as is well-known, and is demonstrated for
the reader's convenience (see §5).

Our proofs depend on the following simple dimensional identity:
(1) dim(Sln 82)=dim Sl+dim Sz—dim(§l+82),
where Sl and 82 are subspaces of a finite-dimensional vector
space. Thus, this note may also be viewed as a collection of good
instances of application of the dimensional identity (1).

Before proceeding, we state the following basic facts used in
the subsequent proofs without explicit reference: (a) the
eigenvalues of a Hermitian matrix are real and the corresponding
eigenvectors may be taken to be orthonormal; (b) letting alf...fak
denote a subset of eigenvalues of a Hermitian matrix A and letting

,u, denote an orthonormal set of corresponding eigenvectors,

u K

AR

H
we have alfx Axgak

(The symbol "H" denotes conjugate transpose.)

. H
for any x in the span of Uyreweallyy where x x=1.



§2 The Monotonicity Theorem [1, p.191]

Let A and B be Hermitian and let A+B=C. Let the eigenvalues

of A, B and C be a f;..fan, B 5}.;§Bh and'ylfy;;fyn, respectively.

1 1

Then .
(1) ay By 1Sy - (i>3)
(3) o +B <Y, <a, %8 , (i=3)

Au.=o0.u., Bv.=B.v.,, Cw.=y.w
s Rt i~PiVyr 1TV W

uH;u.=vH.u;=wH.w;=6;.,
i’j i J ij ij

i,j=1,...,n
Consider first the case i>j and let
Sl=span{ uj,;.., w }, dim S,=n-3+1

Sz=span{ v,

iee1t ot Vn }, dim S, =n-i+]

S3=span{ Wyreeer Wy }, dim §,=1.
Then §1 (1) gives
dim(s;n S, n $;)2dim $,tdim S, +dim S§,-2n=1.
This assures the existence of an inSlm Szf\S3 such that xx=1.
For this x,
aj+8i_j+l§x Ax+x" " Bx=x ngyi,
proving (1). Application of (1) to (~A)+(-B)=-C proves (2).
“Setting i=j in (1) and (2) gives (3).
Remark: Writing Y ;=o;+m. and taking trace of A+B=C,
we find Zmi=traceB. CIf, in particular, B=chH, where ch=l,

we have Zmi=T.



§3 The Cauchy's Interlace

Let

be an nxn Hermitian matrix,

eigenvalues of A and B be

Theorem [1, p.186]

0.<...<0
- - n

1
Then
< =1,... .
OLk—Bk—Otk+n—_m.'- k=1, o
Proof Let
Au PRl ul = ., i,3=1,...,n
i j i] r 14 r 14
yH .
B v, iVa= 5 ,j=1 .,m,
[ ] s e e., M.
o)

Let l<k<m and let

=span{ u

1 k’

Sz=span{ w Cw

l 14
Again by §1 (1),

k

is assured and we have

H
< <
o, <x Ax_Bk

Application of this to -A gives B

§4 The Courant-Fischer Theorem (Minimax Characterization)

p. 188]

Let A be Hermitian and let a <-..200

Sou ),
n
},

the existence of an xezslr\SZ

dim Sl=n—k+l

dim Sz=k

k+n -m°

1

where B 1is mxm (m<n).

and Bli...ism,

Let the

respectively.

H

such that x 'x=1

[1,

be the eigenvalues



of A. Then for k=1,...,n,

a, =min max{vFAv:ve sk,v v=1}
Sk
- - H
=max mln{VHAU:VlSk l,v v=1}
Sk—l

where ¥ denotes an arbitrary k-dimensional subspace of complex

n-vectors.

Proof. Let
Au.=a0.u,, W ,u.=6,., Jj=l,...,n.
Let

Sl=span{ u o } and 82=Sk, (any k-dimensional

R
subspace)

Then §1 (1) guarantees the existence of an X e slr»sk, xHx=l,

giving xHsza

K
On the other hand, for any u?SSpah{ Uyreeeslly }, a k-
dimensional subspace, we have uHAugak and quAuk=ak, proving

the first equality of the theorem.

To prove the second, choose

k-1,+

Luy b,os,=(sTh

Sl=span{ u 5

17

and proceed in a similar line of argument as above.

§5 The Sylvester's Law of Inertia

Let A be an nxn Hermitian matrix and let
H : ‘

v AV =diagl dl‘l),...;dn(l)’}, i=1,2,
where the Vi are nonsingular. Then
T =T, and M=,

where T (resp. ui) denotes the number of the positive (resp.



negative) dj(l)'s, (i, fixed), i=1,2. (The symbol

diag{ dl(i),... } denotes the diagonal matrix with dj(i) as

the jth diagonal element.)

(1) 4 (1o,
. :

<0 } (dim Sl=ﬂl, dim Sz=n—n2), where

denote the jth column of V(i). By §1 (1), there is an

Proof. Suppose m,>7m, and let Sl=span{ vy

(2) (2)
d Ss.= (VAR . d .

an 5 span{ 5 5
(1)

j

X € Sln 82 such that xHx=l and we have XHAx>O (since x e Sl) and

v

XHAXfO (since Xe.Sz), a contradiction. Hence ﬂl=ﬂ2. Similarly

Hy=H, -

References

1 Parlett,B.N., The Symmetric Eigenvalue‘Problemr Pientice—
Hall, 1980

2 Wilkinéon,J.H;, The Algebraic Eigenvalue Problem, Oxford,

1965



INSTITUTE OF INFORMATION SCIENCES AND ELECTRONICS
UNIVERSITY OF TSUKUBA .
SAKURA-MURA, NIIHARI-GUN, IBARAKI 305 JAPAN

REPORT NUMBER
ISE-TR-85-51

REPORT DOCUMENTATION PAGE

TITLE
Monotonicity Theorem, Cauchy's Interlace Theorem

and Courant-Fischer Theorem

AUTHOR(S)
Yasuhiko Ikebe
Toshiyuki Inagaki

Sadaaki Miyamoto

REPORT DATE NUMBER OF PAGES
October 28, 1985 5

MAIN CATEGORY CR CATEGORIES
Matrix Theory 5., 14

KEY WORDS

Eigenvalues, Hermitian Matrices

ABSTRACT

Monotonicity Theorem, Cauchy's Interlace Theorem, Courant-

Fischer Theorem and Sylvester's Law of Inertia are reworked

from a unified viewpoint of exploiting a simple dimensional

identity for an easier, quicker and independent proof.

SUPPLEMENTARY NOTES




