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Abstract

Problems of finding totally consistent interpretations when
an object consisting of many parts and their locally legal
interpretations are given are found in several areas such as
image understanding, artificial intelligence. These are a kind éf
search vproblems called consistent labeling problems, most of
wvhich are NP complete. There are two principal strategies for the
consistent labeling problem(CLP): the depth-first approach
typified by backtracking and the breadth-first approach typified
by constraint propagation. This paper proposes a novel algorithn
that takes the breadth-fifst approach. First, it is shown that
any CLP can equivalently be expressed by a constraint network.
Then, a general procedure, which repeats relaxing the network and
Joining two nodes in the network, ié broposed. Finally, we
introduce three types of concrete algorithms with different
levels of. heuristics and compare their efficiency and

characteristics experimentally.



1. Introduction

One of the approaches to the problem of analyzing or
understanding an object composed of many parts is to find a
set of labels, each of which gives an interpretation of the
corresponding part, satisfying every locally legal combination

of interpretation. This kind of problem, which is found 1in

" several different areas such as scene labeling in inage
processingl[1l], understanding line drawings in artificial
intelligencel[2], finding homomorphic subgraphs[3] and puzzles

like N-queens problem{4], 1is called in many ways, e.g. the
consistent labeling problem (called hereafter CLP for
short) [5,6], the relational consistency problem(7], the
constraint satisfaction problem[8], the satisficing assignment
problen([9] et al.

The algorithms of solving CLP, which is generally an NP
complete problem, are mainly classified into two methods: the
depth-first approach based wupon backtracking and the breadth-
first approach typified by constraint propagation. In the former
approach, many techniques to resolve thrashing phenomenon caused
by wasteful repetition of backtrackings have been vproposed,
examples of which include forward-checking[4,5], back-
marking[4,9] and looking-ahead[4,5]. In the latter approach also,
we have some techniques 1like discrete relaxation[1] and
constraint propagation working on a network representing binary
relations[1,7,8,10]. Most of those techniques of the breadth-

first approach, however, are used not to get the final result but



to reduce the number of branches in depth-first algorithnm.

One of the earliest breadth-first methods which attains
final solutions is the one proposed by Freuder[11], which
introduces a constraint network having ability to represent more-
than-2-ary relations. In Freuder's method, the network is
intially a set of isolated nodes corresponding uniquely to parts,
or units. To each node a set of possible interpretations, or
_labels, is assigned. First, every pair of units, which becomes a
new node, is added to the network, to each of which all the
possible pairs of labels consistent with its local constraint is
also attached. Then, increasing the cardinality one by one, every
combination of units is added to the network to create a nev node
with which a set of legal combinations of labels, or labelings,
associated. Finally the node corresponding to the total set of
units is added, and all of the solutions are found in the set of
labelings attached to this final node. Freuder's method is able
to deal with relations with more than +two dimensionality:
however, one  node is inevitably added to the network for every
combination of  wunits, and this may cause space and time
inefficiency.

This paper proposes a novel filtering algérithm that makes
use of the constraint propagation technique. First, it is shown
that every CLP can equivalently be expressed by a  constraint
network in Section 2. Then, in Section 3, an efficient algorithnm,
which repeats relaxing the network and joining two adjacent nodes
in the network, 1is proprosed. Finally, the efficiency of several

heuristics are evaluated experimentally in Section 4.



2. The Consistent Labeling Problem and its Equivalent Expression
2.1 The Problenm

Here we give a definition of CLP, which is a generalized
version of the one given by Haralick and Shapiro[5]. A CLP is
represented by a quadruple (U,L,T,R), where U is a set of units,
{1,...,M}, and L is a set of labels., Labels are usually possible
interpretations, meanings or values being asssigned to the units.
T is a set of tuples of units, i.e. ’FS:}Zgi. Each tuple t in T
tells the units composing t mutually co;s;;ain one another. And
all of the permitted or legal labelings for t is explicitly given
ltl)’

by a ltl-ary relation of labels, R, (¢ L

label constraint relation. |t] is the dimensionality of tuple t.

which is called a

and, R=(R sL!®items.

Solving a CLP is to find all consistent labelings
A=(ll,...,lM) of units (1,...,H) satisfying Vt(eT)( A(t)€R,),
where A(t) is the projection (1u1,....luw\) of A on
t=(u1,.,.,u|t‘). We give an example of CLP.

(Example]
0={1,...,5}, L={a,...,e},
T={t,(=(1,2)), t,(=(2,3,4)), ta(=(4,5)), t,(=(1,3,5))1,
R={R1,R2,R3,R4}5
R1={(a,c).(b,a),(b,e),(c,d).(d,a),(e,b)},
R2={(a,a,c),(a,c,d),(b,b,a).(b,d,c),(c.a,b),(d,e,a)},
R3={(a,b),(b,c).(b,d),(c.a),(d,b),(e,a)},

— 4 —



R4={(a,d’b)’ (a‘e’b)’ (b’c!b), (c’a’b),(d’c’c)}’
where R, stands for R, .

L

2.2 The Constraint Network

Here we introduce the constraint network providing an
equivalent expression of a CLP. Thé constraint netngﬁk is defined
by an undirected graph (V,E) with a function w which gives an
integer value, or a weight, to each arc. With each node i in V, a
tuple of  units, ti, and its label constraint relation, Rti
( QL’tiI) are associated. For any two node i and j there exists
an arc (i,Jj) iff there is at least one common unit possessed by
both tuples t, and tj. A constraint network equivalent to the
given CLP is derived by letting the node set V be the unit
relation T. Fig. 1 shows the equivalent constraint network
representing the CLP given in the previous section.

Our definition of <constraint networks differs from the
conventional ones[10,11] in which each node corresponds to a
single unit and only binary relations are permitted. However, in
the constraint networks proposed above, each tuple in T
corresponds to a node; thus, relations with arbitrary dimensions
can straightforwardly be expressed. The local constraint required
according to each edge is that the labelings associated to the
common units appearing in both nodes (i.e. tuples) connected each

other by an arc are to be equivalent.
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Fig.1 A constraint network.



2.3 The join-operation

Let Ri and Rj be the label constraint relations giving the
possible labelings for tuples t, and tj, each of which is
associated with nodes i and j, respectively. Assume there is an
arc (i,j). Then the set of common units d=€i/\fj is non-empty.
Let ri[d] and rj[d] be the projection of rs (eRi) and rs (eRj)
according to the common units d. Then the Jjoin operation of nodes
i and j, expressed by join(i,j), deletes the nodes i and j, and
creates a new node, say k, to which a tuple ty and its label
constraint relation Rk is assigned, where t, is the (extended)
natural Jjoin[12] of Ri and Rj with respect to d. The  newly
created node k is called the joined node, and Rk is called the
Joined label constraint relation. The weighting function w
assigns each arc (i,Jj) a weight that is the size of the Jjoined
label relation Rk wvhich is to be obtained after joining nodes i
and Jj.

Fig. 2(a) shows an example of a part of a constraint network.
After joining i and j, the joined node k is derived, as is shown
in Fig. 2(b). The weight w=3 assigned to arc (i,Jj) expresses the
size of the relation R - Labeling (b,c,a) in R, does not
perticipate in the resulting Jjoin Rk’ because its common part
(c,a) does not appear in any of tuples, labelings, of Rj. On the
othrer hand, Rj does not contain such odd labelings. When both Ri
and Rj don't contain any invalid odd labelings at all, the arec
(i,J) is called arc-consistent[7,8,11]. And a constraint network

is said to be relaxed if all of the arcs are arc-consistent.



(a)
ti=(123) {j
abc R:{aab}
bca J bca
Ri={bbc
caa
tk=(1234)

(b) M abca
: ; _/bb
Rk Casb

Fig.2 An example of join(i,j) operation.



Repeating the join operation one after another, - the constraint
network becomes only a single node, with which the final
constraint label relations containing all of the answers (i.e.

consistent labelings) is associated.
2.4 The Constraint-Propagation Operation

For the efficiency of each join-operation and to keep the
working space small, we introduce some operations which are
used to make a constraint network relaxed or quasi-relaxed. First
we define two operations used to eliminate the odd labelings.

The constraint-propagation from node i to node j, written as
prop(i,j), is the operation that eliminates all the odd labelings
in Rj that will not participate in the joined 1label relation.
Thus, after performing prop(i,J), Rj is reduced to the following
relation:

{r!reRj/\as(eRi)(s[d]=r[d])}.'
Note that the prop operation 1is non-commutative. In fact,
prop(i,Jj) reduces Rj, while prop(j,i) reduces Ri‘ The nputual-
constraint-propagation between two nodes i and Jj, written as
mutual-prop(i,j), 1is the operation that performes both prop(i,J)
and prop(j,i) at once. Apparently, mutual-prop(i,Jj) is a
commutative operation that makes the arc (i,j) arc-consistent.
Both prop and mutual-prop include the calculation of the veight
w((i,3)) also.

Next, we introduce three kinds of operations that relax the

consistent network. The global relaxation is the procedure that



makes the constraint network <completely relaxed. Its basic
mechanism is found in [11], though we implemented so that the
mutual-prop 1is wused as many times as possible. The nmutual-
prop(i,j) inevitably contains a natural join operation wused in
relational database systems[12] of Ri and Rj on the common units
d(=¥in€j). To perform the join operation effectively, we prepared
two hash tables[13] with the same size, one of which is used for
storing Ri and the other for Rj. If an entry of a table contains
an element (i.e. a labeling) while the corresponding entry of the
other table with the same address is empty, then the element is
easily concluded to be an odd labeling. This technique of
implementation 1is the same to the one adopted in the database
machine LEECH[14], which enables the mutual-prop operation to be
performed as fast as the usual prop operation. Therefore, when
two prop operations whose directions are opposite according to
the same arc are required, a mutual-prop operation can be used to
get rapidly the same result attained by those two prop
operations.

The other procedures using mutual-prop operations are the
partial relaxation and the local relaxation. The former applies a
nutual-prop operation once per every arc throughout the network.
In the latter procedure, mutual-prop operations are performed
only on the arcs connected to a proper node concerned. The
results of both procedures are slightly affected by the order of
the arcs on which mutual-props are performed. The local
relaxation applied according to node 1 in Fig. 1 eliminates odd

labelings (b,e) and (e,b) frovaI. Further, if arc (1,4) is



processed earlier than arc (1,2), odd labelings (b,b,a) and
(b,d,c) in R, are also deleted. Fig. 3(a) shows the result of the
global relaxation applied to Fig. 1.

Before going into the details of the algorithm, we <clarify
some properties of constraint networks. A node which is adjacent

both with nodes i and j is said to be bi-connected to i and Jj.

_Proposition 1.

Let i and j be adjacent nodes in a relaxed constraint network.
Then, the arc-consistency is maintained after joining nodes i and
J except the arcs that connect the joined node to the nodes which

were bi-connected to nodes i and Jj.

Proposition 2.

Let i,J and k be adjacent nodes in a constraint network G. Let
G' be the same network as G except that the arc (j,k) 1is not
=C

included. If Ejnfk.gzi, then C G’ where CG and Cp, are ‘the

G
sets of all «consistent labelings of the network G and G',

respectively.

3. The Constraint Synthesizing Algorithm

in the previous section, we introduced three relaxation
procedures using constraint propagation operations: the global
relaxation, the partial relaxation and the local relaxation. The
general framework of constraint synthesizing algorithnm is

described as follows: _ /

/



1. procedure Consistent_Labeling:
relaxation(initializing_type):

repeat

-~ W N

find the arc with minimum weight and apply Jjoin
operation;

if the result (i.e. the joined label relation) is
empty, then stop(no result found):

5. relaxation(repeating_type)

6. until the number of arcs becomes zero.

It should be noticed that the procedure works correctly even when
the 2nd and 5th steps are removed. Step 2 initially relaxes the
given constraint network to eliminate odd labelings which
apparently does not participate in any of the resulting Jjoin.
After performing step 4, it is no more guaranteed that the
network is relaxed. Step 5, however, 1incurs some kind of
relaxation procedure to recover the relaxedness of the network.
Anyway, step 2 and 5 are used to reduce the <combinatorial
explosion effect by removing odd labelings from some label
constraint relations, and to update the weight of each arc.

The loop of 4 and 5 is repeated until all the arecs are
joined and deleted or until a joined lébel relation is found to

be empty. In the former case, the final label constraint relation

gives all of the solutions, or consistent labelings. In the
latter case, it is immediately concluded that there 1is no
solutions. When the constraint network is not connected, each



component reduces to a single node. Then, all of the solutions
are given by the Cartesian product of +the 1label constraint
relations associated to those final single nodes.

Table 1 shows three kinds of important combinations of
relaxation procedures being assigned to steps 2 and 5. Method 1
does not practically contain any heuristics. It performs only a
weak relaxation once at the beginning in step 2. On the other
hand, method 3 always keeps the constraint network completely
relaxed. The arc on which the join operation in step 4 should be
applied 1is heuristically chosen by checking the weight of each
arc. Thus Jjoin operations in method 3 are carried out nore
rapidly wusing less working area than that in method 1. But in
method 3, it takes much time to accomplish global relaxation
itself. Method 2 is an intermediate method between methods 1 and
3. Proposition 1 in Section 2.4 suggests that keeping the network
relaxed 1is sufficiently attained by applying a local relaxation
with respect to the arc on which the last join operation has been
performed.

Fig. 3 shows the transition of the constraint network given

in Fig. 1 when the method 3 is applied.
4. Experiments

Implementing three methods proposed in Section 3, we try to
make clear their efficiency and characteristics. Fig. 4 shows two
types of graph structures, N1 and N2, wused to produce concrete

examples of CLPs. We generated 100 concrete CLPs per each graph



Table 1. Three main combinations of relaxation procedures.

relaxation
(initializing type)

relaxation
(repeating type)

method 1

method 2

method 3

partial relaxation
partial relaxation

global relaxation

none

local relaxation

global relaxation




ti=(1 2)
ac
_Iba
R1=1 ¢ g
da
w
t4=(1 3 5)
aeb
.Jbcb
Rs= cab
dcc

(a) The relaxed constraint network of Fig.1.

t2=(2345)

Ry {acdb;
2=-e.a.b.e.

(b) The network after performing join(2,3) of (a),

are removed by

where tuples marked with

the following relaxation(repeating type).

Fig.3 Transition of the sample network during
the progress of the method 3. (continued)



tr=(1235) t2=(2345)
Rr={bac b} R2={acdb)

(c) The network after performing join(1,4) of (b),

which is already relaxed.

@ H'=(12345)

R1"={bacdb}

(d) The result derived after join(1',2').



structure by using pseudo random numbers. As for N1, the number
of labels 1is 8 and the total number of labelings in all label
constraint relations, Rl""’RS’ is 240 (i.e. 30 labelings in
average per relation). As for N2, the number of labels is 10 and
the total number of labelings is 320 (i.e. 40 labelings in
average per relation). To generate each concrete CLP, wuniform
pseudo random numbers are used not only to make neﬁ labelings one
after another but also to determine to which node the next
labelings is to be added.

The more the number of labels becomes, the more the ratio of
odd labelings increases. The average degree of N1 is 3.75 which
is greater than that of N2, 2.5. As the average degree increases,
the constraint becomes more tight:; +thus, the number of solutions
tends to be less. To sum up, the conditions of a constraint
network thatv make the number of final solutions small and the
computation time short are as follow§=

i) the average of degrees is large,
ii) the number of labels are large, and
iii) the average size of the label constraint relations is
small.
Actually, the experiment shows the average number of solutions of
the cases N1 and N2 are 206.3 and 3100.1, respectively.

The generated 100 concrete CLPs per each graph, N1 and N2,
are processed by the three methods shown in Table 1. The average
CPU time to solve a CLP is shown in Table 2. As we mentioned in
Section 3, method 2 gives the best results: the moderate

relaxation procedure is effective (comparing with method 1), but



t5=(358) t,=(3 9)

(a) N1 structure.

t=(910)  t2=(1610)

te=279\. ty=0110) 1g=(18) 13=(36)

(b) N2 structure.

Fig.4 The graph structures used for the

experiments.



Table 2. Average CPU time per CLP (sec).

method 1 method 2 method 3
N1 2.391 2.244 3.173
N2 4,982 3,766 3.973




there is no need of full relaxation (comparing with method 3). In
case of N1, we measured the variances of CPU time of methods 1, 2
and 3, which are 2.653, 0.214 and 0.210, respectively. The result
shows that, comparing with method 1, the other two methods are
very stable in computation time. And, the method 2 is actually as
stable as method 3. This fact is proved also by measuring the
correlation of CPU time of each CLP. The correlation coefficient
of methods 1 and 3 is 0.368, while that of 2 and 3 is 0.873,
which shows high correlation.

Next, let us pay attention to the working space. In the case
‘of method 1, about 10% of 100 problems of N1 require
extraordinarily long computation time, as for one of a typical
case of which the transition of the size of working space s
shown in Fig. 5. The total number of all the surviving labelings
after the execution of each join step is expressed by the
vertical axis; thus, it also gives the size of the working space.
As a matter of course, the final value of the vertical axis, or
the number of solutions, is always the same, 240, in each case of
(a), (b) and (c¢) in Fig. 5. In the case of method 1 (Fig. 5(a)),
a combinatorial explosion is observed at step 5 and 6, where more
than 8,000 labelings survive. On the other hand, in the cases of
methods 2 and 3, which are shown in Fig. b5(b) and (¢},
respectively, the number of remaining labelings 1is always
suppressed under 300. Thus, method 1 is inappropriate especially
when the working space is limitted.

As discussed above, method 2 gives the best result in ternms

both of time and space efficiency. In [4], several depth-first
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Fig.5 Transition of the size of work area.



algorithms are compared experimentally by using N queens problem.
According to the results proved in [4], we can find that the
relative efficiency of standard backtracking, forward-checking
and looking-ahead are very similar to that of our methods 1, 2
and 3, respectively. It means that forward-checking, which Iis
intermediate method between standard backtracking and looking-
ahead, attains moderate heuristics giving best trade-offs.

Qur experimental programs are written in Fortran 77 and run
on Perkin-Elmer 3220. We made use of hashing technique (chaining)
to implement the join operation and the <constraint propagation

procedure, as was referred to in Section 2.4.

5. Conclusion

A CLP is defined by a set of units, U, a set of labels, L,
a unit constraint relation, T, and a label constraint relation,
R. In the foregoings, we first extended the conventional
definition of CLP so that unit relations with different
dimensionalities may coexist. We introrduced constraint networks
showing any CLP can equivalently be expressed by a constraint
network. Then, a novel constraint synthesizing algorithm which
reduces the given constraint network to a single node contaiﬁing
all of the final consistent labelings was proposed. We defined
three types of concrete algorithms and proved their efficiency
and characteristics experimentally.
CLP is a kind of search problem in artificial 1intelligence,

where it must be noted that too much stress should not be laid on



finding the optimal path only. Our experimental result also shows
that a moderate heuristics gives the best result.

Since the termination criterion of the algorithm is that
‘there is no more arcs in the network, it works correctly even
when the given constraint network is not connected. Further,
whenever it is found that every label relation contains only one
labeling (,such a case is seen in Fig. 3(b)), the algorithm can
immediately be terminated, giving one solution. The algorithm is
suitable to parallel processing, because the join operation and
the constraint propagation are locally executable as for an arc
concerned. If we have sufficient number of processors, the

computation time is reduced to 0(loglVl).
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